Parametricity versus the Universal Type —
Technical Appendix
July 7, 2017

Abstract

This technical appendix contains all the proofs of the paper.

Contents

1

Proof of Theorem 2.4
1.1 Proof of Theorem 2.4 for encoded existentials

Proof of Theorem 3.3

2.1 Untyped Version
2.1.1 Proof (reductions)

2.2 Typed Version
2.2.1 Proof (reductions)

Proof (and code) for Theorem 4.1

1 Proof of Theorem 2.4

To make this proof, we need a good formulation of parametricity for \¥. This
is in itself non-trivial and so, rather than build this from scratch ourselves, we
use Dreyer et al. [2009]’s logical relations for System F. Note that we do not
use the journal version of that paper [Dreyer et al., 2011al, because that LR is
built a bit differently in order to guarantee completeness of the LR rather than
just soundness, but this alternative setup seems to make it impossible to prove
our BIND2-ScHIZO rule (see below). We do take care to avoid the rules from
Dreyer et al. [2009] that were flagged as incorrect in Dreyer et al. [2011a].

Conveniently, the language F* that Dreyer et al. consider is the same as
ours except that they additionally have natural numbers.

Our proof of contextual equivalence for t,, and tq relies on the idea of using
a term at two different instantiations of its type. For this, we require a special
version of rule 6 from Dreyer et al.’s Figure 5. We calll this a schizophrenic bind
because it interprets the same term in two different semantic type environments.
We will need this to do what we described above: exploit the polymorphism of
2 :Va. (o= f) x (8 — «) in a twice at two different interpretations of a.

Lemma 1.1 (BIND-ScHIZO is derivable.). The following rule BIND-SCHIZO
is derivable.

T;A;0F (e1,e2) € E]7]p T; A0 F (eq,e2) € E[7]p’
p1 = pi p2 = ph
© =0, (x1,22) € V[7]p, (x1,22) € V[T]p', €1 ~* T1, 69 ~* T2
T, xq,29; ;0" F (Elxq], f) € E[7]p”
A0+ (Ele], f) € 710"

Proof. For Rule BIND-SCHIZO, we mimic Dreyer et al.’s proof of Rule 6 [Dreyer
et al., 2011b, Appendix C].
Define P(t,) to be the proposition

Yy, xe. (21, 22) € V[7]p A (x1,22) € V[7]p'A
tu ~* 11 Neg ~" x2) = (Elz1], f) € E[T]p"

We want to prove that
Vtu. ((tu,e2) € E[T]p A (tu,e2) € E[7]p' A P(ty)) = (Elt.], f) € E[7']p"

By Loéb-induction, we assume this proposition is true later and proceed to
prove it now. So assume that (t,,e2) € E[T]p, (tu,e2) € E[7]p’ and P(t,) and
we want to prove (E[t,], f) € E[7']p".

First, suppose that E[t,] ~0 g, for some z;. Then, it must be the case
that t, ~~° y; for some y; and also that E[t,] ~° E[y;] ~° x1. Since
(tu,e2) € E[T]p, we know there exists some ys such that ea ~* yo and (y1,y2) €
V[7]p. Similarly, from (¢,,es2) € E[7]p’, we know there exists some g} such that

ez ~* yh and (y1,v5) € V[r]p’. Since y2 and y} are both values, a standard

determinacy lemma implies that yo = y5. By P(t,), we then know that that

(Elz1], f) € €[7']p".
Second, suppose that E[t,] ~»! t!. There are two cases:

Case 1 There exists y; such that t, ~? y; and also that E[t,] ~° E[y1] ~*! t,.
The proof is identical to the previous case shown above.

Case 2 There exists u; such that ¢, ~»! u; and also that E[t,] ~! Efy;] ~° t,.
Since (t,,e2) € E[r]p, we know that >(uy, es) € E[7]p (by the definition
of the expression relation in Dreyer et al.’s Figure 4). Similarly, from
(tu,e2) € E[7]p’, we know that >(uj,eq) € E[r]p’. It is also easy to
show that P(t,) implies P(u;). Thus, by appealing to our Léb-inductive
hypothesis, we have that >(E[uy], f) € E[7']p”. Then, by rule 5 from
Dreyer et al.’s Figure 5, we have that (E[t,], f) € E[7']p".

Lemma 1.2 (BIND2-ScHIZO is derivable.). The following rule BIND2-SCHIZO
is derivable.

D;0;0F (e1,eq) € EF[7]p [0;0F (e, ea) € EF[7]p
p1 =Py p2 = ph
0" =0, (z1,22) € V¥[7]p, (x1,22) € VZ[7]p, €1 ~* T1, €0 ~* 9
D21, 22; A0 F (B [z1], Eolza]) € E[']p"
T;A; 0 F (Fyle], Eales]) € EF[T']p”

Proof. Follows from the definition of the symmetric logical relation and Lemma 1.1’s
rule BIND-SCHIZO, together with the fact that es ~»* x5 implies that Efes] ~*
E[.’EQ]

Lemma 1.3 (Terms are equivalent). t, ~., tq

Proof. For brevity, we will omit any proofs about well-typedness of terms or the
fact that a term is a value, as these can be easily filled in as needed.

For notation purposes: when we mention a proof obligation that is a judge-
ment inside the LSLR logic, this means that the judgement has to be provable
inside LSLR.

Note that we use the symmetric version of Dreyer et al.’s logical relation,
discussed in Dreyer et al. [2009, pp.6-7].

1. SUFFICES:) F t, ~'°% tgq
PrROOF: By Dreyer et al.’s Theorem 4.4 in two directions.
2. SUFFICES:
x: Univ, B,z : Va. (a =) X (8 — a)
let " : (Unit —) x (8 — Unit) = 2’ Unit in 2”.2 (2.1 unit) ~'°8
let 2’ : (Unit — 3) x (8 — Unit) = 2/ Unit in (2.2 (2”.1 unit); wynit)
: Unit
PROOF: By a number of compatibility lemmas, as one would expect to be
used in the proof of Dreyer et al.’s Theorem 4.3.

3. SUFFICES: Dedﬁ?e
L' = By, B2,x) : Va. (a — B1) X (B1 = a),x5 : Va. (o — B2) X (B2 = «)

def

A= rs: VRel(ﬁl., /J)z)

pE{B = (b1, B2.15)}

0 = (x,x,) € V[Va. (a —) x (B2 — a)]p

Then

A0+

(let £ : (Unit — (1) X (B1 — Unit) = 2} Unit in 2”.2 (2.1 unit),

let 2”7 : (Unit — B2) x (B2 — Unit) = 2, Unit in 2.2 (2”.1 unit); Wynit)
€ E¥[unit]p

PROOF: By definition of the symmetric logical equivalence relation and a few

weakenings (i.e. dropping assumptions) in the LSLR logic.
4. Define

e R, ¥ (Unit,Unit, (x; : Unit, x5 : Unit). False)
e R/ o (Unit,Unit, (x1 : Unit, Xs : Unit). True).

Then both R, and R/, are valid relations.

IA0F
(2} [Unit], 2z [Unit]) € E[(a — B) X (8 — a)]p,a — R,
and
IA;0F
(z} [Unit], 25 [Unit]) € E[(a — B) x (B = a)]p, v = Ry,
PROOF: By definition of V[Va. 7]p in Dreyer et al.’s Figure 4, using 4.
6. SUFFICES: Define -
I"'=T,xY,x5

© ¥ ©,(x{,x3) € VZ[(a—) x (8 = a)](p,a = Ra),
(x1,x3) € V¥[(a = B) x (B8 = a)](p,a — Ry,)
Then
I":A; 0" F
(let 2”7 : (Unit — (1) X (B1 — Unit) = 27 in 2.2 (z”.1 unit),
let 2”7 : (Unit — B2) x (B2 — Unit) = 25 in 2”.2 (2”.1 unit); wynit)
€ E¥unit]p
PROOF: By Lemma 1.2 (BIND2-SCHIZO is derivable) and rule BIND2-SCHIZO,
with 5.
7. SUFFICES: Then
I';A;© F (x7.2 (x7.1 unit), x5.2 (x5.1 unit); wyaic) € E7[Unit]p
PrOOF: By 6, using Rules 3 and 4 from Dreyer et al.’s Figure 5 and the
obvious evaluations.

8. We have that
I'";A; @' F (unit,unit) € V¥[X](p,a — R,)
I A @ F (.1, x).1) € E5[(X — §)](p. -+ RY)

I';A; 0 F (x{.1 unit, x5.1 unit) € E¥[B](p,a — R.)
I';A; O F (x7.1 unit,x5.1 unit) € EF[B]p
PrOOF: By 6, a number of applications of the symmetric analogues of rules 1, 7,
a compatibility lemma for the first projection, the definition of V¥[a]p and
Lemma 4.1 from Dreyer et al.
9. Deﬁned .
I\// ; I\/’ Xl1/17 x/2//
"= @, (x{,x4) € V¥[6lp, (x].1 unit) ~* x{', (xj.1 unit) ~* xj’
SUFFICES: I'; A; @ F (x7.2 x,x5.2 x4/ winie) € E¥[Unit]p
PRrROOF: By Rule 6S from Dreyer et al.’s Figure 6, using 8.
10. We have that
I'";A; 0"+ (x1',x3) € VZ[Blp
I, A; 0"+ (x1.2,x5.2) € E7[(B =)] (p,a — Ra)
I":A;0" F (x].2 x{",x5.2 x3") € EF[a](p,a — Ry)
PROOF: By 6, a number of applications of the symmetric analogues of
rules 1, 7, a compatibility lemma for the second projection, the definition
of V¥[]p and Lemma 4.1 from Dreyer et al.
11. Define

111 def o i i
I' =T",x7",x5

0" H &, (x)", x") € V[a](pra > Ra), (4.2 x7') " x{", (x5.2 x§) " x5’
SUFFICES: I'; A; O = (X", (x5 wimir)) € E¥[Unit]p
PROOF: By Rule 6S from Dreyer et al.’s Figure 6.
12. We have that
(x1",x3") € V¥[a](p,a = Ra) =
(x1",x5") € Ry = Fulse
PROOF: By the definition of the value relation in Dreyer et al.’s Figure 4, by
the definition of R, in 4 and by the first axiom of Dreyer et al.’s Figure 3.
13. We now have an assumption of False in ©"” by 12 and 11, so we can conclude

vacuously.
14. Q.E.D.

In the paper, we also use a version of the terms t,, and tq where we replace
builtin existentials with existentials encoded using the following encoding;:

IX. 7+ EVE. (Va. T —) — B
pack (7,t) as IX. 7 = AB. A : (Va. 7 — B).£ [7] ¢
unpack t1 as (@, x) in tg o t1 [m2] (Aa. Ax: 71.t2) where t1 : Jda. 71 and to @ 7

We then get the following Univ’, t/ and t/:

Univ' & vy, (V8. (Va. (a = B) X (B = a)) =) = v
t. = Az Univ.z Unit (AB. Az’ : (Vo (a = B) x (B — a)).

let 2" : (Unit — B) x (8 — Unit) = 2’ Unit in 2”.2 (2”.1 unit))

t, = Az Univ.z Unit (AB. Az’ : (Vo (a — B) x (B — a)).

let 2”7 : (Unit — () x (8 — Unit) = 2’ Unit in (2.2 (2”.1 unit); wyait))

1.1 Proof of Theorem 2.4 for encoded existentials

Lemma 1.4 (Terms are also equivalent with encoded existentials). t/ ~.., t

Proof. The proof works similarly to the proof of Lemma 1.3.

1. SUFFICES: () -t ~'°8 t),
Proor: By Dreyer et al.’s Theorem 4.4 in two directions.

2. SUFFICES:
x:Univ', 8,2 : Va. (o —) x (B — a)

let 2 : (Unit —) x (B — Unit) = 2/ Unit in 2”.2 (2.1 unit) ~'°8
let 2" : (Unit —) x (8 — Unit) = 2’ Unit in (2.2 (2”.1 unit); wyni)
: Unit
PRrROOF: By a number of compatibility lemmas, as one would expect to be
used in the proof of Dreyer et al.’s Theorem 4.3.
3. From here on, the proof is now identical to the proof of Lemma 1.3, from

step 3 in that proof onwards.
4. Q.E.D.

2 Proof of Theorem 3.3

2.1 Untyped Version

The compilation of t, to the untyped A7 with Sumii and Pierce’s compiler is
the following.
We split the unfoldings of erase() and of protect, /confine, for simplicity.

let y =
erase(\r : Univ. unpack x as (3,2') in let 2" : (Bool —) x (3 — Bool) = 2’ Bool in \ .
< 2.2 (2”1 unit))) o
protectyp. Univ—Boo1l Y
let y =
= A\z.erase(unpack z as (3,2') in let 2" : (Bool —) x (8 — Bool) = 2’ Bool in 2”.2 (z”.1 unit)) in
protecty; univ—Bool ¥
let y =
(Ar.let 2’ = erase(w) in erase(let 2" : (Bool —) x (8 — Bool) = 2’ Bool in 2”.2 (2.1 unit))) in

prOteCt(Z);Univ%Bool Yy

let y =

= (Ar.let 2’ = x in erase(let 2" : (Bool — f3) x (8 — Bool) = 2’ Bool in 2.2 (2.1 unit))) in
protectp, Univ—Boo1l Y
let y =

= (Az.let 2’ = 2 in erase((A\z” : (Bool — 3) x (8 — Bool).z”.2 (2.1 unit))(2’ Bool))) in
protecty; univ—goor ¥
let y =

= (Az.let 2/ = 2 in erase(\x” : (Bool — 3) x (8 — Bool).2”.2 (2.1 unit))erase(2’ Bool)) in
protecty; univ—poor ¥
let y =

(Az.let 2" = 2 in A2’ erase(2”.2 (2.1 unit))erase(z’) erase(Bool)) in

prOteCt(Z);Univ—)Bool Y

A" erase(z”.2)erase((2”.1 unit))

=let y = (\w.let 2’ = x in) in protecty. Univ—sBoo1 ¥

(2’ unit)
= let y = (M\z.let 2’ = 2 in Az, (2.2 (erase(z”.1)erase(unit)))(z’ unit)) in protecty.yniv—spoor ¥
{1et y=(Az.let 2’ =z in (\z". (2".2 (2.1 unit)))(2’ unit))

in ProteCt(b;Univ—>Bool Yy

We unfold protect..

protectp. Univ—Bool Y

= protecty. 3y vX (X Y)x(Y=X) Y

= Aw.let a =y (confinep. 3y vx.(x—Y)x(Y—X) W) in protectypoo1 a

= Aw.let a =y (confinep.5y vx.(x—Y)x(Y—Xx) W) in a

n=Y = (Ay.y,Ay.y)

= Aw.let a =y (confine,yx (xv)x(Y—x) W) in a

7' =Y = (Ay.y, \y.y), X — (seals, unseals)

= Aw.let a =1y ((A_.vslet X' = w unit in confine, (x_,y)x(v—x) X)) in a
A .vslet 2’ = w unit in

=Mw.leta=y [let 21 =2'.1inlet 22 = 2'.2 in in a

(confine, . (xy) =1, confine,. (y_x) 22)

A .vslet 2’ = w unit in

let z1 = 2'.1in let 22 = 2'.2 in

=w.leta=y)) in a
(Ayl.let z1 = x1 (protect,.x y1) in confine,,y z1

,Conﬂnen/;(yﬁx) JJ2>

A_.wvslet 2’ = w unit in

let 21 = 2.1 in let 22 = 2'.2 in)
=Aw.leta=y)) in a

(Ayl.let z1 = 1 (protect,.x yl) in confine,,y z1

Ay2.let 22 = 22 (protect,.y y2) in confine,.x 22)
7' =Y — (Ay.y, \y.y), X — (seals, unseal,)
A .wvslet 2’ = w unit in
let 21 = 2’.1 in let 22 = 2’.2 in)
=w.let a=y . in a
(Ayl.let z1 = x1 (seals yl) in (Apl.pl) 21
Ay2.let 22 = 22 ((Ap2.p2) y2) in unseals 22)

A .vslet 2’ = w unit in
. let let z1 =2'.1 in let 22 = 2'.2 in)
= Aw.let a = in a
Y (Ayl.let z1 =21 ((Aql.{ql}s) y1) in (Apl.pl) 21

Ay2.let 22 = 22 ((Ap2.p2) y2) in (Ag2.let {a2}s = ¢2 in a2 else wrong) 22)

and thus the compiled t,, is:

let y = (Az.let ' =z in (Az”. (2"”.2 (z".1 unit)))(z' unit))
A .vslet 2’ = w unit in
= in Aw.let 0= y let 21 = 2/.1 in let 22 = 2'.2 in
(Ayl.let z1 =21 ((Aql.{ql}s) y1) in (Apl.pl) 21
Ay2.let 22 = 22 ((Ap2.p2) y2) in (Ag2.let {a2}s = ¢2 in a2 else wrong) 22)

2.1.1 Proof (reductions)

let y = (A\z.let 2’ =z in (Az”. (2.2 (2".1 unit)))(z’ unit))
A .vslet 2’ = w unit in
let z1 =2".11inlet 22 =2".2 in
(Myl.let z1 =21 ((Mgl.{q1l}s) y1) in (Apl.pl) 21
Ay2.let 22 = 22 ((Ap2.p2) y2) in (Ag2.let {a2}s = ¢2 in a2 else wrong) 22)

in \w.let a =y

(A_.(Qz.x, \x.x))
Aw.let a =
(Az.let 2’ =z in (Az”. (2.2 (z".1 unit)))(z’ unit))

A_.wslet 2’ = w unit in

— let 21 =2'.1 in let 22 =2'.2 in

(Myl.let z1 =21 ((Agl.{ql}s) y1) in (Apl.pl) =1

Ay2.let 22 = 22 ((Ap2.p2) y2) in (Ag2.let {a2}s = ¢2 in a2 else wrong) 22)
(Ax.x, \x. x))

(A

let a =
A .vslet 2’ = (A
etzl =a.1inlet 22 =2".21n .
flop o/ _ | 10 @1 = o in et a2 = /21
s (Myl.let z1 =21 ((Agl.{ql}s) y1) in (Apl.pl) =1 o
Ay2.let 22 = 22 ((Ap2.p2) y2) in (Ag2.let {a2}s = ¢2 in a2 else wrong) 22)
(Az”. (2”2 (2.1 unit)))(2’ unit)) in a
let a =
(A" (2.2 (2.1 unit)))(
A _.vslet ' = (A
let 21 =2'.1 in let 22 = 2/.2 in
(Ayl.let z1 =21 ((Aql.{ql}s) y1) in (Apl.pl) 21
Ay2.let 22 = 22 ((Ap2.p2) y2) in (Ag2.let {a2}s = ¢2 in a2 else wrong) 22)
let a =
(A" (2.2 (2".1 unit)))
vs.let 2’ = (A
let 21 =2'.1 in let 22 = 2/.2 in
(Ayl.let 21 =21 ((Aql.{ql}s) y1) in (Apl.pl) 21
Ay2.let 22 = 22 ((Ap2.p2) y2) in (Ag2.let {a2}s = ¢2 in a2 else wrong) 22)
let a =
(Az”. (2.2 (2".1 unit)))
let 2’ = (A
let 21 =2'.1 in let 22 = 2/.2 in
(Myl.let 21 =21 ((Aql.{q1},) y1) in (Apl.pl) 21
Ay2.let 22 = 22 ((Ap2.p2) y2) in (Ag2.let {a2}, = ¢2 in a2 else wrong) 22)
let a =
(A" (2".2 (2.1 unit)))
let 2’ = ((\z.z, \z.z)) in
let 21 =2'.1 in let 22 =2'.2 in
(Myl.let z1 =21 ((Aql.{ql},) y1) in (Apl.pl) 21
Ay2.let 22 = 22 ((Ap2.p2) y2) in (Ag2.let {a2}, = ¢2 in a2 else wrong) 22)
let a =
(A" (2.2 (2”1 unit)))
let x1 = (A\z.z, Az.z).1 in let 22 = (Az.x, Az.z).2 in
(Ayl.let 21 =21 ((Aql.{q1}s) y1) in (Apl.pl) 21
Ay2.let 22 = 22 ((Ap2.p2) y2) in (Ag2.let {a2}, = ¢2 in a2 else wrong) 22)

(Az.x, Az.x)) unit in

(Ax. 2z, Az.x)) unit in

unit) in a

(Ax.x, A\x.x)) unit in

ina

(Az.z,Az.x)) unit in

ina

ina

na

~ NN s~ s~

let a =
(A" (2.2 (2".1 unit)))
let 21 = Az. 2 in let 22 = Az 2, A\x.x).2 in
(Ayl.let z1 =21 ((Aql.{ql}s) y1) in (Apl.pl) 21 ina
Ay2.let 22 = 22 ((Ap2.p2) y2) in (Ag2.let {a2}, = ¢2 in a2 else wrong) 22)
let a =
(A" (2.2 (2”1 unit)))
let 22 = (\z. 2, A\x.x).2 in
(Ayl.let z1 = Az.z ((Agl.{ql},) y1) in (Apl.pl) =1 ina
Ay2.let 22 = 22 ((Ap2.p2) y2) in (Ag2.let {a2}, = ¢2 in a2 else wrong) 22)
let a =
(A" (2.2 (2".1 unit)))
(Ayl.let 21 = Az.x ((Aql.{ql},) y1) in (Apl.pl) 21)
(Ay2.let 22 = Az (Ap2.p2) y2) in (Ag2.let {a2}, = ¢2 in a2 else wrong) 22>> e

let a =

(((Ayl.let 21 = dx. 2 ((Aql. {q1}s) y1) in (Apl.pl) 21) 5
Ay2.let 22 = Az.z (A\p2.p2) ¥2) in (Ag2.let {a2}, = ¢2 in a2 else wrong) 22) |

< (Myl.let z1 = Az.z (Aql.{ql},) y1) in (Apl.pl) z1) 1 unit)
Ay2.let 22 = Az ((Ap2.p2) y2) in (Ag2.let {a2}, = ¢2 in a2 else wrong) 22)

ina

let a =

((Wy2.1et 22 = Ax.x ((Ap2.p2) y2) in (Ag2.let {a2}, = ¢2 in a2 else wrong) 22)

(< (Ayl.let z1 = Ax.x ((Aql.{ql}s) y1) in (Apl.pl) 21) 1 unit))
Ay2.let 22 = Az ((Ap2.p2) y2) in (Ag2.let {a2}, = ¢2 in a2 else wrong) 22)

ina

let a =

((AWy2.1et 22 = Az .z ((Ap2.p2) y2) in (Ag2.let {a2}, = ¢2 in a2 else wrong) 22)
((A\yl.let 21 = Az.x ((Aql.{ql}s) y1) in (Apl.pl) z1) unit))

ina

let a =

((A\y2.let 22 = Az.x (A\p2.p2) y2) in (Ag2.let {a2}, = ¢2 in a2 else wrong) 22)
(let z1 = Az. 2 ((Aql.{ql},) unit) in (Apl.pl) z1))

ina

10

1
1
1
1

let a =

((Wy2.1et 22 = Ax.x ((Ap2.p2) y2) in (Ag2.let {a2}, = ¢2 in a2 else wrong) 22)
(let 21 = Az.z ((M\gl.{ql},) unit) in (Apl.pl) z1))

ina

let a =

((Wy2.1et 22 = Ax.x ((Ap2.p2) y2) in (Ag2.let {a2}, = ¢2 in a2 else wrong) 22)
(let 21 = Az. 2 ({unit},) in (Apl.pl) z1))

ina

let a =

((Wy2.1et 22 = Ax.x ((Ap2.p2) y2) in (Ag2.let {a2}, = ¢2 in a2 else wrong) 22)
(let 21 = {unit}, in (Apl.pl) z1))

ina

let a =

((A\y2.let 22 = Az.x ((Ap2.p2) y2) in (Ag2.let {a2}, = ¢2 in a2 else wrong) 22)
((Ap1.pl) {unit},))

ina

let a =

((Zy2.1et 22 = Ax.x ((Ap2.p2) y2) in (Ag2.let {a2}, = ¢2 in a2 else wrong) 22)
({unit},))

ina

let a =

(let 22 = Az (Ap2.p2) {unit},) in (Ag2.let {a2}, = ¢2 in a2 else wrong) 22)
ina

let a =

(let 22 = Az.2x ({unit}y) in (Ag2.let {a2}, = ¢2 in a2 else wrong) 22)

ina

let a =

(let 22 = ({unit}y) in (Ag2.1et {a2}, = ¢2 in a2 else wrong) 22)

ina

let a =

((Ag2.1et {a2}, = ¢2 in a2 else wrong) {unit},)

ina

let a =

(let {a2}, = {unit}, in a2 else wrong)

ina

<—>{ let @ = unit in a

11

—unit

The only difference in the reduction of erase(tq) is that instead of the term
M x".2 (x”.1 unit) there is (AX”. (A .w) (x”.2 (x”.1 unit))) (recall that the ;
is encoded as a dummy lambda). The reductions will proceed the same, except
that after an argument is supplied for x” (reduction marked with *), the last
line will be ;omega in a instead of just in a Thus, in the end that reduces as
follows:

<—>{ let ¢ = unit;w in a
C—>{leta:wina
<—>{l(>ta:wina

T

2.2 Typed Version

We provide unfolding of definitions of Sumii and Pierce’s compiler using their
notation for the typed compiler. The paper’s erase() function is £ and pro-
tect/confine are G / G~ respectively. Sumii and Pierce rely on an additional
function C to insert sealing/unsealing in this variant Pierce and Sumii [2000]
which is also reported here.

Please note that this notation only affects the unfolding of internal definitions
of the compiler, the actual proof does not depend on it.

Note that we compile Unit and the empty record {} to unit.

F
[ty : Univ — Unit]]iﬁ
let y
¢ Az : Univ. unpack x as (3,2') in
] let 2" : (Unit — 3) x (8 — Unit) = 2/ Unit in 2.2 (2”.1 unit)
in G (y, Univ — Unit)

We split the derivation of the compilation of £ and of G for simplicity.

Az : Univ. unpack z as (3,2') in
<lot 2" (Unit — B) x (B — Unit) = 2/ Unit in 2”.2 (2”1 unit))
= {Ax. &(unpack x as (3,x") in let X" : (Unit —) x (8 — Unit) = x’ Unit in x".2 (x".1 unit))
{ (Az.let 2’ = E(x) in E(let 2" : (Unit — B) x (B — Unit) = 2’ Unit in 2”.2 (2”.1 unit)))
= { (Az.let 2’ =z in E(let 2" : (Unit — B) x (8 — Unit) =2’ Unit in 2”.2 (2”.1 unit)))

12

={(Az.let 2’ =z in E((A\z" : (Unit — B) x (8 — Unit).z"”.2 (2.1 unit))(z’ Unit)))
={(Az.let ' =2 in E(A2” : (Unit — B) x (B — Unit).2"”.2 (2.1 unit)) (2’ Unit))
{ (. det o/ — @ in (A", E(x".2 (2.1 unit))))
(let 2" = E(2') unit in C, (2", { £(Unit)), (= B) x (B — a)))
{ O det of — @ in (A", E(x".2) E((z”.1 unit))))
(let " = E(2') unit in C, (2", (£(Unit)), (a« = B) x (B = «)))
{(M ot (Az”. (z".2 (E(2".1) E(unit)))))
(let " = E(2) unit in C, (2", (E(Unit)), (o = B) x (B — «)))
— { (Ax.let 2’ =z in Az ./glxi.Z (x/ ! unlt))) P))
(let 2" = &(2") unit in C, (", (£(Unit)), (o — B) x (B = «)))
{ (Az.let ' =z in (e .5/1;_'2 ,(x 1 u.nlt)i)) »))
(let 2" = 2’ unit in C (", (£(Unit)), (a« — B) x (6 — «)))
{ (.let o = o in (Az”. (2”2 ("1 unit)))
(let " = 2’ unit in C, (2", {Unit)), (@ = B) x (B = «)
{ (Az”. (2”2 (2.1 unit))) (let 2"/ = 2’ unit in)
=< (Az.let 2’ =2 in | let wl = 2 1in let w2 = 2’2 in

(€, (w1, {Unit)), (o — B)),C, (w2, {Unit)), (8 — «)
(Az”. (2.2 (2.1 unit))) (let 2" = 2’ unit in

let wl =2"".11inlet w2 =2".2 in

(Aa.let r = (wl(Cy (a, (Unit), (a)))) in C; (r, (Unit)), (8)),
Aalet r = (w2(Cy (a, (Unit)), (B)))) in C5 (r, (Unit)), (o))
(A", (2.2 ("1 unit))) (let 2" = 2’ unit in
let wl =2"".1inlet w2 = 2.2 in
(Aal.let r1 = wl {al}yniry in 71,

Aa2.let 72 = w2 a2 in let {26} yniey = 72 in 26 else wrong))

=< (Az.let 2’ =z in

)

= Az.let 2’ =z in

Below is the derivation of G:

G*(y,Univ — Unit)

= {Aw.let a =G (w,Univ) in let r = y a in G*(r, Unit)

={w.let a=G (w,Va.(a =) x (3= a))inlet r=yainr
Aw.let a =

A let E=vs.sinlet d =w unit in

let ¢ =C. (d,k, (o = B) x (8= a)) in G (¢, (= B) x (8 — a))

inlet r=yainr

13

A et k=vs.sinlet d=w unit in let ¢ =
Mw.let a = | let dl =d.1inlet d2 =d.2 in (C, (d1,k, (o — B)),C5 (d2,k, (B — «)))
inlet cl =clinlet ¢2=c2in (G (cl,(a = B)),G(c2,(8 — «)))
inlet r=yainr
A et k=wvs.sinlet d =w unit in let ¢ =
let d1 =d.11inlet d2 =d.2 in
(Aul.let pl =d1 C™ + aful,k,) in C; (pl,k, B),
Aw.let a = Au2.let p2 =d2 C™ + a(u2, k, B) in C, (p2, k, o))
let c1 =clinlet ¢2=c¢2in
in (Mtl.let el = GT(t1,a) in let s1 = cl el in G~ (s1,),
At2.let €2 = GT(#2,8) in let s2 = 2 €2 in G~ (52, a))

inlet r=yainr
A .let k=vs.sinlet d =w unit in let ¢ =

let d1 =d.11inlet d2 =d.2 in

(Aul.let pl =d1 {ul}y in pl,
Aw. let a = Au2.let p2 = d2 u2 in let {j}, = p2 in j else wrong)

let c1 =clinlet c2=c2in
in (Mtl.let el =t1 in let s1 = cl el in s1,
M2.let 2 =12 in let s2 = ¢2 €2 in s2)

inlet r=yainr
Term t,, is thus compiled into:

(A\z”. (2.2 (2.1 unit))) (let 2" = 2’ unit in

" "

let wl =21 1in let w2 = 2.2 in
()\al.let rl =wl {al}«Unit) in rl,

Aa2.let 72 = w2 a2 in let {26} ynic) = 72 in 26 else wrong))

let y= | Az.let 2’ =z in

A _.let k =ws.sinlet d =w unit in let ¢ =
let dl =d.1in let d2 =d.2 in
(Aul.let pl =d1 {ul}y in pl,
o Aw.let a = Au2.let p2 = d2 u2 in let {j}, = p2 in j else wrong)
o let c1 =clinlet ¢2=¢.2in
in (Mtl.let el =t1 in let s1 =cl el in s1,

At2.let e2 =12 in let s2 = ¢2 €2 in s2)

inletr=yainr

As we encode t;t" as (A .t) t, term tq is compiled into:

14

in

let y =

Aw. let a =

2" . (A_.w)(@”.2 (2”1 unit))) (let 2’/ = 2’ unit in

let wl =2"".11in let w2 =2".2 in

(Aal.let 71 = wl {al}ynicy in rl,

Ax.let ' =z in

Aa2.let 72 = w2 a2 in let {26} (ynic) = 72 in 26 else wrong))

A _.let k =wvs.sinlet d =w unit in let ¢ =
let d1 =d.1in let d2 = d.2 in
(Aul.let pl =d1 {ul}y in pl,
Au2.let p2 = d2 u2 in let {j}r = p2 in j else wrong)
let cl1 =clinlet c2=¢.21in
in (Mtl.let el =t1 in let s1 = ¢l el in s1,
At2.let €2 = t2 in let s2 = ¢2 €2 in s2)

inlet r=yainr

2.2.1 Proof (reductions)

(A

(Az”. (2.2 (2.1 unit))) (let 2"/ = 2’ unit in

let wl =2"".11inlet w2 =2".2 in

let y= | Az.let 2’ =z in

</\a1.1et rl =wl {al}«Unit) in ’r‘l,

Aa2.let 72 = w2 a2 in let {26} (ynic) = 72 in 26 else wrong))

A et k=vs.sinlet d =w unit in let ¢ =
let dl =d.1inlet d2 =d.2 in
(Aul.let p1 =d1 {ul}y in pl,

let a = Au2.let p2 = d2 u2 in let {j}, = p2 in j else wrong)

in A\w.

let cl=clinlet c2=1c2in
in | (Ml.let el =¢1inlet s1 =cl el in s1,
At2.let €2 =t2 in let s2 = ¢2 €2 in s2)

inletr=yainr

(Az.x, Ax. x))

15

A let k=wvs.sinlet d =w unit in let ¢ =
let d1 =d.1in let d2 =d.2 in
(Aul.let pl =d1 {ul}y in pl,
let a = Au2.let p2 = d2 u2 in let {j}, = p2 in j else wrong)
let c1 =clinlet ¢2=c¢2in
in (Atl.let el =t1 in let s1 =cl el in sl,
At2.let €2 =12 in let s2 = ¢2 €2 in s2)

(A" (2.2 (2.1 unit))) (let 2’ = 2’ unit in

Aw.

"

,) let wl =2".1inlet w2 = 2.2 in
let r= | Az.let 2" =z in)
in (Aal.let r1 = wl {al} (yniey in 71,
Aa2.let 2 = w2 a2 in let {26} (yniey = 2 in 26 else wrong))
ainr

A Qz.x, \x.x))

A det k=vssinlet d=(_.
let d1 =d.11inlet d2 =d.2 in
(Aul.let pl =dl {ul}y in pl,

let a = Au2.let p2 = d2 u2 in let {j}, = p2 in j else wrong)

(Ax.xz, \x.x)) unit in let ¢ =

let c1 =c.linlet ¢2=¢.2in
in (Atl.let el =t1 in let s1 = ¢l el in s1,
A2.let €2 =12 in let s2 = ¢2 €2 in s2)

(Az”. (2.2 ("1 unit))) (let 2"/ = 2’ unit in

,) let wl = 2.1 in let w2 = 2.2 in
let r = | Az.let 2" = 2 in)
in (Aal.let r1 = wl {al}yniry in 71,
Aa2.let 72 = w2 a2 in let {26} yniey = 72 in 26 else wrong))
ainr

(A", (2".2 (.1 unit))) (let 2" = 2’ unit in

" "

let wl =21 1in let w2 = 2.2 in
(Aal.let 1 = wl {al}yniry inrl,
Aa2.let 72 = w2 a2 in let {26} (ynicy = 72 in 26 else wrong))
A_let k=vssinlet d=(_.
let d1 =d.1in let d2 = d.2 in
(Aul.let pl =d1 {ul}y in pl,

Au2.let p2 = d2 u2 in let {j}r = p2 in j else wrong) inr

let r = | M\z.let 2’ =2z in

(Ax.x, \x.x)) unit in let ¢ =

let c1 =c¢.1linlet ¢2 =¢.2 in

in (Mtl.let el =t1 in let s1 = ¢l el in s1,
At2.let 2 = 2 in let s2 = ¢2 €2 in s2)

16

(Ar.r)

(A" (2.2 ("1 unit))) (let 2"/ = 2’ unit in

" "

let wl =a".11in let w2 = 2.2 in
(Aal.let 1 = wl {al}yniry in rl,
Aa2.let 72 = w2 a2 in let {26} yniey = 72 in 26 else wrong))
A det k=vssinletd=(_.
let d1 =d.1 in let d2 = d.2 in
(Aul.let pl =d1 {ul}y in pl,

Au2.let p2 = d2 u2 in let {j}, = p2 in j else wrong)

Ax.let 2’ =z in

(Ax.xz,\x.x)) unit in let ¢ =

let c1 =c.linlet ¢2 =¢.2in

in (Atl.let el =t1 in let s1 = ¢l el in s,
At2.1et €2 =12 in let 2 = ¢2 €2 in s2)

((\r.7)
A et k=ws.sinlet d=(A_.{\x.z, Azx.x)) unit in let ¢ =
let d1 =d.1inlet d2 =d.2 in
(Aul.let pl =dl {ul}y in pl,
let o’ = Au2.let p2 = d2 u2 in let {j}; = p2 in j else wrong)
let c1 =clinlet c2=1c.21in
in (Mtl.let el = t1 in let s1 =cl el in s1,
At2.let €2 =12 in let 2 = ¢2 €2 in s2)
(Az”. (2”2 (2.1 unit))) (let 2" = 2’ unit in
let wl =2".11in let w2 = 2.2 in
(Aal.let r1 = wl {al}yniey in 1,
Aa2.let 2 = w2 a2 in let {6} (yniey = 72 in 26 else wrong))
((\r.7)

(A" (2.2 (2".1 unit)))

A letk=vssinletd= (A .
let dl =d.1inlet d2 =d.2 in
(Aul.let pl =d1 {ul}y in pl,

(let 2" = Au2.let p2 = d2 u2 in let {j}r = p2 in j else wrong) unit

(Az.z, Az.x)) unit in let ¢ =

let c1 =clinlet c2=c2in
in [(Ml.let el =¢1inlet s1 =cl el in s1,
At2.let e2 =12 in let s2 = ¢2 €2 in s2)

"

"

let wl =21 1in let w2 = 2.2 in

in (Aal.let r1 = wl {al}yniey in 71,)

Aa2.let 72 = w2 a2 in let {26} (yniey = 72 in 26 else wrong)

17

((\r.7)

(A" (2.2 (2".1 unit)))

let k =vs.sinlet d = (A _.
let dl =d.1in let d2 =d.2 in
(Aul.let pl =d1 {ul}y in pl,

(let 2" = Au2.let p2 = d2 u2 in let {j}, = p2 in j else wrong)

(Ax.z, Az.x)) unit in let ¢ =

let cl=clinlet c2=c2in
in [(Ml.let el =t1inlet s1 =cl el in s1,
At2.let 2 =12 in let s2 = ¢2 €2 in s2)

"

1

let wl =21 1in let w2 = 2.2 in

in (Aal.let r1 = wl {al}yniey in 1,)
Aa2.let 72 = w2 a2 in let {26} (yniey = 72 in 26 else wrong)
(Ar.r)
(Az"”.(2".2 (2".1 unit)))
let k=0cinlet d = (A_.
let d1 =d.1in let d2 =d.2 in
(Aul.let pl =d1 {ul}y in pl,
(let 2" = Au2.let p2 = d2 u2 in let {j}, = p2 in j else wrong)

(Ax. 2z, Az.x)) unit in let ¢ =

let cl=clinlet c2=c2in
in [(Ml.let el =¢1inlet s1 =cl el in s1,
A2.let e2 =12 in let s2 = ¢2 €2 in s2)

let wl =2"".1inlet w2 = 2.2 in
in (Aal.let r1 = wl {al}yniey in 71,)
Aa2.let r2 = w2 a2 in let {6} (yai¢y = 72 in 26 else wrong)
(Ar.r)
(A" (2.2 (2".1 unit)))
let d = (A_.{(Az.x,\x.z)) unit in let ¢ =
let d1 =d.1in let d2 = d.2 in
(Aul.let pl =d1 {ul}, in pl,
(let 2" = Au2.let p2 = d2 u2 in let {j}, = p2 in j else wrong)
let c1 =c.1linlet 2 =1c¢.2 in
in (Atl.let el =t1 in let s1 =cl el in s1,
At2.let e2 =12 in let s2 = ¢2 €2 in s2)
let wl=2"".1inlet w2 = 2.2 in
in (Aal.let r1 = wl {al}ynicy in 71,)

Aa2.let r2 = w2 a2 in let {26} (yai¢)y = 72 in 26 else wrong)

18

((\r.7)
(Az"”.(2".2 (2".1 unit)))
let d = ((Az.z, Axz.x)) in let ¢ =

let d1 =d.1in let d2 =d.2 in

(Aul.let pl =dl {ul}, in pl,
(let 2" = Au2.let p2 = d2 u2 in let {j}, = p2 in j else wrong)

let c1 =clinlet c2=c¢2in
in [(Ml.let el =¢1inlet s1 =cl el in s1,
At2.let e2 =12 in let s2 = ¢2 €2 in s2)

let wl =2"".1inlet w2 = 2.2 in
in (Aal.let r1 = wl {al}yniey in 1,)
Aa2.let 72 = w2 a2 in let {26} (yniey = 72 in 26 else wrong)
(Ar.r)
(Az"”.(2".2 (2".1 unit)))
let ¢ =
let d1 = ((Az. 2z, Az.z)).1 in let d2 = ((A\x.z, A\x.2)).2 in
(Aul.let pl =d1 {ul}, in pl,
(let 2" = Au2.let p2 = d2 u2 in let {j}, = p2 in j else wrong)
let c1 =clinlet ¢2=¢.2in
in [(Ml.let el =¢1inlet s1 =cl el in s1,
A2.let e2 =12 in let s2 = ¢2 €2 in s2)
let wl =2"".1inlet w2 = 2.2 in
in (Aal.let r1 = wl {al}ynicy in 1,)
Aa2.let r2 = w2 a2 in let {6} (yai¢y = 72 in 26 else wrong)
(Ar.r)
(A" (2.2 (2.1 unit)))
let ¢ =
let d1 = Az.z in let d2 = ((Az.z, Az.x)).2 in
(Aul.let pl =d1 {ul}, in pl,
(let 2" = Au2.let p2 = d2 u2 in let {j}, = p2 in j else wrong)
let c1 =clinlet 2 =1c¢.2in
in (Atl.let el =t1 in let s1 =cl el in s1,
At2.let e2 =12 in let s2 = ¢2 €2 in s2)
let wl=2"".1inlet w2 = 2.2 in
in (Aal.let r1 = wl {al}ynicy in 71,)

Aa2.let r2 = w2 a2 in let {26} (yai¢y = 72 in 26 else wrong)

19

((\r.7)
(Az"”.(2".2 (2".1 unit)))
let ¢ =
let d2 = ((Az. 2z, Az. x)).2 in
(Aul.let pl = (A\z.x) {ul}, in pl,
(let 2" = Au2.let p2 = d2 u2 in let {j}, = p2 in j else wrong)
let cl=clinlet c2=c2in
in [(Ml.let el =t1inlet s1 =cl el in s1,
A2.let e2 =12 in let s2 = ¢2 €2 in s2)

let wl=2"".1inlet w2 = 2.2 in
in (Aal.let r1 = wl {al}yniey in 71,)
Aa2.let 72 = w2 a2 in let {26} (yniey = 72 in 26 else wrong)
(Ar.r)
(Az"”.(2".2 (2".1 unit)))
let ¢ =
let d2 = Az.z in
(Aul.let pl = (Az.z) {ul}, in pl,
(let 2" = Au2.let p2 = d2 u2 in let {j}, = p2 in j else wrong)
let c1 =clinlet ¢2=¢.2in
in [(Ml.let el =¢1inlet s1 =cl el in s1,
A2.let e2 =12 in let s2 = ¢2 €2 in s2)
let wl =2"".1inlet w2 = 2.2 in
in (Aal.let r1 = wl {al}ynicy in 71,)
Aa2.let r2 = w2 a2 in let {6} (yai¢y = 72 in 26 else wrong)
(Ar.r)
(A" (2.2 (2.1 unit)))
let ¢ =
(Aul.let pl = (A\z.z) {ul}, in pl,
(let 2" — (AuQ. let p2 = (Az.z) u2 in let {j}, = p2 in j else Wrong>>
let c1 =c.linlet ¢2=¢.2 in
in (Atl.let el =t1 in let s1 =cl el in s1,
M2.let €2 =12 in let s2 = ¢2 €2 in $2)
let wl =2".11in let w2 = 2”2 in
in (Aal.let r1 = wl {al}ynizy in rl,)
L Aa2.let 2 = w2 a2 in let {26} (yniry = r2 in 26 else wrong)

20

\

\

(Ar.r)
(Az”. (z".2 (2".1 unit)))
let ¢l = (Aul.let pl = (Az.x) {ul}, in pl)
_ (Aul.let pl = (Az.z) {ul}, in pl,)
» in let ¢2 =)) o .2 in
(let 2" = Au2.let p2 = (Az.x) u2 in let {j}, = p2 in j else wrong)
(Mtl.let el =t1 in let s1 =cl el in s1,
At2.let e2 =12 in let s2 = ¢2 €2 in s2)
let wl =2 .11in let w2 = 2"".2 in
in (Aal.let r1 = wl {al}yniey in 1,)
Aa2.let 72 = w2 a2 in let {26} (yniey = 2 in 26 else wrong)
(Ar.r)
(A" (2.2 (2".1 unit)))
(Aul.let pl = (A\z.z) {ul}, in pl,)
let ¢2 = .) o .2 in
(let 2" Au2.let p2 = (Ax.x) u2 in let {j}, = p2 in j else wrong)
et 2" =
(Atl.let el = t1 in let s1 = (Aul.let pl = (A\z.z) {ul}, in pl) el in s1,
AM2.let €2 =12 in let s2 = ¢2 €2 in s2)
let wl =2"".1in let w2 =2".2 in
in (Aal.let r1 = wl {al}ynizy in rl,)
Aa2.let 2 = w2 a2 in let {26} yniry = r2 in 26 else wrong)
(Ar.7)
(A" (2".2 (2.1 unit)))
let ¢2 = Au2.let p2 = (Ax.z) u2 in let {j}, = p2 in j else wrong in
(let """ = (Ml.let el =¢1 in let s1 = (Aul.let pl = (Az.z) {ul}, in pl) el in s1,
A2.let 2 =12 in let s2 = ¢2 €2 in $2)
let wl =2".11in let w2 = 2”2 in
in (Aal.let r1 = wl {al}ynicy in 71,)
Aa2.let 72 = w2 a2 in let {26} (uni¢) = r2 in 26 else wrong)
(Ar.r)
(A" (2.2 (2”1 unit)))
(let 2" (Atl.let el =t1 in let s1 = (Aul.let pl = (A\z.x) {ul}, in pl) el in s1,
e =
’ M2.1et €2 =12 in let s2 = (Au2.let p2 = (Ax.x) u2 in let {j}, = p2 in j else wrong)

n "

let wl =2".11in let w2 = 2.2 in

in (Aal.let r1 = wl {al}ynicy in 71,)

Aa2.let r2 = w2 a2 in let {26} (yai¢y = 72 in 26 else wrong)

21

(Ar.r)
(Az”. (z".2 (2".1 unit)))
let wl = (Mtl.let el =¢1 in let s1 = (Aul.let pl = (Az.x) {ul}, in pl) el in s1)
= et o — <<)\t1.let el =tlinlet s1 = (Aul.let pl = (Az.z) {ul}, in pl) el in s1,
A2.1et €2 =12 in let 2 = (Au2.let p2 = (Az.x) u2 in let {j}, = p2 in j else v
(Aal.let 1 = wl {al}yniey in rl,
Aa2.let 2 = w2 a2 in let {6} ynizy = r2 in 26 else wrong)

((A\r.7)
(Az"”.(2".2 (2".1 unit)))
ot w3 — (()\tl.let el =11 in let s1 = (Aul.let pl = (Az.x) {ul}, in pl) el in s1,
At2.1et €2 =12 in let 2 = (Au2.let p2 = (Az.x) u2 in let {j}, = p2 in j else wrong)
(Aal.let r1 = (Atl.let el = t1 in let s1 = (Aul.let pl = (Az.x) {ul}, in pl) el in s1) {al}uait)
L Aa2.let 2 = w2 a2 in let {26} (ynizy = r2 in 26 else wrong)
(Ar.7)
(A" (2".2 (2".1 unit)))
let w2 = At2.1et €2 = ¢2 in let s2 = (Au2.let p2 = (Ax.x) u2 in let {j}, = p2 in j else wrong) €2 i
(Aal.let r1 = (Atl.let el = t1 in let s1 = (Aul.let pl = (Az.x) {ul}, in pl) el in s1) {al}(unic)
L Aa2.let 2 = w2 a2 in let {26} (yniry = r2 in 26 else wrong)
(Ar.r)
Az (2.2 (2".1 unit)))
Aal.let r1 = (Atl.let el =t1 in let s1 =
(Aul.let pl = (Az.x) {ul}, in pl) el in s1) {al}ynicy in rl
Aa2.let r2 = (At2.let €2 = {2 in let s2 =
, (Au2.let p2 = (Az.z) u2 in let {j}, = p2 in j else wrong) €2 in s2) a2 in)

let {26} (ynic)y = 72 in 26 else wrong
((Ar.7)
Aa2.let 72 = (At2.let €2 = 2 in let s2 =
(Au2.let p2 = (Az.z) u2 in let {j}, = p2 in j else wrong) e2 in s2) a2 in
let {26} (uairy = 2 in 26 else wrong
Aal.let 1 = (Atl.let el = ¢1 in let s1 =)
\ (((Aul.let pl = (Az.x) {ul}, in pl) el in s1) {al}(ynicy in 7’1) un1t>

22

((\r.7)
Aa2.let 12 = (At2.let €2 =12 in let s2 =
(Au2.let p2 = (Az.z) u2 in let {j}, = p2 in j else wrong) e2 in s2) a2 in

let {26} (unic)y = r2 in 26 else wrong

let 71 = (Atl.let el =t1 in let s1 =
{ (Aul.let pl = (Az.z) {ul}, in pl) el in s1) {unit}ynicy in 1

(Ar.r)
Aa2.let r2 = (At2.let 2 = {2 in let s2 =
(Au2.let p2 = (Az.z) u2 in let {j}, = p2 in j else wrong) €2 in s2) a2 in

let {26} (ynic)y = 72 in 26 else wrong

((let rl =let el = {unit}ypi¢y in let s1 =))
(Aul.let pl = (Az.z) {ul}, in pl) el in sl in 71
((\r.7)

Aa2.let 72 = (At2.let €2 =2 in let s2 =

(Au2.let p2 = (Az.z) u2 in let {j}, = p2 in j else wrong) e2 in s2) a2 in

let {26} (unic)y = r2 in 26 else wrong

let r1 =let s1 =
{ << (Aul.let pl = (Az.z) {ul}, in pl) {unit}(ymicy in sl in 7’1))
(Ar.r)
Aa2.let r2 = (At2.let €2 = {2 in let s2 =
(Au2.let p2 = (Az.z) u2 in let {j}, = p2 in j else wrong) €2 in s2) a2 in

let {26} (ynic)y = 72 in 26 else wrong

let r1 =let s1 =
(((let pl = (Az.x) {{unit}uiry}o in pl) in sl in rl))
((\r.7)
Aa2.let 12 = (At2.let €2 =12 in let s2 =
(Au2.let p2 = (Az.z) u2 in let {j}, = p2 in j else wrong) e2 in s2) a2 in

let {26} (ynity = 72 in 26 else wrong

let r1 =let sl =
let pl = ({{unit}ynity o in pl) in sl in r1
\ « »

(Ar.r)
Aa2.let r2 = (At2.let €2 =12 in let s2 =

ey (Au2.let p2 = (Az.x) u2 in let {j}, = p2 in j else wrong) €2 in $2) a2 in

let {26} (ynic)y = 72 in 26 else wrong

{{unit}((Unit) }cr

23

(Ar.r)

et 19— let €2 = {{unit} (ynic) }o

in let 2 = (Au2.let p2 = (Az.z) u2 in let {j}, = p2 in j else wrong) €2 in s2
in let {26} (uaizy = r2 in 26 else wrong

(Ar.r)

<1et r2 = let 52 = let p2 = (Az.) {{unit} ity }o inlet {j}, = p2 in j else wrong in 52>
in let {26} (uaizy = 72 in 26 else wrong

(Ar.7)

<let r2 = let 52 = let p2 = {{unit} (ynic) }o inlet {j}, = p2 in j else wrong in 32>

in let {26} (uaizy = 72 in 26 else wrong

in let {26} (uairy = 72 in 26 else wrong
(Ar.r)
<lct r2 = let 52 = {unit}yaisy in s2 >
in let {26} (uaizy = 72 in 26 else wrong
(Ar.7)
<1et 72 = {unit} i))

in let {26} (uaixy = 72 in 26 else wrong
(Ar.r)
(let {6} univy = {unit}yuaicy in 26 else wrong)
(Ar.r)
(unit)

(Ar.r)
— { <1et r2 = let s2 =let {j}, = {{unit}ynic)}o in j else wrong in 52>
{

3 Proof (and code) for Theorem 4.1

The following are the literal encodings of ¢”[|t, || and ¢”[[t4]] for use in the
interpreter provided by Ahmed et al. [2017].

This is available at http: //www.ccs.neu.edu/home/dijamner/paramblame/artifact /.
These terms were constructed and tested with some kind assistance by Jeremy
Siek and others, which we thank them for.

As discussed in the paper, the fact that we have a non-value-polymorphic
source language \¥ and a value-polymorphic target language A", means that

we need to introduce a form of thunking for polymorphic functions: the type

VX. 7 is mapped to [VX. 7] = VX Unit — || and type abstractions AX.t are

24

http://www.ccs.neu.edu/home/dijamner/paramblame/artifact/

mapped to [AX.t] = |t]. However, the artifact by Ahmed et al. does

not support a unit type, so in the terms below, we replace type Unit by type
int and we use value 3 in place of the value unit.

let tu : (exists B. forall A. int -> < A -> B, B -> A >) -> bhool =
lam(x: (exists B. forall A. int -> < A -> B, B -> A >)).
unpack[forall A. int -> < A -> B, B -> A >, bool] B, x1 = x in
let x2 : < bool -> B,B -> bool > = x1 [bool] 3 in
(snd x2) ((fst x2) true)
in let vuniv : exists B. forall A. int -> <A ->B, B -> A > =
(pack *, Lam A. lam (z:int). < lam (x:A). x:A => %, lam (X:*). X:* => A >
in B. forall A. int -> < A -> B, B -> A >)
in tu vuniv

let omega : bool ->* =

lam(x:bool).
(Lam(f :x =>x). (f (f :% =>x =>x)))
((Lam(f :x =>x). (f (f 1% =>% =>x%))) : (k=>%)=>% =>% =>x)
in

let td : (exists B. forall A. int -> < A-> B, B ->A >) -> bool =

lam(x: (exists B. forall A. int -> <A -> B, B -> A>)).

unpack[forall A. int -> <A -> B, B -> A>, bool] B,x1 = x in

let x2 : < bool -> B, B -> bool > = x1 [bool] 3 in
let z : bool = (snd x2) ((fst x2) true) in
let _ :x = omega true in z

in let vuniv : exists B. forall A. int -> < A -> B, B -> A> =

(pack *, Lam A. lam (z:int). <lam (x:A). x:A => %, lam (x:x). X:*x => A>

in B. forall A. int -> < A -> B, B -> A >)

5/in td vuniv

References

Amal Ahmed, Justin Damner, Jeremy G. Siek, and Philip Wadler. Theorems
for free for free. In ICFP, 2017.

D. Dreyer, A. Ahmed, and L. Birkedal. Logical step-indexed logical relations.
In Logic In Computer Science, pages 71-80, 2009.

Derek Dreyer, Amal Ahmed, and Lars Birkedal. Logical step-indexed logical
relations. Logical Methods in Computer Science, 7(2), 2011a.

Derek Dreyer, Amal Ahmed, and Lars Birkedal. Logical step-indexed logical
relations - appendix, 2011b.

Benjamin Pierce and Eijiro Sumii. Relating cryptography and polymorphism.
manuscript, 2000. URL http://www.kb.ecei.tohoku.ac.jp/~sumii/pub/
infohide.pdf.

25

http://www.kb.ecei.tohoku.ac.jp/~sumii/pub/infohide.pdf
http://www.kb.ecei.tohoku.ac.jp/~sumii/pub/infohide.pdf

	Proof of Theorem 2.4
	Proof of Theorem 2.4 for encoded existentials

	Proof of Theorem 3.3
	Untyped Version
	Proof (reductions)

	Typed Version
	Proof (reductions)

	Proof (and code) for Theorem 4.1

