
An Array Intermediate Language for Mixed Cryptography
Vivian Ding

Cornell University
Ithaca, NY, USA
vyd2@cornell.edu

Coşku Acay
Cornell University
Ithaca, NY, USA

cacay@cs.cornell.edu

Andrew C. Myers
Cornell University
Ithaca, NY, USA

andru@cs.cornell.edu

1 INTRODUCTION
Advanced cryptographic mechanisms such as secure multiparty
computation (MPC) [Yao82], zero-knowledge proofs (ZKP) [GMR89],
and fully homomorphic encryption (FHE) [Gen09] all expect pro-
grams represented as fixed-sized circuits. Since it is painful to pro-
gram circuits directly, cryptographic compilers [MNPS04, IMZ19,
ACK+19, RHH14, LWN+15, PHGR13, CFH+15, WSR+15, ARG+21,
LSI+23, DSC+19, DKS+20, CDA+21, VJHH22, MSK23, JVC18] alle-
viate the burden on programmers by translating high-level code to
low-level circuits. However, many existing compilers fail to take
full advantage of the underlying cryptographic libraries to speed
up execution, as neither the source representation nor the circuit
representation are suitable for optimizations such as vectorization.

Prior work on cryptographic intermediate representations (IRs),
including that focusing on vectorization for cryptographic mecha-
nisms [LSI+23, OBW22], targets programs whose entire behavior
can be implemented as a single cryptographic circuit. This approach
therefore cannot support interactive programs in which user in-
put arrives during execution; nor does it support the compilation
of programs mixing multiple cryptographic back ends and local
computation, which is useful for performance.

We introduce AIRduct, a new array-based intermediate represen-
tation designed to support generating efficient code for interactive
programs employing multiple cryptographic mechanisms. AIRduct
is intended as an IR for the Viaduct compiler [ARG+21], which can
synthesize secure, distributed programs with an extensible suite
of cryptography. Therefore, AIRduct supports an extensible vari-
ety of cryptographic mechanisms, including MPC and ZKP. It is
the job of the Viaduct compiler to select cryptographic protocols
that make the compiled program secure, guided by information-
flow annotations. In this paper, we assume this choice has been
made correctly, and focus on the IR. A proof that Viaduct generates
secure target code in the sense of UC simulation [Can01], assum-
ing that cryptographic mechanisms are described faithfully by the
information-flow annotations, is provided elsewhere [AGRM23].

2 OVERVIEW OF AIRDUCT
Large-scale applications may require multiple cryptographic mech-
anisms at different points of a program, as well as reactive func-
tionality or running computations indefinitely. AIRduct represents
code employing multiple cryptographic mechanisms as structured
control flow over calls to circuit functions. To demonstrate how our
approach enables these programs, we use a program for interactive
biometric matching as a running example. In listing 1, the circuit
function biometric describes a computation to be performed on
MPC, which represents a secure multiparty computation protocol

FCS 2023, July 9, 2023, Dubrovnik, Croatia
2023.

1 host Client , Server
2

3 circuit fun <n, d> biometric@MPC(
4 database: int[n, d],
5 sample: int[d]) → min_dist: int[] {
6 val dists[i < n] = reduce (::+, 0) { j < d →
7 (database[i, j] - sample[j]) ** 2
8 }
9 val res[] = reduce (::min , int.MAX) { i < n →
10 dists[i]
11 }
12 return res
13 }
14

15 fun main() {
16 val N@Replication(Client , Server) = 1000
17 val D@Replication(Client , Server) = 20
18 val database@Local(Server) =
19 Server.input <int[N, D]>()
20 while (true) {
21 val sample@Local(Client) =
22 Client.input <int[D]>()
23 val result@Local(Client) =
24 biometric <N, D>(database , sample)
25 Client.output(result)
26 }
27 }

Listing 1: An interactive biometric matching service.

between Server and Client. It matches a d-tuple sample against a
database of n points and reports the squared Euclidean distance
between the sample and the closest database entry. The result is a
zero-dimensional array (a scalar), as indicated by the syntax int[].

The function main performs an infinite loop of inputs, outputs,
and calls to the circuit function biometric. Results of function calls
are bound to variables, which are associated with storage formats
describing how the variables are stored across hosts. In the example,
values specifying array sizes are stored using a replication protocol,
as both parties must have access to array sizes. The input samples
and results of calling biometric are stored locally by Client.

3 SYNTAX
Figure 1 gives the syntax of AIRduct. Circuit functions are straight-
line blocks of computations performed on a single cryptographic
protocol, parameterized by array sizes. Computations in circuit
functions are expressed in the form of assignments to multidimen-
sional arrays. The expressions used in these assignments include
arithmetic and logical operations, indexing into arrays, references
to named values (including size parameters), and bulk operations
such as reduce. While each circuit function must be associated with

1

https://orcid.org/0009-0008-5110-0593
https://orcid.org/0000-0002-0487-1167
https://orcid.org/0000-0001-5819-7588

FCS 2023, July 9, 2023, Dubrovnik, Croatia Vivian Ding, Coşku Acay, and Andrew C. Myers

Hosts ℎ ∈ H Computation Protocol 𝑝 ∈ P
Variables 𝑥 ∈ X Storage Protocol 𝑞 ∈ Q
Values 𝑣 ∈ V
Types 𝜏 ∈ T
Function Names 𝑓 ∈ F

Atomic Expr. 𝑡 ::= 𝑣 | 𝑥
Index Bounds 𝑏 ::= 𝑥 < 𝑡

Scalar Expr. 𝑒 ::= 𝑥 [𝑡] | op(𝑒1, 𝑒2)
| reduce(op, 𝑒){𝑏 → 𝑒}

Commands 𝑚 ::= 𝑡 | 𝑓 ⟨𝑡⟩(𝑡)
| ℎ.input⟨𝜏⟩() | ℎoutput(𝑡)

Circuit Statements 𝑐 ::= val 𝑥 [𝑏] = 𝑒

Statements 𝑠 ::= val 𝑥@𝑞 =𝑚

| if 𝑡 then 𝑠1 else 𝑠2
Parameters 𝑟 ::= 𝑥 : 𝜏
Top-level Decl. 𝑑 ::=

| circuit fun ⟨𝑥⟩ 𝑓@𝑝 (𝑟) → 𝑟 {𝑐; return 𝑥}
| fun ⟨𝑥⟩ 𝑓 (𝑟) → 𝑟 {𝑠; return 𝑥}

Figure 1: Syntax of AIRduct.

one protocol, a program may employ multiple protocols across
circuit functions. Non-circuit functions contain control-flow state-
ments (conditionals) and let-bindings, which bind constants, inputs,
outputs, and the results of circuit or function calls to named val-
ues. We elide looping constructs in the formal language since they
can be recovered through recursion. No computation can occur in
non-circuit functions.

4 ARRAY-BASED COMPUTATION
It is a standard restriction in cryptographic mechanisms such as
MPC that bounds must be known at the time of circuit generation.
Cryptographic circuits require all loops to be unrolled, conditional
statements to be translated into “muxes”, and functions to be in-
lined [MNPS04]. However, this process blows up the program size
and erases all structure in the resulting circuit representation, mak-
ing it difficult and expensive to perform optimizations.

Array programs are conditional and loop-free, and are therefore
a useful representation for translation to low-level circuits, unlike
high-level languages. Many loops in practice can be expressed with
array operations, so programs do not grow unreasonably in size.
Array programs also preserve structure and natively capture bulk
operations, so they are easy to optimize and parallelize, unlike
circuits. As vectorization is a crucial optimization for efficiency
[LSI+23, BDST22, CDA+21, VJHH22, MSK23], this array-centric
representation may present significant speedup in generated code.

As such, computations in AIRduct are expressed solely using
arrays. Circuit functions in AIRduct are parameterized over sizes to
support protocols which require bounds to be known at generation
time.

5 CONTROL FLOW
Additionally, AIRduct separates control flow from cryptographic
execution by restricting all computation to pure circuit blocks. In-
puts, outputs, calls to circuits, and other control-flow statements
occur only in non-circuit functions. This representation prevents
arbitrary control flow inside of circuits, without restricting the
overall program to straight-line computations. It also enables reac-
tivity: programs can exit from circuit functions to perform input
and outputs before resuming computation.

Thus, in the biometric example, while the size of the circuit is
bounded, the interactive loop between the client and server can
continue indefinitely.

6 PROTOCOL MIXING
Intermediate storage may be needed if values computed by a cir-
cuit function are used in other circuits. For some cryptographic
implementations such as ABY [DSZ15], circuits are destroyed upon
evaluation. In order to support intermediate results, values must
be explicitly exported and imported as secret shares.

In AIRduct, cryptographic protocols may be used for computa-
tion or intermediate storage. For instance, commitment schemes
and secret sharing are storage protocols, as they specify a format
for storing data. ZKP andMPC are computation protocols, and repli-
cation is both a storage and a computation protocol. Each protocol
is associated with data formats for storing or computing values.
To execute circuit functions, data must be imported and exported
between these formats.

In the biometric example, the call to biometric is associated with
two imports (database and sample, imported from local cleartext
formats to the format for computation with MPC) and one export
(result, exported from the MPC computation format to the client’s
local storage).

Protocol back ends define how both to import values to the for-
mat used for cryptographic execution and to export data to interme-
diate storage. For instance, to export local values to the replicated
format (in which data is replicated on all hosts involved with the
protocol), hosts involved in replication must perform equivoca-
tion checks to ensure that the value they receive is the same as
other hosts in the replication protocol. Libraries for MPC such as
ABY [DSZ15] allow for execution of circuits in multiple schemes
(arithmetic sharing, boolean sharing, and Yao’s garbled circuits),
and ABY supports transferring data between them.

Thus, defining communication between protocols in terms of
transfers between storage and execution formats provides a useful
abstraction for interactive computation that mixes cryptography.

7 GENERATION OF AIRDUCT
Circuit functions provide cryptographic back ends with large, con-
tiguous blocks of straight-line computation as opposed to individual
instructions. Working with blocks exposes parallelism opportuni-
ties and enables more advanced optimizations such as algebraic
rewrites to simplify computations [WNW+21]. Additionally, large
blocks amortize the cost of interfacing with cryptographic frame-
works: building, evaluating, and destroying circuits, and importing
and exporting data. Therefore, generating an IR which packs as

2

An Array Intermediate Language for Mixed Cryptography FCS 2023, July 9, 2023, Dubrovnik, Croatia

much computation as possible into each circuit function is advan-
tageous for efficiency.

We propose to automatically split the input program into (large)
circuit functions. The input to splitting is an array program which
freely mixes computation and control flow, and where each state-
ment is annotated with the protocol executing that statement.1
The splitting procedure attempts to group together statements on
the same protocol by reordering them. The goal of reordering is
to maximize block size and to minimize data dependence between
blocks (which becomes communication in the form of imports and
exports in the generated IR).

The compiler cannot freely reorder statements: in addition to
being restricted by data dependencies, some reorderings violate
security. The compiler cannot move an output statement before
an input statement, and it cannot move a statement that reveals
information before one that commits to data. For example, if the
source program states Client guesses a number and then Server

reveals the secret number it picked, the compiler should not switch
the order of these statements. These constraints precisely identify
when it is safe to reorder [AGRM23].

8 CONCLUSION
We present a new intermediate representation for compilers that
generate code for advanced cryptographic libraries. Our IR supports
interactive programs by making explicit the boundary between con-
trol flow and cryptographic computation. It allows mixing local
computation with multiple different cryptographic mechanisms by
distinguishing storage formats from computation protocols. Finally,
it facilitates vectorization and other optimizations by partitioning
source programs into large contiguous blocks of array programs.
Fully integrating the new IR into Viaduct is a work in progress. We
are working on implementing splitting, and taking full advantage
of vectorization. We have integrated replication and MPC (through
ABY [DSZ15]), and are hoping to integrate ZKP and fully homo-
morphic encryption (FHE).

REFERENCES
[ACK+19] Abdelrahaman Aly, Daniele Cozzo, Marcel Keller, Emmanuela Orsini, Dra-

gos Rotaru, Peter Scholl, Nigel P. Smart, and TimWood. SCALE–MAMBA
v1.6 : Documentation, 2019.

[AGRM23] Coşku Acay, Joshua Gancher, Rolph Recto, and Andrew Myers. Secure
synthesis of distributed cryptographic applications. In submission, 2023.

[ARG+21] Coşku Acay, Rolph Recto, Joshua Gancher, Andrew Myers, and Elaine
Shi. Viaduct: An extensible, optimizing compiler for secure distributed
programs. In 42nd ACM SIGPLAN Conf. on Programming Language Design
and Implementation (PLDI), pages 740–755. ACM, June 2021.

[BDST22] Lennart Braun, Daniel Demmler, Thomas Schneider, and Oleksandr
Tkachenko. Motion – a framework for mixed-protocol multi-party com-
putation. ACM Trans. Priv. Secur., 25(2), 2022.

[Can01] Ran Canetti. Universally composable security: A new paradigm for
cryptographic protocols. In 42nd Symposium on Foundations of Computer
Science (FOCS), pages 136–145. IEEE Computer Society, 2001.

[CDA+21] Meghan Cowan, Deeksha Dangwal, Armin Alaghi, Caroline Trippel,
Vincent T. Lee, and Brandon Reagen. Porcupine: A synthesizing compiler
for vectorized homomorphic encryption. In 42nd ACM SIGPLAN Conf. on
Programming Language Design and Implementation (PLDI), pages 375–389,
2021.

[CFH+15] Craig Costello, Cédric Fournet, Jon Howell, Markulf Kohlweiss, Benjamin
Kreuter, Michael Naehrig, Bryan Parno, and Samee Zahur. Geppetto:

1Protocol annotations can be provided by the programmer or inferred automatically
through information-flow analysis [ARG+21, ZCMZ03, CLM+07].

Versatile verifiable computation. In IEEE Symp. on Security and Privacy,
pages 253–270. IEEE, 2015.

[CLM+07] Stephen Chong, Jed Liu, Andrew C. Myers, Xin Qi, K. Vikram, Lantian
Zheng, and Xin Zheng. Secure web applications via automatic partition-
ing. In 21st ACM Symp. on Operating System Principles (SOSP), pages
31–44, October 2007.

[DKS+20] Roshan Dathathri, Blagovesta Kostova, Olli Saarikivi, Wei Dai, Kim Laine,
andMadanMusuvathi. EVA: an encrypted vector arithmetic language and
compiler for efficient homomorphic computation. In Alastair F. Donald-
son and Emina Torlak, editors, 41st ACM SIGPLAN Conf. on Programming
Language Design and Implementation (PLDI), pages 546–561. ACM, 2020.

[DSC+19] Roshan Dathathri, Olli Saarikivi, Hao Chen, Kim Laine, Kristin E. Lauter,
Saeed Maleki, Madanlal Musuvathi, and Todd Mytkowicz. CHET: an
optimizing compiler for fully-homomorphic neural-network inferencing.
In Kathryn S. McKinley and Kathleen Fisher, editors, 40th ACM SIGPLAN
Conf. on Programming Language Design and Implementation (PLDI), pages
142–156. ACM, 2019.

[DSZ15] Daniel Demmler, Thomas Schneider, and Michael Zohner. ABY - A
framework for efficient mixed-protocol secure two-party computation.
In Network and Distributed System Security Symp. The Internet Society,
2015.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In 41st

ACM Symp. on Theory of Computing, pages 169–178, 2009.
[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge

complexity of interactive proof systems. SIAM J. Comput., 18(1):186–208,
1989.

[IMZ19] Muhammad Ishaq, Ana Milanova, and Vassilis Zikas. Efficient MPC via
program analysis: A framework for efficient optimal mixing. In 26th ACM
Conf. on Computer and Communications Security (CCS), pages 1539–1556.
ACM, 2019.

[JVC18] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha P. Chandrakasan.
GAZELLE: A low latency framework for secure neural network inference.
In William Enck and Adrienne Porter Felt, editors, 27th USENIX Security
Symposium, USENIX Security 2018, Baltimore, MD, USA, August 15-17,
2018, pages 1651–1669. USENIX Association, 2018.

[LSI+23] Benjamin Levy, Ben Sherman, Muhammad Ishaq, Lindsey Kennard, Ana L.
Milanova, and Vassilis Zikas. Compilation and backend-independent
vectorization for multi-party computation. IACR Cryptol. ePrint Arch.,
page 89, 2023.

[LWN+15] Chang Liu, Xiao Shaun Wang, Kartik Nayak, Yan Huang, and Elaine Shi.
Oblivm: A programming framework for secure computation. In 25th ACM
Symp. on Operating System Principles (SOSP), pages 359–376. IEEE, 2015.

[MNPS04] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. Fairplay - a
secure two-party computation system. In 13th Usenix Security Symposium,
pages 287–302, August 2004.

[MSK23] Raghav Malik, Kabir Sheth, and Milind Kulkarni. Coyote: A compiler
for vectorizing encrypted arithmetic circuits. In Proceedings of the 28th
ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3, pages 118–133, 2023.

[OBW22] Alex Ozdemir, Fraser Brown, and Riad S. Wahby. CirC: Compiler in-
frastructure for proof systems, software verification, and more. In IEEE
Symp. on Security and Privacy, pages 2248–2266, 2022.

[PHGR13] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio:
Nearly practical verifiable computation. In IEEE Symp. on Security and
Privacy, pages 238–252. IEEE, 2013.

[RHH14] Aseem Rastogi, MatthewA. Hammer, andMichael Hicks. Wysteria: A pro-
gramming language for generic, mixed-mode multiparty computations.
In IEEE Symp. on Security and Privacy, pages 655–670, May 2014.

[VJHH22] Alexander Viand, Patrick Jattke, Miro Haller, and Anwar Hithnawi.
HECO: automatic code optimizations for efficient fully homomorphic
encryption. CoRR, abs/2202.01649, 2022.

[WNW+21] MaxWillsey, Chandrakana Nandi, Yisu RemyWang, Oliver Flatt, Zachary
Tatlock, and Pavel Panchekha. Egg: Fast and extensible equality satura-
tion. Proc. ACM Program. Lang., 5(POPL), jan 2021.

[WSR+15] Riad S. Wahby, Srinath Setty, Zuocheng Ren, Andrew J. Blumberg, and
Michael Walfish. Efficient RAM and control flow in verifiable outsourced
computation. In Network and Distributed System Security Symp. The
Internet Society, 2015.

[Yao82] Andrew C. Yao. Protocols for secure computations. In 23rd annual IEEE
Symposium on Foundations of Computer Science, pages 160–164, 1982.

[ZCMZ03] Lantian Zheng, Stephen Chong, Andrew C. Myers, and Steve Zdancewic.
Using replication and partitioning to build secure distributed systems. In
IEEE Symp. on Security and Privacy, pages 236–250, May 2003.

3

	1 Introduction
	2 Overview of AIRduct
	3 Syntax
	4 Array-Based Computation
	5 Control Flow
	6 Protocol Mixing
	7 Generation of AIRduct
	8 Conclusion
	References

