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1 INTRODUCTION
Advanced cryptographic mechanisms such as secure multiparty
computation (MPC) [Yao82], zero-knowledge proofs (ZKP) [GMR89],
and fully homomorphic encryption (FHE) [Gen09] all expect pro-
grams represented as fixed-sized circuits. Since it is painful to pro-
gram circuits directly, cryptographic compilers [MNPS04, IMZ19,
ACK+19, RHH14, LWN+15, PHGR13, CFH+15, WSR+15, ARG+21,
LSI+23, DSC+19, DKS+20, CDA+21, VJHH22, MSK23, JVC18] alle-
viate the burden on programmers by translating high-level code to
low-level circuits. However, many existing compilers fail to take
full advantage of the underlying cryptographic libraries to speed
up execution, as neither the source representation nor the circuit
representation are suitable for optimizations such as vectorization.

Prior work on cryptographic intermediate representations (IRs),
including that focusing on vectorization for cryptographic mecha-
nisms [LSI+23, OBW22], targets programs whose entire behavior
can be implemented as a single cryptographic circuit. This approach
therefore cannot support interactive programs in which user in-
put arrives during execution; nor does it support the compilation
of programs mixing multiple cryptographic back ends and local
computation, which is useful for performance.

We introduce AIRduct, a new array-based intermediate represen-
tation designed to support generating efficient code for interactive
programs employing multiple cryptographic mechanisms. AIRduct
is intended as an IR for the Viaduct compiler [ARG+21], which can
synthesize secure, distributed programs with an extensible suite
of cryptography. Therefore, AIRduct supports an extensible vari-
ety of cryptographic mechanisms, including MPC and ZKP. It is
the job of the Viaduct compiler to select cryptographic protocols
that make the compiled program secure, guided by information-
flow annotations. In this paper, we assume this choice has been
made correctly, and focus on the IR. A proof that Viaduct generates
secure target code in the sense of UC simulation [Can01], assum-
ing that cryptographic mechanisms are described faithfully by the
information-flow annotations, is provided elsewhere [AGRM23].

2 OVERVIEW OF AIRDUCT
Large-scale applications may require multiple cryptographic mech-
anisms at different points of a program, as well as reactive func-
tionality or running computations indefinitely. AIRduct represents
code employing multiple cryptographic mechanisms as structured
control flow over calls to circuit functions. To demonstrate how our
approach enables these programs, we use a program for interactive
biometric matching as a running example. In listing 1, the circuit
function biometric describes a computation to be performed on
MPC, which represents a secure multiparty computation protocol
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1 host Client , Server
2

3 circuit fun <n, d> biometric@MPC(
4 database: int[n, d],
5 sample: int[d]) → min_dist: int[] {
6 val dists[i < n] = reduce (::+, 0) { j < d →
7 (database[i, j] - sample[j]) ** 2
8 }
9 val res[] = reduce (::min , int.MAX) { i < n →
10 dists[i]
11 }
12 return res
13 }
14

15 fun main() {
16 val N@Replication(Client , Server) = 1000
17 val D@Replication(Client , Server) = 20
18 val database@Local(Server) =
19 Server.input <int[N, D]>()
20 while (true) {
21 val sample@Local(Client) =
22 Client.input <int[D]>()
23 val result@Local(Client) =
24 biometric <N, D>(database , sample)
25 Client.output(result)
26 }
27 }

Listing 1: An interactive biometric matching service.

between Server and Client. It matches a d-tuple sample against a
database of n points and reports the squared Euclidean distance
between the sample and the closest database entry. The result is a
zero-dimensional array (a scalar), as indicated by the syntax int[].

The function main performs an infinite loop of inputs, outputs,
and calls to the circuit function biometric. Results of function calls
are bound to variables, which are associated with storage formats
describing how the variables are stored across hosts. In the example,
values specifying array sizes are stored using a replication protocol,
as both parties must have access to array sizes. The input samples
and results of calling biometric are stored locally by Client.

3 SYNTAX
Figure 1 gives the syntax of AIRduct. Circuit functions are straight-
line blocks of computations performed on a single cryptographic
protocol, parameterized by array sizes. Computations in circuit
functions are expressed in the form of assignments to multidimen-
sional arrays. The expressions used in these assignments include
arithmetic and logical operations, indexing into arrays, references
to named values (including size parameters), and bulk operations
such as reduce. While each circuit function must be associated with
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Hosts ℎ ∈ H Computation Protocol 𝑝 ∈ P
Variables 𝑥 ∈ X Storage Protocol 𝑞 ∈ Q
Values 𝑣 ∈ V
Types 𝜏 ∈ T
Function Names 𝑓 ∈ F

Atomic Expr. 𝑡 ::= 𝑣 | 𝑥
Index Bounds 𝑏 ::= 𝑥 < 𝑡

Scalar Expr. 𝑒 ::= 𝑥 [𝑡] | op(𝑒1, 𝑒2)
| reduce(op, 𝑒){𝑏 → 𝑒}

Commands 𝑚 ::= 𝑡 | 𝑓 ⟨𝑡⟩(𝑡)
| ℎ.input⟨𝜏⟩() | ℎoutput(𝑡)

Circuit Statements 𝑐 ::= val 𝑥 [𝑏] = 𝑒

Statements 𝑠 ::= val 𝑥@𝑞 =𝑚

| if 𝑡 then 𝑠1 else 𝑠2
Parameters 𝑟 ::= 𝑥 : 𝜏
Top-level Decl. 𝑑 ::=

| circuit fun ⟨𝑥⟩ 𝑓@𝑝 (𝑟 ) → 𝑟 {𝑐; return 𝑥}
| fun ⟨𝑥⟩ 𝑓 (𝑟 ) → 𝑟 {𝑠; return 𝑥}

Figure 1: Syntax of AIRduct.

one protocol, a program may employ multiple protocols across
circuit functions. Non-circuit functions contain control-flow state-
ments (conditionals) and let-bindings, which bind constants, inputs,
outputs, and the results of circuit or function calls to named val-
ues. We elide looping constructs in the formal language since they
can be recovered through recursion. No computation can occur in
non-circuit functions.

4 ARRAY-BASED COMPUTATION
It is a standard restriction in cryptographic mechanisms such as
MPC that bounds must be known at the time of circuit generation.
Cryptographic circuits require all loops to be unrolled, conditional
statements to be translated into “muxes”, and functions to be in-
lined [MNPS04]. However, this process blows up the program size
and erases all structure in the resulting circuit representation, mak-
ing it difficult and expensive to perform optimizations.

Array programs are conditional and loop-free, and are therefore
a useful representation for translation to low-level circuits, unlike
high-level languages. Many loops in practice can be expressed with
array operations, so programs do not grow unreasonably in size.
Array programs also preserve structure and natively capture bulk
operations, so they are easy to optimize and parallelize, unlike
circuits. As vectorization is a crucial optimization for efficiency
[LSI+23, BDST22, CDA+21, VJHH22, MSK23], this array-centric
representation may present significant speedup in generated code.

As such, computations in AIRduct are expressed solely using
arrays. Circuit functions in AIRduct are parameterized over sizes to
support protocols which require bounds to be known at generation
time.

5 CONTROL FLOW
Additionally, AIRduct separates control flow from cryptographic
execution by restricting all computation to pure circuit blocks. In-
puts, outputs, calls to circuits, and other control-flow statements
occur only in non-circuit functions. This representation prevents
arbitrary control flow inside of circuits, without restricting the
overall program to straight-line computations. It also enables reac-
tivity: programs can exit from circuit functions to perform input
and outputs before resuming computation.

Thus, in the biometric example, while the size of the circuit is
bounded, the interactive loop between the client and server can
continue indefinitely.

6 PROTOCOL MIXING
Intermediate storage may be needed if values computed by a cir-
cuit function are used in other circuits. For some cryptographic
implementations such as ABY [DSZ15], circuits are destroyed upon
evaluation. In order to support intermediate results, values must
be explicitly exported and imported as secret shares.

In AIRduct, cryptographic protocols may be used for computa-
tion or intermediate storage. For instance, commitment schemes
and secret sharing are storage protocols, as they specify a format
for storing data. ZKP andMPC are computation protocols, and repli-
cation is both a storage and a computation protocol. Each protocol
is associated with data formats for storing or computing values.
To execute circuit functions, data must be imported and exported
between these formats.

In the biometric example, the call to biometric is associated with
two imports (database and sample, imported from local cleartext
formats to the format for computation with MPC) and one export
(result, exported from the MPC computation format to the client’s
local storage).

Protocol back ends define how both to import values to the for-
mat used for cryptographic execution and to export data to interme-
diate storage. For instance, to export local values to the replicated
format (in which data is replicated on all hosts involved with the
protocol), hosts involved in replication must perform equivoca-
tion checks to ensure that the value they receive is the same as
other hosts in the replication protocol. Libraries for MPC such as
ABY [DSZ15] allow for execution of circuits in multiple schemes
(arithmetic sharing, boolean sharing, and Yao’s garbled circuits),
and ABY supports transferring data between them.

Thus, defining communication between protocols in terms of
transfers between storage and execution formats provides a useful
abstraction for interactive computation that mixes cryptography.

7 GENERATION OF AIRDUCT
Circuit functions provide cryptographic back ends with large, con-
tiguous blocks of straight-line computation as opposed to individual
instructions. Working with blocks exposes parallelism opportuni-
ties and enables more advanced optimizations such as algebraic
rewrites to simplify computations [WNW+21]. Additionally, large
blocks amortize the cost of interfacing with cryptographic frame-
works: building, evaluating, and destroying circuits, and importing
and exporting data. Therefore, generating an IR which packs as
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much computation as possible into each circuit function is advan-
tageous for efficiency.

We propose to automatically split the input program into (large)
circuit functions. The input to splitting is an array program which
freely mixes computation and control flow, and where each state-
ment is annotated with the protocol executing that statement.1
The splitting procedure attempts to group together statements on
the same protocol by reordering them. The goal of reordering is
to maximize block size and to minimize data dependence between
blocks (which becomes communication in the form of imports and
exports in the generated IR).

The compiler cannot freely reorder statements: in addition to
being restricted by data dependencies, some reorderings violate
security. The compiler cannot move an output statement before
an input statement, and it cannot move a statement that reveals
information before one that commits to data. For example, if the
source program states Client guesses a number and then Server

reveals the secret number it picked, the compiler should not switch
the order of these statements. These constraints precisely identify
when it is safe to reorder [AGRM23].

8 CONCLUSION
We present a new intermediate representation for compilers that
generate code for advanced cryptographic libraries. Our IR supports
interactive programs by making explicit the boundary between con-
trol flow and cryptographic computation. It allows mixing local
computation with multiple different cryptographic mechanisms by
distinguishing storage formats from computation protocols. Finally,
it facilitates vectorization and other optimizations by partitioning
source programs into large contiguous blocks of array programs.
Fully integrating the new IR into Viaduct is a work in progress. We
are working on implementing splitting, and taking full advantage
of vectorization. We have integrated replication and MPC (through
ABY [DSZ15]), and are hoping to integrate ZKP and fully homo-
morphic encryption (FHE).
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