
Implementing a Secure Abstract Machine

Adriaan Larmuseau1 Marco Patrignani2 Dave Clarke1,2

1Dept. of IT, Uppsala University, Sweden 2iMinds-Distrinet, KU Leuven, Belgium
first.last@it.uu.se first.last@cs.kuleuven.be

ABSTRACT
Abstract machines are both theoretical models used to study
language properties and practical models of language imple-
mentations. As with all language implementations, abstract
machines are subject to security violations by the context in
which they reside. This paper presents the implementation
of an abstract machine for ML that preserves the abstrac-
tions of ML, in possibly malicious, low-level contexts. To
guarantee this security result, we make use of a low-level
memory isolation mechanism and derive the formalisation
of the machine through a methodology, whose every step is
accompanied by formal properties that ensure that the step
has been carried out properly. We provide an implementa-
tion of the abstract machine and analyse its performance.

CCS Concepts
•Security and privacy → Software security engineering;
Domain-specific security and privacy architectures;

Keywords
Abstract Machine; Memory Protection

1. INTRODUCTION
Abstract machines are both theoretical models used to study
language properties and practical models of language imple-
mentations. Nowadays, several languages, especially func-
tional ones, are implemented using abstract machines. For
example, OCaml’s bytecode runs on the Zinc abstract ma-
chine and the Glasgow Haskell Compiler uses the Spineless
Tagless G-machine internally [7].

When security-sensitive applications are run by an abstract
machine it is crucial that the abstract machine implemen-
tation does not leak security sensitive information. Outside
of implementation mistakes, abstract machine implementa-

ACM 978-1-4503-3738-0.
http://dx.doi.org/10.1145/0000000.0000000

tions are also threatened by the low-level context in which
they reside. In practice, an abstract machine implemen-
tation will use or interact with various, low-level libraries
and/or components that may be written with malicious in-
tent or susceptible to code injection attacks. Such mali-
cious low-level components can bypass software based secu-
rity mechanisms and may disclose confidential data, break
integrity checks and so forth [15].

This paper presents the derivation and implementation of
an abstract machine for MiniML, a light-weight version of
ML featuring references and recursion, that runs on a pro-
cessor enhanced with the Protected Module Architecture
(PMA) [15]. PMA is a low-level memory isolation mech-
anism, that protects a certain memory area by restricting
access to that area based on the location of the program
counter. Our abstract machine executes programs within
this protected memory without sacrificing their ability to
interact with the outside world.

To guarantee the security of the implemented abstract ma-
chine, we follow a two step methodology to derive the for-
malisation of the abstract machine. In the first step MiniML
is extended with a secure foreign function interface (FFI).
This extension to MiniML is derived by improving the theo-
retical secure operational semantics of Larmuseau et al. [8],
with Patrignani et al.’s trace semantics of a realistic low-
level attacker [13]. In the second step we apply the syntactic
correspondences of Biernacka et al. [2] to this extension of
MiniML, to obtain the formalisation of a CESK machine im-
plementation for MiniML. For each of these syntactic corre-
spondences we prove that they do not result in the abstract
machine leaking security sensitive information.

After presenting the source language MiniML and the rel-
evant security concepts and formalisations (Section 2), this
paper makes the following contributions. It describes our
methodology and how we apply it to derive a secure CESK

machine for MiniML (Section 3). This paper also details our
implementation of the CESK machine as well as the perfor-
mance of the machine in certain test scenarios (Section 4).

The proposed work is not without limitations. While the
formalisation is derived in a correct manner, the implemen-
tation is hand-made: possibly introducing mistakes that vi-
olate the security properties. As with all software, testing
and verification techniques can minimise these risks.

http://dx.doi.org/10.1145/0000000.0000000

2. OVERVIEW
This section first presents the source language MiniML (Sec-
tion 2.1) and the formal method used to reason about its
security (Section 2.2). Next it details the security threats
to abstract machine implementations (Section 2.3). Lastly
we cover the memory isolation mechanism that is used to
protect the abstract machine implementation (Section 2.4)
and the formal attacker model (Section 2.5).

2.1 The Source Language MiniML
The source language of our secure abstract machine imple-
mentation is MiniML: an extension of the typed λ-calculus
featuring references and recursion. The syntax is as follows.

t ::= v | x | (t1 t2) | t1 op t2 | if t1 t2 t3 | ref t
| t1 := t2 | t1 ; t2 | let x = t1 in t2 | !t | fix t
| hash t | letrec x : τ = t1 in t2

op ::= + | − | ∗ | < | > | ==
v ::= unit | li | n | (λx : τ.t) | true | false
τ ::= Bool | Int | Unit | τ1 → τ2 | Ref τ
E ::= [·] | E t | v E | E op t | op v E | ...

Here n indicates the syntactic term representing the num-
ber n, τ denotes the types and E is a Felleisen-and-Hieb-
style evaluation context with a hole [·] that lifts the basic
reduction steps to a standard left-to-right call-by-value se-
mantics. The letrec operator is syntactic sugar for a com-
bination of let and fix. The operands op apply only to
booleans and integers. The locations li are an artefact of
the dynamic semantics that do not appear in the syntax
used by programmers and are tracked at run-time in a store
µ ::= ∅ | µ, li = v, which is assumed to be an ideal store:
it never runs out of space. Allocating new locations is done
deterministically l1, l2, .., ln. The term hash t maps a loca-
tion to its index: li 7→ i, similar to how Java’s .hashCode
method converts references to integers.

The reduction and type rules are standard and are thus omit-
ted. The interested reader can find the full formalisation of
the semantics in an accompanying tech report [9].

2.2 Contextual Equivalence
To formally state and reason about the security concerns of
MiniML, contextual equivalence is used. A MiniML context
C is a MiniML term with a single hole [·], two MiniML terms
are contextually equivalent if and only if no context C can
distinguish them.

Definition 1. Contextual equivalence is defined as:

t1 ' t2
def
= ∀C . C [t1]⇑ ⇐⇒ C [t2]⇑

where ⇑ denotes divergence, t1 and t2 are closed terms and
neither the terms nor the contexts feature explicit locations
li as they are not part of the static semantics. Note that
contextually equivalent MiniML terms are of the same type
τ as a context C observes the same typing rules as the terms.

MiniML’s λ-terms introduce many equivalences, there is no
context C, for example, that can distinguish the following
two λ-terms.

(λx : Int. 0) (λx : Int.(x − x)) (Ex-1)

The equivalences over the locations of MiniML are a little
more complex. Due to the deterministic allocation order and
the inclusion of the hash operation, a context can observe
the number of locations as well as their indices. Locations
when kept secret, however, still produce equivalences as a
context C cannot observe locations that do not leave a term.
The following two terms, for example, are thus contextually
equivalent.

(ref false; 0) (ref true; 0) (Ex-2)

Contextual equivalence can be used to capture security prop-
erties such as confidentiality and integrity at the language
level. This is illustrated for the following two examples.

Confidentiality. Consider the following two contextually
equivalent MiniML terms.

let secret = ref 0 in let secret = ref 0 in

(λx : Int. secret++; x) (λx : Int. x)

These two terms differ only in the value they store in the
secret reference. Because these terms are contextually equiv-
alent that implies that there is no MiniML context that can
read the secret.

Integrity. Consider the following two contextually equiv-
alent MiniML terms.

(λx : Int→ Int. (λx : Int→ Int.

let y = ref 0 in let y = ref 0 in (x 1))

let r = (x 1)in

if (!y =0) r (−1))

These two terms differ only in that the left term does an
integrity check: it checks that the reference y was not mod-
ified. Because these terms are contextually equivalent that
implies that there is no way for a MiniML context to modify
the reference y.

2.3 The Security Challenges of Abstract Ma-
chine Implementations

An abstract machine for MiniML is a program that inputs
programs written in MiniML and then executes them ac-
cording to the semantics for MiniML encoded in the ma-
chine. An abstract machine implementation has two security
concerns: (i) implementation mistakes and (ii) malicious be-
haviour by the low-level context in which it resides. In this
work we consider the latter concern.

More specifically, we consider the threats posed to an ab-
stract machine implementation by an attacker with kernel-
level code injection privileges. Kernel-level code injection
is a critical vulnerability that bypasses all existing software-
based security mechanisms: disclosing confidential data, dis-
rupting applications and so forth [15]. This attacker poses
four threats to abstract machine implementations.

Inspection and manipulation. An abstract machine
must isolate running programs and their machine state from
any kind of inspection and manipulation from outside the
abstract machine. A failure to do so could break the confi-
dentiality and integrity requirements of MiniML programs.

Abuse of references. An abstract machine interoperates
with the outside context, including possibly the attacker,
by sharing references to data structures. An attacker that
modifies these references can manipulate the internal state
of the abstract machine and alter the control flow (as is the
case for the Java VM [16]).

Observing implementation details. Most abstract
machines do not encode the exact semantics of MiniML,
but instead use more concrete and more efficient encodings
such as continuations and closures. Because these encodings
make MiniML abstractions more concrete they may reveal
to the attacker implementation details not observable to the
MiniML contexts of Section 2.2.

Violation of type safety. When interoperating with
the outside context, the abstract machine not only shares
data, it also receives it. If the abstract machine does not
type check this incoming data, the attacker can violate the
contextual equivalence of MiniML.

2.4 The Protected Module Architecture
To secure the run-time memory of our abstract machine
implementation, addressing the inspection threat of Sec-
tion 2.3, we make use of the Protected Module Architec-
ture (PMA). PMA is a fine-grained, program counter-based,
memory access control mechanism that divides memory into
a protected memory module and unprotected memory. The
protected module is further split into two sections: a pro-
tected code section accessible only through a fixed collection
of designated entry points, and a protected data section that
can only be accessed by the code section. As such the un-
protected memory is limited to executing the code at entry
points. The code section can only be executed from the out-
side through the entry points and the data section can only
be accessed by the code section. An overview of the access
control mechanism is given below.

From \To Protected Unprotected
Entry Code Data

Protected r x r x r w r w x
Unprotected x r w x

A variety of PMA implementations exist. While our current
implementation of the abstract machine makes use of a re-
search prototype [15], Intel is developing a new instruction
set, referred to as SGX, that enables the usage of PMA in
commercial processors [11].

2.5 The Low-Level Attacker Model
The implemented abstract machine, that resides within the
protected memory, remains secure in the face of the pre-
viously mentioned attacker with kernel level code injection
capabilities. To formally reason about the capabilities and
behaviour of this attacker, we make use of the fully abstract
trace semantics of Patrignani and Clarke for assembly pro-
grams enhanced with PMA [13].

These trace semantics transition over a state Λ which is a
quintuple (p, r, f,m, s), where p is the program counter, r
the register file, f a flags register, m represents only the

protected memory of PMA and s is a descriptor that details
where the protected memory partition starts, as well as the
number of entry points and the size of the code and data
sections. Additionally, the state Λ can be (unknown,m, s): a
state modelling that the attacker is executing in unprotected
memory. The trace semantics denote the observations and
inputs of the attacker through the following labels L.

L ::= α | τ α ::=
√
| γ! | γ? γ ::= call p(r) | ret p(r)

A label L is either an observable action α or a non-observable
action τ . Decorations ? and ! indicate the direction of an
observable action: from the unprotected memory to the pro-
tected memory (?) or vice-versa (!). Observable actions γ
are function calls or returns to a certain address p, combined
with a sequence of registers r. Registers are in the labels as
they contain the arguments to the function calls and also
convey information on the behaviour of the code executing
in the protected memory. Additionally, an observable action
α can be a tick

√
indicating termination.

Note that these labels do not denote low-level reads and
writes to memory addresses. These are not required in this
work. The memory of the protected memory module cannot
be read or written by the low-level attacker, and our secure
abstract machine is designed in a manner that removes the
need for reads and writes to unprotected memory.

These trace semantics provide an accurate model of the at-
tacker as they coincide with contextual equivalence for as-
sembly programs enhanced with PMA. Formally the traces
of an assembly program P , denoted as Tr(P), are computed

as follows: Tr(P) = {α|∃Λ.Λ0(P)
α

==⇒⇒ Λ}. Where Λ0 is the

initial state and the relation Λ
α

==⇒⇒ Λ′ describes the traces
generated by transitions between states. Whenever two as-
sembly programs P1 and P2 are contextually equivalent they
will have the same traces (the same inputs and observations
by attackers) as follows:

Proposition 1 (Fully Abstract Traces [13]).
P1 'a P2 ⇐⇒ Tr(P1) = Tr(P2)

where 'a denotes contextual equivalence between two as-
sembly programs.

3. DERIVING A SECURE CESK MACHINE
Our goal in this paper is to derive and implement a secure
CESK machine for MiniML. A CESK machine is a transition
system of four elements: the term being evaluated (Control),
a map from variables to values (Environment), a map from
locations to values (Store) and a stack of evaluation contexts
(Kontinuations) [4].

Directly implementing a secure CESK for MiniML is, how-
ever, likely to fail. Instead, we derive a formalisation of
the secure CESK machine for MiniML through a methodol-
ogy of two distinct steps that start from the semantics of
MiniML. This formalisation is then implemented using the
PMA mechanism of Section 2.4, as detailed in Section 4.

To derive the CESK formalisation, we first extend MiniML
with a secure foreign function interface (FFI) by adapt-
ing the theoretical formalization by Larmuseau et al. [8]
(Section 3.1) to the low-level attacker of Section 2.5. This

FFI enables MiniML programs to interoperate with the low-
level attacker in a manner that prevents the low-level at-
tacker from distinguishing between contextually equivalent
MiniML terms. We reason over MiniML extended with this
FFI by means of a labelled transition system.

In the second step of the methodology we derive a CESK

formalisation from the previously obtained LTS by making
use of syntactical correspondences that preserve the formal
properties MiniML (Section 3.2).

Each step of the methodology includes a proposition that is
proven to hold, establishing that the contextual equivalences
of MiniML are preserved. We validate the methodology by
showing that the combination of these propositions ensures
that the derived CESK machine is secure (Section 3.3).

3.1 Step 1: Secure Foreign Function Interface
We extend MiniML with a secure FFI to the low-level at-
tacker of Section 2.5 by adapting the theoretical FFI design
of Larmuseau et al. [8]. The resulting extension of MiniML
is formalised by means of a labelled transition system (LTS).

Concretely this LTS is a triple (S, L,
L−−→), where the state S

is a MiniML program extended with certain FFI specific at-
tributes, L are the labels of low-level attacker’s fully abstract

trace semantics (Section 2.5) and
L−−→ denotes the labelled

transitions between the states is S
L−−→ S′. The LTS does

not include a state for the attacker as the labels capture all
the relevant details of the low-level attacker.

The state S is a quadruple: 〈ω, µ, N, p〉. The first element
ω is a substate that captures the four different execution
states of MiniML throughout the FFI. The second element
µ is the store of locations (Section 2.1). The third element
of the state S (N) is a map used to keep track of the reference
objects that are used to mask the security relevant terms of
MiniML. The final element of the state S is a stack of low-
level pointers p, that enable the MiniML to transfer control
to the correct address of the attacker. In what follows we
elaborate on these four different execution states, the em-
ployed reference objects, the low-level usage of addresses,
how input from the attacker is handled, the transition rules
and the formal security of this FFI.

The four FFI states of MiniML. Throughout its
interoperation with the low-level attacker MiniML programs
adopt four different states. A MiniML program is either (1)
executing a term t of type τ , (2) marshalling out values to
be returned to the attacker, (3) marshalling in input from
the attacker that is expected to be of type τ or (4) waiting
on input from the attacker.

(1) Σ ◦ t : τ (2) Σ � m : τ (3) Σ � m : τ (4) Σ

Where m ::= v | w as the marshalling states (2) and (3)
are responsible for converting MiniML values v to low-level
words w and vice versa.

Each of these four different states include Σ: a type anno-
tated stack of evaluation contexts, which keeps track of the
interoperation between the attacker and the MiniML pro-
gram. This type annotated stack, is formally defined as:

Σ ::= ε | Σ, E : τ → τ ′

where, as explained in Section 2.1, E is an evaluation con-
text that represent the computation that was halted when
control was reverted to the attacker. This stack of evalu-
ation contexts is type annotated, to ensure that no typing
information is lost during the interactions with the attacker.

Reference objects. Security relevant MiniML terms:
namely λ-terms and locations, are shared by providing the
attacker with reference objects, objects that refer to the orig-
inal terms of the program in MiniML. These reference ob-
jects, have two purposes: firstly they mask the contents of
the original term and secondly they enable the FFI and the
derived CESK machine, to keep track of which locations or
λ-terms and locations have been shared with the attacker.
Larmuseau et al. [8] model reference objects for λ-terms and
locations through names nfi and nli respectively. Both names
are tracked in a map N that records the associated term and
type, as follows.

N ::= ? | N, nfi 7→ (t, τ) | N, nli 7→ (t, τ)

A fresh name nfi is created deterministically every time a
λ-term is shared between MiniML and the attacker. The
index i of these names nfi denumerates the shared λ-terms.
The first λ-term to be shared will be masked by a name nf1,
the second λ-term will be masked by a name nf2 and so on.
In contrast, the index i of the name nli will correspond to the
index of the location it refers to (nli 7→ li). Larmuseau et al.
have previously proven that these names and their indices i:
do not reveal to an attacker any information not available
to MiniML contexts and thus do not violate the contextual
equivalences of MiniML [8].

Entry points and return pointers. The interoperation
with the low-level attacker involves two kinds of addresses:
entry points and return pointers. The entry points are, as
detailed in Section 2.4, the interface that the attacker (resid-
ing in unprotected memory) uses to interact with a MiniML
program and the CESK machine that executes it. To pro-
vide the low-level attacker the same level of functionality as
MiniML context, we introduce an entry point pe for each
possible MiniML operation that the low-level attacker may
need. Whenever the attacker wants to dereference a shared
location, for example, it will use the entry point for derefer-
encing shared locations pederef.

Whenever the attacker makes use of an entry point, con-
trol switches to the protected memory where the MiniML
program and the CESK machine reside. To correctly revert
control to the attacker, the FFI keeps track of the address
from which the call to the entry point originates. On the flip
side when control reverts from the attacker to the secure ab-
stract machine, control cannot simply jump to the correct
address within the protected memory as it is inaccessible
from the outside (Section 2.4). Instead, the attacker must
make use of a return-back entry point peretb that handles the
reverting of control.

Attacker input. Input from the attacker is handled in the
marshalling in state of the FFI: 〈Σ � m : τ , µ, N, p〉. When-
ever the input does not observe the type τ , the MiniML
program errors (wr) and subsequently terminates.

Besides basic values, the attacker can also share its low-
level functions with a MiniML program by sharing a function
pointer p. This function pointer is syntactically embedded

into a MiniML program as a term: τ→τ ′Fp, where the type
τ → τ ′ is included with the pointer to enable the FFI to
type check the use of this attacker function at run-time.

The attacker cannot share its locations with the MiniML
program. Reading and writing to unprotected memory cre-
ates many challenges to contextual equivalence [13] and is
thus avoided in our design of the secure CESK machine. In-
stead, the attacker is given the ability to request the creation
of a MiniML location through an entry point pealloc. The at-
tacker is only able to write a value to such a shared MiniML
location through the entry point peset, which ensures that
this occurs in a type safe manner.

Transitions. The most relevant transitions are as follows.

〈Σ ◦ t : τ , µ, N, p〉 τ−−→ 〈Σ ◦ t′ : τ , µ′, N, p〉 (Silent)

〈Σ � wr : τ, µ, N, pr : p〉
√
−−→ 〈ε, ∅,?, ∅〉 (Wr-I)

〈Σ ◦ t : τ, ∅,?, ∅〉
call pestart(pr)?−−−−−−−−−−→ (A-Start)

〈Σ ◦ t : τ, ∅,?, pr : ∅〉

〈Σ � w : τ, µ, N, pr : p〉 ret pr (w)!−−−−−−−−→ 〈Σ, µ, N, p〉 (M-Ret)

〈(Σ, E : τ → τ ′), µ, N, p〉
ret peretb(w)?
−−−−−−−−−→ (A-Ret)

〈(Σ, E : τ → τ ′ � w : τ), µ, N, p〉

〈Σ, µ, N, p〉
call pederef(wn,pr)?−−−−−−−−−−−−−→ 〈Σ ◦ !li : τ , µ, N, pr : p〉

where N(wn) = (li, Ref τ) (A-Deref)

〈Σ, µ, N, p〉
call peappl(wn,w,pr)?
−−−−−−−−−−−−−−→ (A-Apply)

〈(Σ, (t [·]) : τ → τ ′ � w : τ), µ, N, pr : p〉
where N(wn) = (t, τ → τ ′)

〈Σ, µ, N, p〉
call peset(wn,w,pr)?−−−−−−−−−−−−−−→ (A-Set)

〈(Σ, (li := [·]) : τ → Unit � w : τ), µ, N, pr : p〉
where N(wn) = (li, Ref τ)

Transitions within the MiniML program are labelled as silent
through the label τ (Silent). Errors, either by faulty calls or
type inappropriate input by the attacker (Wr-I) are followed
by immediate termination

√
. To start the computation of

the MiniML program, the low-level attacker calls the entry
point pestart passing as its only argument pr the address at
which it expects the result returned (A-Start). Once the
MiniML program has computed a value and marshalled it
to a byte word representation (w) control will revert to that
address pr (M-Ret). The low-level attacker, as mentioned
earlier, cannot jump to an address of the protected memory
outside of the entry points, and must thus return the values
it computes through the return entry point peretb (A-Ret).

The low-level attacker calls a separate entry point pe for
each type of operation on MiniML terms. These entry points
take as an argument a byte word representation of the names
that model reference objects (wn) as well as byte words that
represents the arguments. The example operations listed
above, handle function calls (A-Apply) and the setting and
dereferencing of shared location (A-Set,A-Deref). Note that

during each of these operations the expected type is always
inferred at run-time to ensure that the operations happen
in a type safe manner.

Full abstraction. To obtain a secure CESK machine for
MiniML, we must formally prove that this FFI preserves the
contextual equivalences of MiniML. To do so we first define
a notion of weak bisimulation over the LTS. In contrast to
strong bisimulations, such a bisimulation does not take into
account the silent transitions of the LTS, only the actions

α. Define the transition relation S
α

==⇒ S′ as S
τ−−→
∗ α−−→ S′

where
τ−−→
∗

is the reflexive transitive closure of the silent
transitions

τ−−→.

Definition 2. B is a bisimulation iff S1 B S2 implies:

1. If S1
α

==⇒ S′1, ∃S′2. S2
α

==⇒ S′2 and S′1 B S′2.
2. If S2

α
==⇒ S′2, ∃S′1. S1

α
==⇒ S′1 and S′1 B S′2.

We denote bisimilarity, the largest bisimulation, as ≈.

To reason about the security properties of the FFI we must
first define a compilation scheme that places a MiniML term
t into a state S of the FFI.

JtKFFI def
= 〈ε ◦ t : τ, ∅,?, ∅〉

where τ it the type of t. We now state that this secure FFI
preserves the contextual equivalences of MiniML as follows.

Proposition 2 (Full Abstraction).

Jt1KFFI ≈ Jt2KFFI ⇐⇒ t1 ' t2

The proof proceeds by relating the bisimilarity ≈ to a con-
gruent bisimilarity over MiniML, a bisimilarity that coin-
cides with the contextual equivalences of MiniML.

A complete formalisation of the FFI and the proof of full
abstraction is listed in the associated tech report [9].

3.2 Step 2: Deriving the CESK Machine
We now derive a secure CESK machine, from the LTS rep-
resentation of the FFI, by applying an adapted version of
Biernacka et al.’s syntactic correspondence between context-
sensitive calculi and abstract machines [2]. This correspon-
dence consists of four transformations that modify state and
reduction rules in a way that preserves the contextual equiv-
alences of MiniML. Throughout this section the result of
each transformation is annotated with a superscript that in-
dicates to which transformation it belongs.

For each transformation T we prove that the contextual
equivalences of MiniML are preserved in two steps. We first
develop a bisimilarity ≈T (Definition 2) over the modified
LTS. In a second step we use that bisimilarity to prove that
there exist a compilation scheme: J · KT that compiles the
current state S into the derived machine state ST , in a man-
ner that preserves the contextual equivalences of MiniML.
This is proven by relating the newly derived bisimilarity ≈T
to the previously derived bisimilarity ≈ over the FFI.

Proposition 3 (Preservation).

S1 ≈ S2 ⇐⇒ JS1KT ≈T JS2KT

Each step of the syntactic correspondence was implemented
in Ocaml1 and tested using MiniML programs. In what fol-
lows, we provide a short overview of the transformations as
well as proof sketches for Proposition 3. A full formalisation
of each of the derived LTSs and as well as the result CESK

machine can be found in the accompanying tech report [9].

1. Context Sensitive Reduction.

In this step explicit continuation contexts are derived to sep-
arate reduction contexts from the term being executed. To
that end, the LTS obtained in Section 3.1 is transformed

into a new LTSK defined as a triple (SK , L,
L−−→K). The

new state SK is a quintuple 〈c, µ, k, N, p〉 where c is a control
and k the context. A control c is either a MiniML term t, a
low-level word w (when marshalling) or a stop state.

c ::= t | w | sp.

This stop state sp is needed to indicate that the LTS is
halted, waiting on input from the attacker. The contexts k

of the new machine state are derived by first transforming
MiniML’s evaluation contexts E (Section 2.1) into explicit
continuations contexts K, as follows.

K ::= [·] | K[[·] c] | K[v [·]] | ...

Next the annotated evaluation stack Σ is converted into an
outer continuation that captures the 4 different states of
MiniML within the FFI (Section 3.1).

k ::= [·] | k[K : τ → τ ′] | k[◦ K : τ] | k[� K : τ] | k[� K : τ]

The new transition rules
L−−→K differ from

L−−→ in that they
include explicit transitions to plug and construct the con-
tinuation contexts K. The following rule M-R1, for example,
enforces the left to right evaluation order of MiniML by se-
lecting the left term c1 as the control and converting the to
be evaluated right term c2 into a new continuation.

〈(c1 c2), k[◦ K : τ], µ, N, p〉 τ−−→ (M-R1)

〈c1, k[◦ K[[·] c2] : τ], µ, N, p〉

Proof Sketch of Proposition 3 Given a bisimilarity ≈K
over LTSK , the following compilation scheme J · KK :

J〈Σ ◦ t : τ , µ, N, p〉KK = 〈t, JkKE [◦ [·] : τ], µ, N, p〉

J〈Σ � m : τ , µ, N, p〉KK = 〈m, JkKE [� [·] : τ], µ, N, p〉

J〈Σ � m : τ , µ, N, p〉KK = 〈m, JkKE [� [·] : τ], µ, N, p〉

J〈Σ, µ, N, p〉KK = 〈sp, JkKE [� [·] : τ], µ, N, p〉

JΣ, E : τ , pKE = JΣKE [K : τ] | JεKE = [·]
where K explicitates E

compiles states S that are bisimilar in ≈ into states SK that
are bisimilar in ≈K as the new transitions of LTSK are silent
transitions that are ignored by our weak bisimulations.

2. Closure Conversion. In this second transformation
the λ-terms of MiniML are converted into closures. As a
result, the previously derived LTSK is transformed into a

1https://github.com/sylvarant/secure-abstract-machine

new LTSC (S C ,L,
L−−→C). The new state SC is a quintuple

〈cl, µ, k, N, p〉 where the control terms are now closures cl

as in the λρ̂-calculus [2]:

cl ::= c[e] | cl1 cl2 | if cl1 cl2 cl3 | ...

where e is a map of substitutions: e ::= ? | e·(cl/x).

Note that in this closure calculus a λ-term is simply a term,
but its closure is a value. Note also that the explicit contin-
uations K now also use closures cl instead of controls c.

The new transition rules
L−−→C differ from

L−−→K in that
their control element is a closure. This requires rules that
propagate the map of substitutions e across sub-terms, such
as, for example, in the following transition rule (Prop-IF)
where e is propagated across the sub-terms of the term if.

〈(if t1 t2 t3)[e], µ, k, N, p〉 τ−−→ (Prop-IF)

〈(if t1[e] t2[e] t3[e]), µ, k, N, p〉

Having closures as controls of the transition system also re-
quires us to update the reduction rules that use substitution.
Function application, for example, is updated to make use
of the map of substitutions by splitting it into two new rules
M-B and M-V. These rules respectively add a new substitu-
tion to the map when performing an application and fetch
a substitution from that same map when reducing a stan-
dalone variable.

〈((λx : τ .c)[e] v [e′]), µ, k, N, p〉 τ−−→ (M-B)

〈c[e · (v[e′]/x)], µ, k, N, p〉

〈x [...(cl/x)...], µ, k, N, p〉 τ−−→ 〈cl, µ, k, N, p〉 (M-V)

Where x [...(cl/x)...], matches the first instance of x within
the substitution map e.

Proof Sketch of Proposition 3. Using explicit substitu-
tions does not interfere with the contextual equivalences of
MiniML, as this internal implementation detail is never ob-
served by the low-level attacker. Given a bisimilarity ≈C
over LTSC , the compilation scheme J · KC :

J〈c, µ, k, N, p〉KC = 〈c[?], µ, k, N, p〉

compiles states SK that are bisimilar in ≈K into states SC

that are bisimilar in ≈C as the additional transitions of
LTSC are silent transitions

τ−−→ that are ignored by the weak
bisimulations.

3. Refocusing and Transition Compression. The
previous two transformations introduced various additional
reduction steps into the semantics of the original LTS. In
this third step, the previously derived LTSC is transformed

into a new LTSR (S C ,L,
L−−→R), where the new rules

L−−→R

are a refocused and compressed version of
L−−→C by follow-

ing the methodology of Biernacka [2]. For example, M-B
introduced in the previous transformation is optimized into
the following:

〈v[e], µ, k[◦ K[(λx : τ ′.c)[e′] [·]] : τ], N, p〉 τ−−→ (M-B-O)

〈c[e′ · (v [e]/x)], µ, k[◦ K : τ], N, p〉

whereas the previous rule required the value to be plugged
into the context before a reduction step could take place,
this rule applies directly the value of k.

Proof Sketch of Proposition 3. Given a bisimilarity ≈R
over LTSR, the identity relation compiles states SC that are
bisimilar in ≈C into states SR that are bisimilar in ≈R as
only the silent transitions of LTSR differ from those of LTSC ,
the states remain unchanged in this transformation.

4. Unfolding Closures. The previously derived LTSR

is transformed into a CESK machine (M,L,
L−−→M) where the

state M is a quintuple 〈c, e, k, N, p〉. The control c and sub-
stitution map e are obtained by unfolding the closures cl of
LTSR. Note that closures remain the values used to encode
λ-terms: the application of closures cannot be unfolded. The

new transition rules
L−−→M are identical to

L−−→
R

except for
the cosmetically different states they relate.

Proof Sketch of Proposition 3. Given a bisimilarity ≈M
over the CESK machine (The CESK machine is also an LTS),

the following compilation scheme J · KM :

J〈c[e], µ, k, N, p〉KM = 〈c, e, µ, k, N, p〉

compiles states SR that are bisimilar in ≈R into states M that
are bisimilar in ≈M as the transitions are unmodified.

3.3 Validation
Once combined, the formal properties of each of two steps
of the methodology form a chain of bi-implications, simi-
lar to ones found in work on verifying multi-transformation
compilers [12], as follows.

MiniML: t1 ' t2~w�(P.2)

MiniML + FFI : Jt1KFFI ≈ Jt2KFFI~w�(P.3)

CESK: JJt1KFFIKCESK ≈M JJt2KFFIKCESK

where P. is short for Proposition and where J·KCESK combines
the compilation schemes of Section 3.2 as follows.

J · KCESK = JJJ · KKKCKM

This chain highlights the preservation and reflection of con-
textual equivalence in the source language MiniML down to
its CESK implementation by means of bisimulations.

This chain of propagation through bisimulations may how-
ever, seem less efficient than a direct full abstraction result
between MiniML and the derived CESK. However, the CESK

is merely the final product of a series of systematic transfor-
mations that are applied to an LTS that models a FFI for
MiniML. Because, as detailed in Section 3.2, these trans-
formations affect only the internal reductions of the original
LTS, these bisimilarity relations are not only obtained easily
but also obviously coincide with the original bisimilarity ≈.

4. IMPLEMENTATION
The derived CESK machine has been implemented in C (avail-
able online2) and deployed to the Fides implementation of

2https://github.com/sylvarant/secure-abstract-machine

Low-Level
Attacker

EntryPoints:
◦ start
◦ deref
◦

Code:
◦ CESK transitions

Data:
◦ CESK state
◦ Stack & Heap

Protected Memory

r/x

r/w

interact

Figure 1: The CESK machine resides within the pro-
tected memory. The low-level attacker can only in-
teract with the program running on the machine
through the entry points.

PMA [15]. Fides implements PMA through use of a hyper-
visor that runs two virtual machines: one that handles the
secure memory module and one handles the outside mem-
ory. One consequence of this architecture is that, as the
low-level context interacts with the abstract machine, the
Fides hypervisor will be forced to switch between the two
virtual machines for each call and callback between the con-
text and the module, producing a lot of overhead. Note
that the new Intel SGX instruction set, which will provide
this PMA technology in commercially available processors
is likely to substantially reduce this overhead [11].

As illustrated in Figure 1, the CESK is compiled into the
protected memory of the PMA mechanism. The machine
state as well as the run-time stack and heap are placed in
the protected data section, restricting the access to them to
the transition rules of the CESK that reside in the protected
code section. As explained in Section 3.1, access to these
transition rules is provided to the attacker by means of entry
points that enable the attacker to interact with the program
running on the CESK in a controlled and secure manner.

Note that in our current implementation the MiniML pro-
gram to be executed is loaded into the protected memory
module at compile time. A possible extension to this work
is thus to extend the implemented CESK with the secure au-
thentication capabilities of Fides to enable trusted third par-
ties to upload MiniML programs to the CESK machine.

To get an indication of the performance overhead of our se-
cure implementation, we have benchmarked the overhead
produced by our implementation for three scenarios. In the
first scenario (Application) the low-level attacker applies a
secure MiniML function to a boolean value. In the sec-
ond scenario (Callback) the attacker applies a higher-order
secure function to an attacker function, triggering a call-
back. In the third scenario (Read) the attacker dereferences
a shared location.

CESK CESK + PMA

Application 0.28µs 16.71 µs
Callback 0.33µs 40.92µs
Read 0.24µs 16.88 µs

The tests were performed on a Dell Latitude with a 2.67 GHz
Intel Core i5 and 4GB of DDR3 RAM. All scenario’s incur
high overheads due to the Fides hypervisor switching be-
tween VMs everytime the system transitions between secure
and insecure memory. The Callback scenario incurs espe-
cially high overheads due to it requiring multiple transitions
between the secure and insecure memory.

5. RELATED WORK
Our methodology as detailed in Section 3 improves upon
the interoperation semantics of Larmuseau et al. [8] to in-
troduce a foreign function interface between the low-level at-
tacker and MiniML. There exist multiple alternative foreign
function interface designs: Matthews’ and Findler’s multi-
language semantics [10] enables two languages to interop-
erate through direct syntactic embedding and Zdancewic et
al.’s multi-agent calculus that treats the different modules
or calculi that make up a program as different principals,
each with a different view of the environment [17]. These
alternative interoperation techniques, however, rely on type
checking to enforce security properties which does not de-
fend against the presented low-level attacker model.

Step 2 of our methodology (Section 3.2) uses the syntactic
correspondence of Biernacka and Danvy [2] between Curien’s
λp-cal-culus and CESK machines. Other syntactic correspon-
dences have focused on calculi with lazy evaluation and cal-
culi with objects [3] and targeted other abstract machine
types such as the Spineless Tagless G-machine [14]. An al-
ternative approach to syntactic correspondence could be to
adapt Ager et al.’s functional correspondence [1] between
evaluators and abstract machines.

Our notions of bisimularity over the derived LTS’s and CESK

machine are based on the bisimulations for the νref-calculus
by Jeffrey and Rathke [6]. The proof of full abstraction for
the introduced FFI is inspired by the full abstraction proof
used for Fournet et al.’s secure compiler to Javascript [5].

6. CONCLUSIONS AND FUTURE WORK
This paper presented the implementation of a secure CESK

machine for MiniML. The CESK machine is made secure by
applying a low-level memory isolation mechanism (PMA)
and by following a methodology that: first extends Lar-
museau et al.’s secure FFI with a realistic low-level attacker
and subsequently applies Biernacka et al.’s syntactic corre-
spondence. A concatenation of formal properties for each
step of the methodology ensures that the result is secure.

There are different directions for future work. One is to
investigate different abstract machine implementations and
what changes (if any) must be done to the methodology
to scale to them. Another direction is the integration of a
secure abstract machine with runtime aspects of advanced
programming languages such as, for example, garbage col-
lection. Two challenges arise in this setting: implementing
secure garbage collection and proving that it does not intro-
duce security leaks.

References
[1] M. S. Ager, D. Biernacki, O. Danvy, and J. Midtgaard.

A functional correspondence between evaluators and
abstract machines. In PPDP ’03, pages 8–19. ACM.

[2] M. Biernacka and O. Danvy. A syntactic correspon-
dence between context-sensitive calculi and abstract
machines. Theor. Comput. Sci., 375(1):76–108, 2007.

[3] O. Danvy and J. Johannsen. Inter-deriving semantic
artifacts for object-oriented programming. Journal of
Computer and System Sciences, 76(5):302 – 323, 2010.

[4] M. Felleisen. The Calculi of Lambda-nu-cs Conversion:
A Syntactic Theory of Control and State in Imperative
Higher-order Programming Languages. PhD thesis, In-
diana University, 1987.

[5] C. Fournet, N. Swamy, J. Chen, P.-E. Dagand, P.-Y.
Strub, and B. Livshits. Fully abstract compilation to
javascript. In POPL, pages 371–384, 2013.

[6] A. Jeffrey and J. Rathke. Towards a theory of bisimula-
tion for local names. Computer Science Report 02-2000,
University of Sussex, 2000.

[7] P. Jones and S. L. Implementing lazy functional
languages on stock hardware: The spineless tag-
less g-machine. Journal of Functional Programming,
2(2):127–202, April 1992.

[8] A. Larmuseau and D. Clarke. Formalizing a secure for-
eign function interface. In SEFM 2015, LNCS, pages
215–230. Springer.

[9] A. Larmuseau, M. Patrignani, and D. Clarke. Imple-
menting a secure abstract machine – extended version.
Technical Report 2015-034, Uppsala IT.

[10] J. Matthews and R. B. Findler. Operational semantics
for multi-language programs. TOPLAS, 31(3), 2009.

[11] F. McKeen, I. Alexandrovich, A. Berenzon, C. V.
Rozas, H. Shafi, V. Shanbhogue, and U. R. Sava-
gaonkar. Innovative instructions and software model
for isolated execution. In HASP ’13. ACM, 2013.

[12] G. Morrisett, D. Walker, K. Crary, and N. Glew. From
System F to Typed Assembly Language. TOPLAS,
21(3), 1999.

[13] M. Patrignani and D. Clarke. Fully Abstract Trace
Semantics of Low-level Isolation Mechanisms. In SAC
’14, pages 1562–1569. ACM, 2014.

[14] M. Pirog and D. Biernacki. A systematic derivation of
the stg machine verified in coq. In Haskell ’10, pages
25–36. ACM, 2010.

[15] R. Strackx and F. Piessens. Fides: Selectively hard-
ening software application components against kernel-
level or process-level malware. In CCS, 2012.

[16] G. Tan, S. Chakradhar, R. Srivaths, and R. D. Wang.
Safe Java native interface. In ESSoS, 2006.

[17] S. Zdancewic, D. Grossman, and G. Morrisett. Princi-
pals in programming languages: a syntactic proof tech-
nique. In ICFP ’99. ACM, 1999.

	Introduction
	Overview
	The Source Language MiniML
	Contextual Equivalence
	The Security Challenges of Abstract Machine Implementations
	The Protected Module Architecture
	The Low-Level Attacker Model

	Deriving a Secure CESK Machine
	Step 1: Secure Foreign Function Interface
	Step 2: Deriving the CESK Machine
	Validation

	Implementation
	Related Work
	Conclusions and Future Work

