
Parametricity versus the Universal Type –
Technical Appendix

July 7, 2017

Abstract

This technical appendix contains all the proofs of the paper.

Contents
1 Proof of Theorem 2.4 2

1.1 Proof of Theorem 2.4 for encoded existentials 6

2 Proof of Theorem 3.3 6
2.1 Untyped Version . 6

2.1.1 Proof (reductions) . 8
2.2 Typed Version . 12

2.2.1 Proof (reductions) . 15

3 Proof (and code) for Theorem 4.1 24

1

1 Proof of Theorem 2.4
To make this proof, we need a good formulation of parametricity for λF. This
is in itself non-trivial and so, rather than build this from scratch ourselves, we
use Dreyer et al. [2009]’s logical relations for System F. Note that we do not
use the journal version of that paper [Dreyer et al., 2011a], because that LR is
built a bit differently in order to guarantee completeness of the LR rather than
just soundness, but this alternative setup seems to make it impossible to prove
our Bind2-Schizo rule (see below). We do take care to avoid the rules from
Dreyer et al. [2009] that were flagged as incorrect in Dreyer et al. [2011a].

Conveniently, the language Fµ that Dreyer et al. consider is the same as
ours except that they additionally have natural numbers.

Our proof of contextual equivalence for tu and td relies on the idea of using
a term at two different instantiations of its type. For this, we require a special
version of rule 6 from Dreyer et al.’s Figure 5. We calll this a schizophrenic bind
because it interprets the same term in two different semantic type environments.
We will need this to do what we described above: exploit the polymorphism of
x′ : ∀α. (α→ β)× (β → α) in α twice at two different interpretations of α.

Lemma 1.1 (Bind-Schizo is derivable.). The following rule Bind-Schizo
is derivable.

Γ; ∆; Θ ` (e1, e2) ∈ EJτKρ Γ; ∆; Θ ` (e1, e2) ∈ EJτKρ′
ρ1 = ρ′1 ρ2 = ρ′2

Θ′ = Θ, (x1, x2) ∈ VJτKρ, (x1, x2) ∈ VJτKρ′, e1 ∗ x1, e2 ∗ x2
Γ, x1, x2; ∆; Θ′ ` (E[x1], f) ∈ EJτ ′Kρ′′

Γ; ∆; Θ ` (E[e1], f) ∈ EJτ ′Kρ′′

Proof. For Rule Bind-Schizo, we mimic Dreyer et al.’s proof of Rule 6 [Dreyer
et al., 2011b, Appendix C].

Define P (tu) to be the proposition

∀x1, x2. ((x1, x2) ∈ VJτKρ ∧ (x1, x2) ∈ VJτKρ′∧
tu

∗ x1 ∧ e2 ∗ x2)⇒ (E[x1], f) ∈ EJτ ′Kρ′′

We want to prove that

∀tu. ((tu, e2) ∈ EJτKρ ∧ (tu, e2) ∈ EJτKρ′ ∧ P (tu))⇒ (E[tu], f) ∈ EJτ ′Kρ′′

By Löb-induction, we assume this proposition is true later and proceed to
prove it now. So assume that (tu, e2) ∈ EJτKρ, (tu, e2) ∈ EJτKρ′ and P (tu) and
we want to prove (E[tu], f) ∈ EJτ ′Kρ′′.

First, suppose that E[tu] 0 x1 for some x1. Then, it must be the case
that tu 0 y1 for some y1 and also that E[tu] 0 E[y1] 0 x1. Since
(tu, e2) ∈ EJτKρ, we know there exists some y2 such that e2 ∗ y2 and (y1, y2) ∈
VJτKρ. Similarly, from (tu, e2) ∈ EJτKρ′, we know there exists some y′2 such that
e2 ∗ y′2 and (y1, y

′
2) ∈ VJτKρ′. Since y2 and y′2 are both values, a standard

2

determinacy lemma implies that y2 = y′2. By P (tu), we then know that that
(E[x1], f) ∈ EJτ ′Kρ′′.

Second, suppose that E[tu] 1 t′u. There are two cases:

Case 1 There exists y1 such that tu 0 y1 and also that E[tu] 0 E[y1] 1 t′u.
The proof is identical to the previous case shown above.

Case 2 There exists u1 such that tu 1 u1 and also that E[tu] 1 E[y1] 0 t′u.
Since (tu, e2) ∈ EJτKρ, we know that .(u1, e2) ∈ EJτKρ (by the definition
of the expression relation in Dreyer et al.’s Figure 4). Similarly, from
(tu, e2) ∈ EJτKρ′, we know that .(u1, e2) ∈ EJτKρ′. It is also easy to
show that P (tu) implies P (u1). Thus, by appealing to our Löb-inductive
hypothesis, we have that .(E[u1], f) ∈ EJτ ′Kρ′′. Then, by rule 5 from
Dreyer et al.’s Figure 5, we have that (E[tu], f) ∈ EJτ ′Kρ′′.

Lemma 1.2 (Bind2-Schizo is derivable.). The following rule Bind2-Schizo
is derivable.

Γ; ∆; Θ ` (e1, e2) ∈ E≈JτKρ Γ; ∆; Θ ` (e1, e2) ∈ E≈JτKρ′
ρ1 = ρ′1 ρ2 = ρ′2

Θ′ = Θ, (x1, x2) ∈ V≈JτKρ, (x1, x2) ∈ V≈JτKρ′, e1 ∗ x1, e2 ∗ x2
Γ, x1, x2; ∆; Θ′ ` (E1[x1], E2[x2]) ∈ E≈Jτ ′Kρ′′

Γ; ∆; Θ ` (E1[e1], E2[e2]) ∈ E≈Jτ ′Kρ′′

Proof. Follows from the definition of the symmetric logical relation and Lemma 1.1’s
rule Bind-Schizo, together with the fact that e2 ∗ x2 implies that E[e2] ∗

E[x2].

Lemma 1.3 (Terms are equivalent). tu'ctx td

Proof. For brevity, we will omit any proofs about well-typedness of terms or the
fact that a term is a value, as these can be easily filled in as needed.

For notation purposes: when we mention a proof obligation that is a judge-
ment inside the LSLR logic, this means that the judgement has to be provable
inside LSLR.

Note that we use the symmetric version of Dreyer et al.’s logical relation,
discussed in Dreyer et al. [2009, pp.6–7].

1. Suffices: ∅ ` tu ≈log td
Proof: By Dreyer et al.’s Theorem 4.4 in two directions.

2. Suffices:
x : Univ, β, x′ : ∀α. (α→ β)× (β → α) `
let x′′ : (Unit→ β)× (β → Unit) = x′ Unit in x′′.2 (x′′.1 unit) ≈log

let x′′ : (Unit→ β)× (β → Unit) = x′ Unit in (x′′.2 (x′′.1 unit);ωUnit)

: Unit
Proof: By a number of compatibility lemmas, as one would expect to be
used in the proof of Dreyer et al.’s Theorem 4.3.

3

3. Suffices: Define
Γ

def
= β1, β2,x

′
1 : ∀α. (α→ β1)× (β1 → α),x′2 : ∀α. (α→ β2)× (β2 → α)

∆
def
= rβ : VRel(β1, β2)

ρ
def
= {β 7→ (β1, β2, rβ)}

Θ
def
= (x′1,x

′
2) ∈ VJ∀α. (α→ β)× (β2 → α)Kρ

Then
Γ; ∆; Θ `
(let x′′ : (Unit→ β1)× (β1 → Unit) = x′1 Unit in x′′.2 (x′′.1 unit),

let x′′ : (Unit→ β2)× (β2 → Unit) = x′2 Unit in x′′.2 (x′′.1 unit);ωUnit)

∈ E≈JUnitKρ
Proof: By definition of the symmetric logical equivalence relation and a few
weakenings (i.e. dropping assumptions) in the LSLR logic.

4. Define

• Rα
def
= (Unit, Unit, (x1 : Unit,x2 : Unit).False)

• R′α
def
= (Unit, Unit, (x1 : Unit,x2 : Unit).True).

Then both Rα and R′α are valid relations.
5.

Γ; ∆; Θ `
(x′1 [Unit], x′2 [Unit]) ∈ EJ(α→ β)× (β → α)Kρ, α 7→ Rα

and
Γ; ∆; Θ `

(x′1 [Unit], x′2 [Unit]) ∈ EJ(α→ β)× (β → α)Kρ, α 7→ R′α
Proof: By definition of VJ∀α. τKρ in Dreyer et al.’s Figure 4, using 4.

6. Suffices: Define
Γ′

def
= Γ,x′′1,x

′′
2

Θ′
def
= Θ, (x′′1,x

′′
2) ∈ V≈J(α→ β)× (β → α)K(ρ, α 7→ Rα),

(x′′1,x
′′
2) ∈ V≈J(α→ β)× (β → α)K(ρ, α 7→ R′α)

Then
Γ′; ∆; Θ′ `

(let x′′ : (Unit→ β1)× (β1 → Unit) = x′′1 in x′′.2 (x′′.1 unit),

let x′′ : (Unit→ β2)× (β2 → Unit) = x′′2 in x′′.2 (x′′.1 unit);ωUnit)

∈ E≈JUnitKρ
Proof: By Lemma 1.2 (Bind2-Schizo is derivable) and rule Bind2-Schizo,
with 5.

7. Suffices: Then
Γ′; ∆; Θ′ ` (x′′1.2 (x′′1.1 unit),x′′2.2 (x′′2.1 unit);ωUnit) ∈ E≈JUnitKρ

Proof: By 6, using Rules 3 and 4 from Dreyer et al.’s Figure 5 and the
obvious evaluations.

8. We have that
Γ′; ∆; Θ′ ` (unit, unit) ∈ V≈JXK(ρ, α 7→ R′α)

Γ′; ∆; Θ′ ` (x′′1.1,x
′′
2.1) ∈ E≈J(X→ β)K(ρ, α 7→ R′α)

4

Γ′; ∆; Θ′ ` (x′′1.1 unit,x′′2.1 unit) ∈ E≈JβK(ρ, α 7→ R′α)

Γ′; ∆; Θ′ ` (x′′1.1 unit,x′′2.1 unit) ∈ E≈JβKρ
Proof: By 6, a number of applications of the symmetric analogues of rules 1, 7,
a compatibility lemma for the first projection, the definition of V≈JαKρ and
Lemma 4.1 from Dreyer et al.

9. Define
Γ′′

def
= Γ′,x′′′1 ,x

′′′
2

Θ′′
def
= Θ′, (x′′′1 ,x

′′′
2) ∈ V≈JβKρ, (x′′1.1 unit) ∗ x′′′1 , (x

′′
2.1 unit) ∗ x′′′2

Suffices: Γ′′; ∆; Θ′′ ` (x′′1.2 x′′′1 ,x
′′
2.2 x′′′2 ;ωUnit) ∈ E≈JUnitKρ

Proof: By Rule 6S from Dreyer et al.’s Figure 6, using 8.
10. We have that

Γ′′; ∆; Θ′′ ` (x′′′1 ,x
′′′
2) ∈ V≈JβKρ

Γ′′; ∆; Θ′′ ` (x′′1.2,x
′′
2.2) ∈ E≈J(β → α)K(ρ, α 7→ Rα)

Γ′′; ∆; Θ′′ ` (x′′1.2 x′′′1 ,x
′′
2.2 x′′′2) ∈ E≈JαK(ρ, α 7→ Rα)

Proof: By 6, a number of applications of the symmetric analogues of
rules 1, 7, a compatibility lemma for the second projection, the definition
of V≈JβKρ and Lemma 4.1 from Dreyer et al.

11. Define
Γ′′′

def
= Γ′′,x′′′′1 ,x′′′′2

Θ′′′
def
= Θ′′, (x′′′′1 ,x′′′′2) ∈ V≈JαK(ρ, α 7→ Rα), (x′′1.2 x′′′1) ∗ x′′′′1 , (x′′2.2 x′′′2) ∗ x′′′′2

Suffices: Γ′′′; ∆; Θ′′′ ` (x′′′′1 , (x′′′′2 ;ωUnit)) ∈ E≈JUnitKρ
Proof: By Rule 6S from Dreyer et al.’s Figure 6.

12. We have that
(x′′′′1 ,x′′′′2) ∈ V≈JαK(ρ, α 7→ Rα) =

(x′′′′1 ,x′′′′2) ∈ Rα ≡ False
Proof: By the definition of the value relation in Dreyer et al.’s Figure 4, by
the definition of Rα in 4 and by the first axiom of Dreyer et al.’s Figure 3.

13. We now have an assumption of False in Θ′′′ by 12 and 11, so we can conclude
vacuously.

14. Q.E.D.

In the paper, we also use a version of the terms tu and td where we replace
builtin existentials with existentials encoded using the following encoding:

∃X. τ def
= ∀β. (∀α. τ → β)→ β

pack 〈τ ′, t〉 as ∃X. τ def
= Λβ. λf : (∀α. τ → β). f [τ ′] t

unpack t1 as 〈α,x〉 in t2
def
= t1 [τ2] (Λα. λx : τ1. t2) where t1 : ∃α. τ1 and t2 : τ2

We then get the following Univ′, t′u and t′d:

Univ′
def
= ∀γ. (∀β. (∀α. (α→ β)× (β → α))→ γ)→ γ

t′u
def
= λx : Univ′. x Unit (Λβ. λx′ : (∀α. (α→ β)× (β → α)).

let x′′ : (Unit→ β)× (β → Unit) = x′ Unit in x′′.2 (x′′.1 unit))

5

t′d
def
= λx : Univ′. x Unit (Λβ. λx′ : (∀α. (α→ β)× (β → α)).

let x′′ : (Unit→ β)× (β → Unit) = x′ Unit in (x′′.2 (x′′.1 unit);ωUnit))

1.1 Proof of Theorem 2.4 for encoded existentials
Lemma 1.4 (Terms are also equivalent with encoded existentials). t′u'ctx t′d

Proof. The proof works similarly to the proof of Lemma 1.3.

1. Suffices: ∅ ` t′u ≈log t′d
Proof: By Dreyer et al.’s Theorem 4.4 in two directions.

2. Suffices:
x : Univ′, β, x′ : ∀α. (α→ β)× (β → α) `
let x′′ : (Unit→ β)× (β → Unit) = x′ Unit in x′′.2 (x′′.1 unit) ≈log

let x′′ : (Unit→ β)× (β → Unit) = x′ Unit in (x′′.2 (x′′.1 unit);ωUnit)

: Unit
Proof: By a number of compatibility lemmas, as one would expect to be
used in the proof of Dreyer et al.’s Theorem 4.3.

3. From here on, the proof is now identical to the proof of Lemma 1.3, from
step 3 in that proof onwards.

4. Q.E.D.

2 Proof of Theorem 3.3

2.1 Untyped Version
The compilation of tu to the untyped λσ with Sumii and Pierce’s compiler is
the following.

We split the unfoldings of erase() and of protect;/confine; for simplicity.

=

let y =(
erase(λx : Univ.unpack x as 〈β, x′〉 in let x′′ : (Bool→ β)× (β → Bool) = x′ Bool in

x′′.2 (x′′.1 unit))

)
in

protect∅;Univ→Bool y

=

let y =

λx. erase(unpack x as 〈β, x′〉 in let x′′ : (Bool→ β)× (β → Bool) = x′ Bool in x′′.2 (x′′.1 unit)) in

protect∅;Univ→Bool y

=

let y =

(λx. let x′ = erase(x) in erase(let x′′ : (Bool→ β)× (β → Bool) = x′ Bool in x′′.2 (x′′.1 unit))) in

protect∅;Univ→Bool y

6

=

let y =

(λx. let x′ = x in erase(let x′′ : (Bool→ β)× (β → Bool) = x′ Bool in x′′.2 (x′′.1 unit))) in

protect∅;Univ→Bool y

=

let y =

(λx. let x′ = x in erase((λx′′ : (Bool→ β)× (β → Bool). x′′.2 (x′′.1 unit))(x′ Bool))) in

protect∅;Univ→Bool y

=

let y =

(λx. let x′ = x in erase(λx′′ : (Bool→ β)× (β → Bool). x′′.2 (x′′.1 unit))erase(x′ Bool)) in

protect∅;Univ→Bool y

=

let y =

(λx. let x′ = x in λx′′. erase(x′′.2 (x′′.1 unit))erase(x′) erase(Bool)) in

protect∅;Univ→Bool y

= let y = (λx. let x′ = x in
λx′′. erase(x′′.2)erase((x′′.1 unit))

(x′ unit)
) in protect∅;Univ→Bool y

= let y = (λx. let x′ = x in λx′′. (x′′.2 (erase(x′′.1)erase(unit)))(x′ unit)) in protect∅;Univ→Bool y

=

{
let y = (λx. let x′ = x in (λx′′. (x′′.2 (x′′.1 unit)))(x′ unit))

in protect∅;Univ→Bool y

We unfold protect;.

protect∅;Univ→Bool y

≡ protect∅;∃Y.∀X.(X→Y)×(Y→X) y

= λw. let a = y (confine∅;∃Y.∀X.(X→Y)×(Y→X) w) in protect∅;Bool a

= λw. let a = y (confine∅;∃Y.∀X.(X→Y)×(Y→X) w) in a

η = Y 7→ (λy. y, λy. y)

= λw. let a = y (confineη;∀X.(X→Y)×(Y→X) w) in a

η′ = Y 7→ (λy. y, λy. y),X 7→ (seals, unseals)

= λw. let a = y ((λ_. νs.let x′ = w unit in confineη′;(X→Y)×(Y→X) x′)) in a

= λw. let a = y

λ_. νs.let x′ = w unit in

let x1 = x′.1 in let x2 = x′.2 in

〈confineη′;(X→Y) x1, confineη′;(Y→X) x2〉

 in a

= λw. let a = y

λ_. νs.let x′ = w unit in

let x1 = x′.1 in let x2 = x′.2 in

〈λy1. let z1 = x1 (protectη;X y1) in confineη;Y z1

, confineη′;(Y→X) x2〉

 in a

7

= λw. let a = y

λ_. νs.let x′ = w unit in

let x1 = x′.1 in let x2 = x′.2 in

〈λy1. let z1 = x1 (protectη;X y1) in confineη;Y z1

λy2. let z2 = x2 (protectη;Y y2) in confineη;X z2〉

 in a

η′ = Y 7→ (λy. y, λy. y),X 7→ (seals, unseals)

= λw. let a = y

λ_. νs.let x′ = w unit in

let x1 = x′.1 in let x2 = x′.2 in

〈λy1. let z1 = x1 (seals y1) in (λp1. p1) z1

λy2. let z2 = x2 ((λp2. p2) y2) in unseals z2〉

 in a

= λw. let a = y

λ_. νs.let x′ = w unit in

let x1 = x′.1 in let x2 = x′.2 in

〈λy1. let z1 = x1 ((λq1. {q1}s) y1) in (λp1. p1) z1

λy2. let z2 = x2 ((λp2. p2) y2) in (λq2. let {a2}s = q2 in a2 else wrong) z2〉

 in a

and thus the compiled tu is:

=

let y = (λx. let x′ = x in (λx′′. (x′′.2 (x′′.1 unit)))(x′ unit))

in λw. let a = y

λ_. νs.let x′ = w unit in

let x1 = x′.1 in let x2 = x′.2 in

〈λy1. let z1 = x1 ((λq1. {q1}s) y1) in (λp1. p1) z1

λy2. let z2 = x2 ((λp2. p2) y2) in (λq2. let {a2}s = q2 in a2 else wrong) z2〉

 in a

2.1.1 Proof (reductions)

let y = (λx. let x′ = x in (λx′′. (x′′.2 (x′′.1 unit)))(x′ unit))

in λw. let a = y

λ_. νs.let x′ = w unit in

let x1 = x′.1 in let x2 = x′.2 in

〈λy1. let z1 = x1 ((λq1. {q1}s) y1) in (λp1. p1) z1

λy2. let z2 = x2 ((λp2. p2) y2) in (λq2. let {a2}s = q2 in a2 else wrong) z2〉

 in a

(λ_. 〈λx. x, λx. x〉)

↪→

λw. let a =

(λx. let x′ = x in (λx′′. (x′′.2 (x′′.1 unit)))(x′ unit))
λ_. νs.let x′ = w unit in

let x1 = x′.1 in let x2 = x′.2 in

〈λy1. let z1 = x1 ((λq1. {q1}s) y1) in (λp1. p1) z1

λy2. let z2 = x2 ((λp2. p2) y2) in (λq2. let {a2}s = q2 in a2 else wrong) z2〉

 in a

(λ_. 〈λx. x, λx. x〉)

8

↪→

let a =

(let x′ =

λ_. νs.let x′ = (λ_. 〈λx. x, λx. x〉) unit in

let x1 = x′.1 in let x2 = x′.2 in

〈λy1. let z1 = x1 ((λq1. {q1}s) y1) in (λp1. p1) z1

λy2. let z2 = x2 ((λp2. p2) y2) in (λq2. let {a2}s = q2 in a2 else wrong) z2〉

 in

(λx′′. (x′′.2 (x′′.1 unit)))(x′ unit)) in a

↪→

let a =

(λx′′. (x′′.2 (x′′.1 unit)))(
λ_. νs.let x′ = (λ_. 〈λx. x, λx. x〉) unit in

let x1 = x′.1 in let x2 = x′.2 in

〈λy1. let z1 = x1 ((λq1. {q1}s) y1) in (λp1. p1) z1

λy2. let z2 = x2 ((λp2. p2) y2) in (λq2. let {a2}s = q2 in a2 else wrong) z2〉

 unit) in a

↪→

let a =

(λx′′. (x′′.2 (x′′.1 unit)))
νs.let x′ = (λ_. 〈λx. x, λx. x〉) unit in

let x1 = x′.1 in let x2 = x′.2 in

〈λy1. let z1 = x1 ((λq1. {q1}s) y1) in (λp1. p1) z1

λy2. let z2 = x2 ((λp2. p2) y2) in (λq2. let {a2}s = q2 in a2 else wrong) z2〉

 in a

↪→

let a =

(λx′′. (x′′.2 (x′′.1 unit)))
let x′ = (λ_. 〈λx. x, λx. x〉) unit in

let x1 = x′.1 in let x2 = x′.2 in

〈λy1. let z1 = x1 ((λq1. {q1}σ) y1) in (λp1. p1) z1

λy2. let z2 = x2 ((λp2. p2) y2) in (λq2. let {a2}σ = q2 in a2 else wrong) z2〉

 in a

↪→

let a =

(λx′′. (x′′.2 (x′′.1 unit)))
let x′ = (〈λx. x, λx. x〉) in

let x1 = x′.1 in let x2 = x′.2 in

〈λy1. let z1 = x1 ((λq1. {q1}σ) y1) in (λp1. p1) z1

λy2. let z2 = x2 ((λp2. p2) y2) in (λq2. let {a2}σ = q2 in a2 else wrong) z2〉

 in a

↪→

let a =

(λx′′. (x′′.2 (x′′.1 unit))) let x1 = 〈λx. x, λx. x〉.1 in let x2 = 〈λx. x, λx. x〉.2 in

〈λy1. let z1 = x1 ((λq1. {q1}σ) y1) in (λp1. p1) z1

λy2. let z2 = x2 ((λp2. p2) y2) in (λq2. let {a2}σ = q2 in a2 else wrong) z2〉

 in a

9

↪→

let a =

(λx′′. (x′′.2 (x′′.1 unit))) let x1 = λx. x in let x2 = 〈λx. x, λx. x〉.2 in

〈λy1. let z1 = x1 ((λq1. {q1}σ) y1) in (λp1. p1) z1

λy2. let z2 = x2 ((λp2. p2) y2) in (λq2. let {a2}σ = q2 in a2 else wrong) z2〉

 in a

↪→

let a =

(λx′′. (x′′.2 (x′′.1 unit))) let x2 = 〈λx. x, λx. x〉.2 in

〈λy1. let z1 = λx. x ((λq1. {q1}σ) y1) in (λp1. p1) z1

λy2. let z2 = x2 ((λp2. p2) y2) in (λq2. let {a2}σ = q2 in a2 else wrong) z2〉

 in a

↪→

let a =

(λx′′. (x′′.2 (x′′.1 unit)))(
〈λy1. let z1 = λx. x ((λq1. {q1}σ) y1) in (λp1. p1) z1

λy2. let z2 = λx. x ((λp2. p2) y2) in (λq2. let {a2}σ = q2 in a2 else wrong) z2〉

)
in a

(∗) ↪→

let a =

(

(
〈λy1. let z1 = λx. x ((λq1. {q1}σ) y1) in (λp1. p1) z1

λy2. let z2 = λx. x ((λp2. p2) y2) in (λq2. let {a2}σ = q2 in a2 else wrong) z2〉

)
.2

(

(
〈λy1. let z1 = λx. x ((λq1. {q1}σ) y1) in (λp1. p1) z1

λy2. let z2 = λx. x ((λp2. p2) y2) in (λq2. let {a2}σ = q2 in a2 else wrong) z2〉

)
.1 unit))

in a

↪→

let a =

((λy2. let z2 = λx. x ((λp2. p2) y2) in (λq2. let {a2}σ = q2 in a2 else wrong) z2)

(

(
〈λy1. let z1 = λx. x ((λq1. {q1}σ) y1) in (λp1. p1) z1

λy2. let z2 = λx. x ((λp2. p2) y2) in (λq2. let {a2}σ = q2 in a2 else wrong) z2〉

)
.1 unit))

in a

↪→

let a =

((λy2. let z2 = λx. x ((λp2. p2) y2) in (λq2. let {a2}σ = q2 in a2 else wrong) z2)

((λy1. let z1 = λx. x ((λq1. {q1}σ) y1) in (λp1. p1) z1) unit))

in a

↪→

let a =

((λy2. let z2 = λx. x ((λp2. p2) y2) in (λq2. let {a2}σ = q2 in a2 else wrong) z2)

(let z1 = λx. x ((λq1. {q1}σ) unit) in (λp1. p1) z1))

in a

10

↪→

let a =

((λy2. let z2 = λx. x ((λp2. p2) y2) in (λq2. let {a2}σ = q2 in a2 else wrong) z2)

(let z1 = λx. x ((λq1. {q1}σ) unit) in (λp1. p1) z1))

in a

↪→

let a =

((λy2. let z2 = λx. x ((λp2. p2) y2) in (λq2. let {a2}σ = q2 in a2 else wrong) z2)

(let z1 = λx. x ({unit}σ) in (λp1. p1) z1))

in a

↪→

let a =

((λy2. let z2 = λx. x ((λp2. p2) y2) in (λq2. let {a2}σ = q2 in a2 else wrong) z2)

(let z1 = {unit}σ in (λp1. p1) z1))

in a

↪→

let a =

((λy2. let z2 = λx. x ((λp2. p2) y2) in (λq2. let {a2}σ = q2 in a2 else wrong) z2)

((λp1. p1) {unit}σ))

in a

↪→

let a =

((λy2. let z2 = λx. x ((λp2. p2) y2) in (λq2. let {a2}σ = q2 in a2 else wrong) z2)

({unit}σ))

in a

↪→

let a =

(let z2 = λx. x ((λp2. p2) {unit}σ) in (λq2. let {a2}σ = q2 in a2 else wrong) z2)

in a

↪→

let a =

(let z2 = λx. x ({unit}σ) in (λq2. let {a2}σ = q2 in a2 else wrong) z2)

in a

↪→

let a =

(let z2 = ({unit}σ) in (λq2. let {a2}σ = q2 in a2 else wrong) z2)

in a

↪→

let a =

((λq2. let {a2}σ = q2 in a2 else wrong) {unit}σ)

in a

↪→

let a =

(let {a2}σ = {unit}σ in a2 else wrong)

in a

↪→
{

let a = unit in a

11

↪→unit

The only difference in the reduction of erase(td) is that instead of the term
λx′′. x′′.2 (x′′.1 unit) there is (λx′′. (λ_. ω) (x′′.2 (x′′.1 unit))) (recall that the ;
is encoded as a dummy lambda). The reductions will proceed the same, except
that after an argument is supplied for x′′ (reduction marked with *), the last
line will be ; omega in a instead of just in a Thus, in the end that reduces as
follows:

· · ·
↪→
{

let a = unit;ω in a

↪→
{

let a = ω in a

↪→
{

let a = ω in a

⇑

2.2 Typed Version
We provide unfolding of definitions of Sumii and Pierce’s compiler using their
notation for the typed compiler. The paper’s erase() function is E and pro-
tect/confine are G+ / G− respectively. Sumii and Pierce rely on an additional
function C to insert sealing/unsealing in this variant Pierce and Sumii [2000]
which is also reported here.

Please note that this notation only affects the unfolding of internal definitions
of the compiler, the actual proof does not depend on it.

Note that we compile Unit and the empty record {} to unit.

Jtu : Univ→ UnitKλ
F

λσ

=

let y

= E

(
λx : Univ.unpack x as 〈β, x′〉 in

let x′′ : (Unit→ β)× (β → Unit) = x′ Unit in x′′.2 (x′′.1 unit)

)
in G+(y,Univ→ Unit)

We split the derivation of the compilation of E and of G for simplicity.

E

(
λx : Univ.unpack x as 〈β, x′〉 in

let x′′ : (Unit→ β)× (β → Unit) = x′ Unit in x′′.2 (x′′.1 unit)

)
= {λx. E(unpack x as 〈β, x′〉 in let x′′ : (Unit→ β)× (β → Unit) = x′ Unit in x′′.2 (x′′.1 unit))

=
{

(λx. let x′ = E(x) in E(let x′′ : (Unit→ β)× (β → Unit) = x′ Unit in x′′.2 (x′′.1 unit)))

=
{

(λx. let x′ = x in E(let x′′ : (Unit→ β)× (β → Unit) = x′ Unit in x′′.2 (x′′.1 unit)))

12

=
{

(λx. let x′ = x in E((λx′′ : (Unit→ β)× (β → Unit). x′′.2 (x′′.1 unit))(x′ Unit)))

=
{

(λx. let x′ = x in E(λx′′ : (Unit→ β)× (β → Unit). x′′.2 (x′′.1 unit)) E(x′ Unit))

=

{
(λx. let x′ = x in

(λx′′. E(x′′.2 (x′′.1 unit)))

(let x′′′ = E(x′) unit in C−α (x′′′, 〈〈 E(Unit) 〉〉, (α→ β)× (β → α)))
)

=

{
(λx. let x′ = x in

(λx′′. E(x′′.2) E((x′′.1 unit)))

(let x′′′ = E(x′) unit in C−α (x′′′, 〈〈 E(Unit) 〉〉, (α→ β)× (β → α)))
)

=

{
(λx. let x′ = x in

(λx′′. (x′′.2 (E(x′′.1) E(unit))))

(let x′′′ = E(x′) unit in C−α (x′′′, 〈〈 E(Unit) 〉〉, (α→ β)× (β → α)))
)

=

{
(λx. let x′ = x in

(λx′′. (x′′.2 (x′′.1 unit)))

(let x′′′ = E(x′) unit in C−α (x′′′, 〈〈 E(Unit) 〉〉, (α→ β)× (β → α)))
)

=

{
(λx. let x′ = x in

(λx′′. (x′′.2 (x′′.1 unit)))

(let x′′′ = x′ unit in C−α (x′′′, 〈〈 E(Unit) 〉〉, (α→ β)× (β → α)))
)

=

{
(λx. let x′ = x in

(λx′′. (x′′.2 (x′′.1 unit)))

(let x′′′ = x′ unit in C−α (x′′′, 〈〈 Unit 〉〉, (α→ β)× (β → α)))
)

=

 (λx. let x′ = x in

 (λx′′. (x′′.2 (x′′.1 unit))) (let x′′′ = x′ unit in

let w1 = x′′′.1 in let w2 = x′′′.2 in

〈C−α (w1, 〈〈 Unit 〉〉, (α→ β)), C−α (w2, 〈〈 Unit 〉〉, (β → α))〉)

)

=

 (λx. let x′ = x in

(λx′′. (x′′.2 (x′′.1 unit))) (let x′′′ = x′ unit in

let w1 = x′′′.1 in let w2 = x′′′.2 in

〈λa. let r = (w1(C+α (a, 〈〈 Unit 〉〉, (α)))) in C−α (r, 〈〈 Unit 〉〉, (β)),

λa. let r = (w2(C+α (a, 〈〈 Unit 〉〉, (β)))) in C−α (r, 〈〈 Unit 〉〉, (α))〉)

)

=

λx. let x′ = x in

(λx′′. (x′′.2 (x′′.1 unit))) (let x′′′ = x′ unit in

let w1 = x′′′.1 in let w2 = x′′′.2 in

〈λa1. let r1 = w1 {a1}〈〈 Unit 〉〉 in r1,

λa2. let r2 = w2 a2 in let {x6}〈〈 Unit 〉〉 = r2 in x6 else wrong〉)

Below is the derivation of G:

G+(y,Univ→ Unit)

=
{
λw. let a = G−(w,Univ) in let r = y a in G+(r, Unit)

=
{
λw. let a = G−(w,∀α. (α→ β)× (β → α)) in let r = y a in r

=

λw. let a =

λ_. let k = νs.s in let d = w unit in

let c = C−α (d, k, (α→ β)× (β → α)) in G−(c, (α→ β)× (β → α))

in let r = y a in r

13

=

λw. let a =

λ_. let k = νs.s in let d = w unit in let c =

let d1 = d.1 in let d2 = d.2 in 〈C−α (d1, k, (α→ β)), C−α (d2, k, (β → α))〉
in let c1 = c.1 in let c2 = c.2 in 〈G−(c1, (α→ β)),G−(c2, (β → α))〉

in let r = y a in r

=

λw. let a =

λ_. let k = νs.s in let d = w unit in let c = let d1 = d.1 in let d2 = d.2 in

〈λu1. let p1 = d1 C− + α(u1, k, α) in C−α (p1, k, β),

λu2. let p2 = d2 C− + α(u2, k, β) in C−α (p2, k, α)〉

in

 let c1 = c.1 in let c2 = c.2 in

〈λt1. let e1 = G+(t1, α) in let s1 = c1 e1 in G−(s1, β),

λt2. let e2 = G+(t2, β) in let s2 = c2 e2 in G−(s2, α)〉

in let r = y a in r

=

λw. let a =

λ_. let k = νs.s in let d = w unit in let c = let d1 = d.1 in let d2 = d.2 in

〈λu1. let p1 = d1 {u1}k in p1,

λu2. let p2 = d2 u2 in let {j}k = p2 in j else wrong〉

in

 let c1 = c.1 in let c2 = c.2 in

〈λt1. let e1 = t1 in let s1 = c1 e1 in s1,

λt2. let e2 = t2 in let s2 = c2 e2 in s2〉

in let r = y a in r

Term tu is thus compiled into:

let y =

λx. let x′ = x in

(λx′′. (x′′.2 (x′′.1 unit))) (let x′′′ = x′ unit in

let w1 = x′′′.1 in let w2 = x′′′.2 in

〈λa1. let r1 = w1 {a1}〈〈 Unit 〉〉 in r1,

λa2. let r2 = w2 a2 in let {x6}〈〈 Unit 〉〉 = r2 in x6 else wrong〉)

in
λw. let a =

λ_. let k = νs.s in let d = w unit in let c = let d1 = d.1 in let d2 = d.2 in

〈λu1. let p1 = d1 {u1}k in p1,

λu2. let p2 = d2 u2 in let {j}k = p2 in j else wrong〉

in

 let c1 = c.1 in let c2 = c.2 in

〈λt1. let e1 = t1 in let s1 = c1 e1 in s1,

λt2. let e2 = t2 in let s2 = c2 e2 in s2〉

in let r = y a in r

As we encode t; t′ as (λ_. t′) t, term td is compiled into:

14

· · ·

let y =

λx. let x′ = x in

(λx′′. (λ_. ω)(x′′.2 (x′′.1 unit))) (let x′′′ = x′ unit in

let w1 = x′′′.1 in let w2 = x′′′.2 in

〈λa1. let r1 = w1 {a1}〈〈 Unit 〉〉 in r1,

λa2. let r2 = w2 a2 in let {x6}〈〈 Unit 〉〉 = r2 in x6 else wrong〉)

in
λw. let a =

λ_. let k = νs.s in let d = w unit in let c = let d1 = d.1 in let d2 = d.2 in

〈λu1. let p1 = d1 {u1}k in p1,

λu2. let p2 = d2 u2 in let {j}k = p2 in j else wrong〉

in

 let c1 = c.1 in let c2 = c.2 in

〈λt1. let e1 = t1 in let s1 = c1 e1 in s1,

λt2. let e2 = t2 in let s2 = c2 e2 in s2〉

in let r = y a in r

2.2.1 Proof (reductions)

let y =

λx. let x′ = x in

(λx′′. (x′′.2 (x′′.1 unit))) (let x′′′ = x′ unit in

let w1 = x′′′.1 in let w2 = x′′′.2 in

〈λa1. let r1 = w1 {a1}〈〈 Unit 〉〉 in r1,

λa2. let r2 = w2 a2 in let {x6}〈〈 Unit 〉〉 = r2 in x6 else wrong〉)

in λw.
let a =

λ_. let k = νs.s in let d = w unit in let c = let d1 = d.1 in let d2 = d.2 in

〈λu1. let p1 = d1 {u1}k in p1,

λu2. let p2 = d2 u2 in let {j}k = p2 in j else wrong〉

in

 let c1 = c.1 in let c2 = c.2 in

〈λt1. let e1 = t1 in let s1 = c1 e1 in s1,

λt2. let e2 = t2 in let s2 = c2 e2 in s2〉

in let r = y a in r

(λ_. 〈λx. x, λx. x〉)

15

↪→

λw.

let a =

λ_. let k = νs.s in let d = w unit in let c = let d1 = d.1 in let d2 = d.2 in

〈λu1. let p1 = d1 {u1}k in p1,

λu2. let p2 = d2 u2 in let {j}k = p2 in j else wrong〉

in

 let c1 = c.1 in let c2 = c.2 in

〈λt1. let e1 = t1 in let s1 = c1 e1 in s1,

λt2. let e2 = t2 in let s2 = c2 e2 in s2〉

in
let r =

λx. let x′ = x in

(λx′′. (x′′.2 (x′′.1 unit))) (let x′′′ = x′ unit in

let w1 = x′′′.1 in let w2 = x′′′.2 in

〈λa1. let r1 = w1 {a1}〈〈 Unit 〉〉 in r1,

λa2. let r2 = w2 a2 in let {x6}〈〈 Unit 〉〉 = r2 in x6 else wrong〉)

a in r

(λ_. 〈λx. x, λx. x〉)

↪→

let a =

λ_. let k = νs.s in let d = (λ_. 〈λx. x, λx. x〉) unit in let c = let d1 = d.1 in let d2 = d.2 in

〈λu1. let p1 = d1 {u1}k in p1,

λu2. let p2 = d2 u2 in let {j}k = p2 in j else wrong〉

in

 let c1 = c.1 in let c2 = c.2 in

〈λt1. let e1 = t1 in let s1 = c1 e1 in s1,

λt2. let e2 = t2 in let s2 = c2 e2 in s2〉

in
let r =

λx. let x′ = x in

(λx′′. (x′′.2 (x′′.1 unit))) (let x′′′ = x′ unit in

let w1 = x′′′.1 in let w2 = x′′′.2 in

〈λa1. let r1 = w1 {a1}〈〈 Unit 〉〉 in r1,

λa2. let r2 = w2 a2 in let {x6}〈〈 Unit 〉〉 = r2 in x6 else wrong〉)

a in r

↪→

let r =

λx. let x′ = x in

(λx′′. (x′′.2 (x′′.1 unit))) (let x′′′ = x′ unit in

let w1 = x′′′.1 in let w2 = x′′′.2 in

〈λa1. let r1 = w1 {a1}〈〈 Unit 〉〉 in r1,

λa2. let r2 = w2 a2 in let {x6}〈〈 Unit 〉〉 = r2 in x6 else wrong〉)

λ_. let k = νs.s in let d = (λ_. 〈λx. x, λx. x〉) unit in let c = let d1 = d.1 in let d2 = d.2 in

〈λu1. let p1 = d1 {u1}k in p1,

λu2. let p2 = d2 u2 in let {j}k = p2 in j else wrong〉

in

 let c1 = c.1 in let c2 = c.2 in

〈λt1. let e1 = t1 in let s1 = c1 e1 in s1,

λt2. let e2 = t2 in let s2 = c2 e2 in s2〉

in r

16

≡

(λr. r)

λx. let x′ = x in

(λx′′. (x′′.2 (x′′.1 unit))) (let x′′′ = x′ unit in

let w1 = x′′′.1 in let w2 = x′′′.2 in

〈λa1. let r1 = w1 {a1}〈〈 Unit 〉〉 in r1,

λa2. let r2 = w2 a2 in let {x6}〈〈 Unit 〉〉 = r2 in x6 else wrong〉)

λ_. let k = νs.s in let d = (λ_. 〈λx. x, λx. x〉) unit in let c = let d1 = d.1 in let d2 = d.2 in

〈λu1. let p1 = d1 {u1}k in p1,

λu2. let p2 = d2 u2 in let {j}k = p2 in j else wrong〉

in

 let c1 = c.1 in let c2 = c.2 in

〈λt1. let e1 = t1 in let s1 = c1 e1 in s1,

λt2. let e2 = t2 in let s2 = c2 e2 in s2〉

↪→

(λr. r)

let x′ =

λ_. let k = νs.s in let d = (λ_. 〈λx. x, λx. x〉) unit in let c = let d1 = d.1 in let d2 = d.2 in

〈λu1. let p1 = d1 {u1}k in p1,

λu2. let p2 = d2 u2 in let {j}k = p2 in j else wrong〉

in

 let c1 = c.1 in let c2 = c.2 in

〈λt1. let e1 = t1 in let s1 = c1 e1 in s1,

λt2. let e2 = t2 in let s2 = c2 e2 in s2〉

in

(λx′′. (x′′.2 (x′′.1 unit))) (let x′′′ = x′ unit in

let w1 = x′′′.1 in let w2 = x′′′.2 in

〈λa1. let r1 = w1 {a1}〈〈 Unit 〉〉 in r1,

λa2. let r2 = w2 a2 in let {x6}〈〈 Unit 〉〉 = r2 in x6 else wrong〉)

↪→

(λr. r)

(λx′′. (x′′.2 (x′′.1 unit)))

(let x′′′ =

λ_. let k = νs.s in let d = (λ_. 〈λx. x, λx. x〉) unit in let c = let d1 = d.1 in let d2 = d.2 in

〈λu1. let p1 = d1 {u1}k in p1,

λu2. let p2 = d2 u2 in let {j}k = p2 in j else wrong〉

in

 let c1 = c.1 in let c2 = c.2 in

〈λt1. let e1 = t1 in let s1 = c1 e1 in s1,

λt2. let e2 = t2 in let s2 = c2 e2 in s2〉

unit

in

let w1 = x′′′.1 in let w2 = x′′′.2 in

〈λa1. let r1 = w1 {a1}〈〈 Unit 〉〉 in r1,

λa2. let r2 = w2 a2 in let {x6}〈〈 Unit 〉〉 = r2 in x6 else wrong〉
)

17

↪→

(λr. r)

(λx′′. (x′′.2 (x′′.1 unit)))

(let x′′′ =

let k = νs.s in let d = (λ_. 〈λx. x, λx. x〉) unit in let c = let d1 = d.1 in let d2 = d.2 in

〈λu1. let p1 = d1 {u1}k in p1,

λu2. let p2 = d2 u2 in let {j}k = p2 in j else wrong〉

in

 let c1 = c.1 in let c2 = c.2 in

〈λt1. let e1 = t1 in let s1 = c1 e1 in s1,

λt2. let e2 = t2 in let s2 = c2 e2 in s2〉

in

let w1 = x′′′.1 in let w2 = x′′′.2 in

〈λa1. let r1 = w1 {a1}〈〈 Unit 〉〉 in r1,

λa2. let r2 = w2 a2 in let {x6}〈〈 Unit 〉〉 = r2 in x6 else wrong〉
)

↪→

(λr. r)

(λx′′. (x′′.2 (x′′.1 unit)))

(let x′′′ =

let k = σ in let d = (λ_. 〈λx. x, λx. x〉) unit in let c = let d1 = d.1 in let d2 = d.2 in

〈λu1. let p1 = d1 {u1}k in p1,

λu2. let p2 = d2 u2 in let {j}k = p2 in j else wrong〉

in

 let c1 = c.1 in let c2 = c.2 in

〈λt1. let e1 = t1 in let s1 = c1 e1 in s1,

λt2. let e2 = t2 in let s2 = c2 e2 in s2〉

in

let w1 = x′′′.1 in let w2 = x′′′.2 in

〈λa1. let r1 = w1 {a1}〈〈 Unit 〉〉 in r1,

λa2. let r2 = w2 a2 in let {x6}〈〈 Unit 〉〉 = r2 in x6 else wrong〉
)

↪→

(λr. r)

(λx′′. (x′′.2 (x′′.1 unit)))

(let x′′′ =

let d = (λ_. 〈λx. x, λx. x〉) unit in let c = let d1 = d.1 in let d2 = d.2 in

〈λu1. let p1 = d1 {u1}σ in p1,

λu2. let p2 = d2 u2 in let {j}σ = p2 in j else wrong〉

in

 let c1 = c.1 in let c2 = c.2 in

〈λt1. let e1 = t1 in let s1 = c1 e1 in s1,

λt2. let e2 = t2 in let s2 = c2 e2 in s2〉

in

let w1 = x′′′.1 in let w2 = x′′′.2 in

〈λa1. let r1 = w1 {a1}〈〈 Unit 〉〉 in r1,

λa2. let r2 = w2 a2 in let {x6}〈〈 Unit 〉〉 = r2 in x6 else wrong〉
)

18

↪→

(λr. r)

(λx′′. (x′′.2 (x′′.1 unit)))

(let x′′′ =

let d = (〈λx. x, λx. x〉) in let c = let d1 = d.1 in let d2 = d.2 in

〈λu1. let p1 = d1 {u1}σ in p1,

λu2. let p2 = d2 u2 in let {j}σ = p2 in j else wrong〉

in

 let c1 = c.1 in let c2 = c.2 in

〈λt1. let e1 = t1 in let s1 = c1 e1 in s1,

λt2. let e2 = t2 in let s2 = c2 e2 in s2〉

in

let w1 = x′′′.1 in let w2 = x′′′.2 in

〈λa1. let r1 = w1 {a1}〈〈 Unit 〉〉 in r1,

λa2. let r2 = w2 a2 in let {x6}〈〈 Unit 〉〉 = r2 in x6 else wrong〉
)

↪→

(λr. r)

(λx′′. (x′′.2 (x′′.1 unit)))

(let x′′′ =

let c = let d1 = (〈λx. x, λx. x〉).1 in let d2 = (〈λx. x, λx. x〉).2 in

〈λu1. let p1 = d1 {u1}σ in p1,

λu2. let p2 = d2 u2 in let {j}σ = p2 in j else wrong〉

in

 let c1 = c.1 in let c2 = c.2 in

〈λt1. let e1 = t1 in let s1 = c1 e1 in s1,

λt2. let e2 = t2 in let s2 = c2 e2 in s2〉

in

let w1 = x′′′.1 in let w2 = x′′′.2 in

〈λa1. let r1 = w1 {a1}〈〈 Unit 〉〉 in r1,

λa2. let r2 = w2 a2 in let {x6}〈〈 Unit 〉〉 = r2 in x6 else wrong〉
)

↪→

(λr. r)

(λx′′. (x′′.2 (x′′.1 unit)))

(let x′′′ =

let c = let d1 = λx. x in let d2 = (〈λx. x, λx. x〉).2 in

〈λu1. let p1 = d1 {u1}σ in p1,

λu2. let p2 = d2 u2 in let {j}σ = p2 in j else wrong〉

in

 let c1 = c.1 in let c2 = c.2 in

〈λt1. let e1 = t1 in let s1 = c1 e1 in s1,

λt2. let e2 = t2 in let s2 = c2 e2 in s2〉

in

let w1 = x′′′.1 in let w2 = x′′′.2 in

〈λa1. let r1 = w1 {a1}〈〈 Unit 〉〉 in r1,

λa2. let r2 = w2 a2 in let {x6}〈〈 Unit 〉〉 = r2 in x6 else wrong〉
)

19

↪→

(λr. r)

(λx′′. (x′′.2 (x′′.1 unit)))

(let x′′′ =

let c = let d2 = (〈λx. x, λx. x〉).2 in

〈λu1. let p1 = (λx. x) {u1}σ in p1,

λu2. let p2 = d2 u2 in let {j}σ = p2 in j else wrong〉

in

 let c1 = c.1 in let c2 = c.2 in

〈λt1. let e1 = t1 in let s1 = c1 e1 in s1,

λt2. let e2 = t2 in let s2 = c2 e2 in s2〉

in

let w1 = x′′′.1 in let w2 = x′′′.2 in

〈λa1. let r1 = w1 {a1}〈〈 Unit 〉〉 in r1,

λa2. let r2 = w2 a2 in let {x6}〈〈 Unit 〉〉 = r2 in x6 else wrong〉
)

↪→

(λr. r)

(λx′′. (x′′.2 (x′′.1 unit)))

(let x′′′ =

let c = let d2 = λx. x in

〈λu1. let p1 = (λx. x) {u1}σ in p1,

λu2. let p2 = d2 u2 in let {j}σ = p2 in j else wrong〉

in

 let c1 = c.1 in let c2 = c.2 in

〈λt1. let e1 = t1 in let s1 = c1 e1 in s1,

λt2. let e2 = t2 in let s2 = c2 e2 in s2〉

in

let w1 = x′′′.1 in let w2 = x′′′.2 in

〈λa1. let r1 = w1 {a1}〈〈 Unit 〉〉 in r1,

λa2. let r2 = w2 a2 in let {x6}〈〈 Unit 〉〉 = r2 in x6 else wrong〉
)

↪→

(λr. r)

(λx′′. (x′′.2 (x′′.1 unit)))

(let x′′′ =

let c =(
〈λu1. let p1 = (λx. x) {u1}σ in p1,

λu2. let p2 = (λx. x) u2 in let {j}σ = p2 in j else wrong〉

)

in

 let c1 = c.1 in let c2 = c.2 in

〈λt1. let e1 = t1 in let s1 = c1 e1 in s1,

λt2. let e2 = t2 in let s2 = c2 e2 in s2〉

in

let w1 = x′′′.1 in let w2 = x′′′.2 in

〈λa1. let r1 = w1 {a1}〈〈 Unit 〉〉 in r1,

λa2. let r2 = w2 a2 in let {x6}〈〈 Unit 〉〉 = r2 in x6 else wrong〉
)

20

↪→ ↪→

(λr. r)

(λx′′. (x′′.2 (x′′.1 unit)))

(let x′′′ =

let c1 = (λu1. let p1 = (λx. x) {u1}σ in p1)

in let c2 =

(
〈λu1. let p1 = (λx. x) {u1}σ in p1,

λu2. let p2 = (λx. x) u2 in let {j}σ = p2 in j else wrong〉

)
.2 in

〈λt1. let e1 = t1 in let s1 = c1 e1 in s1,

λt2. let e2 = t2 in let s2 = c2 e2 in s2〉

in

let w1 = x′′′.1 in let w2 = x′′′.2 in

〈λa1. let r1 = w1 {a1}〈〈 Unit 〉〉 in r1,

λa2. let r2 = w2 a2 in let {x6}〈〈 Unit 〉〉 = r2 in x6 else wrong〉
)

↪→

(λr. r)

(λx′′. (x′′.2 (x′′.1 unit)))

(let x′′′ =

let c2 =

(
〈λu1. let p1 = (λx. x) {u1}σ in p1,

λu2. let p2 = (λx. x) u2 in let {j}σ = p2 in j else wrong〉

)
.2 in

〈λt1. let e1 = t1 in let s1 = (λu1. let p1 = (λx. x) {u1}σ in p1) e1 in s1,

λt2. let e2 = t2 in let s2 = c2 e2 in s2〉

in

let w1 = x′′′.1 in let w2 = x′′′.2 in

〈λa1. let r1 = w1 {a1}〈〈 Unit 〉〉 in r1,

λa2. let r2 = w2 a2 in let {x6}〈〈 Unit 〉〉 = r2 in x6 else wrong〉
)

↪→

(λr. r)

(λx′′. (x′′.2 (x′′.1 unit)))

(let x′′′ =

 let c2 = λu2. let p2 = (λx. x) u2 in let {j}σ = p2 in j else wrong in

〈λt1. let e1 = t1 in let s1 = (λu1. let p1 = (λx. x) {u1}σ in p1) e1 in s1,

λt2. let e2 = t2 in let s2 = c2 e2 in s2〉

in

let w1 = x′′′.1 in let w2 = x′′′.2 in

〈λa1. let r1 = w1 {a1}〈〈 Unit 〉〉 in r1,

λa2. let r2 = w2 a2 in let {x6}〈〈 Unit 〉〉 = r2 in x6 else wrong〉
)

↪→

(λr. r)

(λx′′. (x′′.2 (x′′.1 unit)))

(let x′′′ =

(
〈λt1. let e1 = t1 in let s1 = (λu1. let p1 = (λx. x) {u1}σ in p1) e1 in s1,

λt2. let e2 = t2 in let s2 = (λu2. let p2 = (λx. x) u2 in let {j}σ = p2 in j else wrong) e2 in s2〉

)

in

let w1 = x′′′.1 in let w2 = x′′′.2 in

〈λa1. let r1 = w1 {a1}〈〈 Unit 〉〉 in r1,

λa2. let r2 = w2 a2 in let {x6}〈〈 Unit 〉〉 = r2 in x6 else wrong〉
)

21

↪→ ↪→

(λr. r)

(λx′′. (x′′.2 (x′′.1 unit)))

let w1 = (λt1. let e1 = t1 in let s1 = (λu1. let p1 = (λx. x) {u1}σ in p1) e1 in s1)

in let w2 =

(
〈λt1. let e1 = t1 in let s1 = (λu1. let p1 = (λx. x) {u1}σ in p1) e1 in s1,

λt2. let e2 = t2 in let s2 = (λu2. let p2 = (λx. x) u2 in let {j}σ = p2 in j else wrong) e2 in s2〉

)
.2 in

〈λa1. let r1 = w1 {a1}〈〈 Unit 〉〉 in r1,

λa2. let r2 = w2 a2 in let {x6}〈〈 Unit 〉〉 = r2 in x6 else wrong〉

)

↪→

(λr. r)

(λx′′. (x′′.2 (x′′.1 unit)))

let w2 =

(
〈λt1. let e1 = t1 in let s1 = (λu1. let p1 = (λx. x) {u1}σ in p1) e1 in s1,

λt2. let e2 = t2 in let s2 = (λu2. let p2 = (λx. x) u2 in let {j}σ = p2 in j else wrong) e2 in s2〉

)
.2 in

〈λa1. let r1 = (λt1. let e1 = t1 in let s1 = (λu1. let p1 = (λx. x) {u1}σ in p1) e1 in s1) {a1}〈〈 Unit 〉〉 in r1,

λa2. let r2 = w2 a2 in let {x6}〈〈 Unit 〉〉 = r2 in x6 else wrong〉

)

↪→

(λr. r)

(λx′′. (x′′.2 (x′′.1 unit)))

let w2 = λt2. let e2 = t2 in let s2 = (λu2. let p2 = (λx. x) u2 in let {j}σ = p2 in j else wrong) e2 in s2 in

〈λa1. let r1 = (λt1. let e1 = t1 in let s1 = (λu1. let p1 = (λx. x) {u1}σ in p1) e1 in s1) {a1}〈〈 Unit 〉〉 in r1,

λa2. let r2 = w2 a2 in let {x6}〈〈 Unit 〉〉 = r2 in x6 else wrong〉
)

↪→

(λr. r)

λx′′. (x′′.2 (x′′.1 unit)))

〈
λa1. let r1 = (λt1. let e1 = t1 in let s1 =

(λu1. let p1 = (λx. x) {u1}σ in p1) e1 in s1) {a1}〈〈 Unit 〉〉 in r1

,

λa2. let r2 = (λt2. let e2 = t2 in let s2 =

(λu2. let p2 = (λx. x) u2 in let {j}σ = p2 in j else wrong) e2 in s2) a2 in

let {x6}〈〈 Unit 〉〉 = r2 in x6 else wrong

〉

↪→ ↪→ ↪→

(λr. r)

λa2. let r2 = (λt2. let e2 = t2 in let s2 =

(λu2. let p2 = (λx. x) u2 in let {j}σ = p2 in j else wrong) e2 in s2) a2 in

let {x6}〈〈 Unit 〉〉 = r2 in x6 else wrong

((

λa1. let r1 = (λt1. let e1 = t1 in let s1 =

(λu1. let p1 = (λx. x) {u1}σ in p1) e1 in s1) {a1}〈〈 Unit 〉〉 in r1

)
unit

)

22

↪→

(λr. r)

λa2. let r2 = (λt2. let e2 = t2 in let s2 =

(λu2. let p2 = (λx. x) u2 in let {j}σ = p2 in j else wrong) e2 in s2) a2 in

let {x6}〈〈 Unit 〉〉 = r2 in x6 else wrong

((

let r1 = (λt1. let e1 = t1 in let s1 =

(λu1. let p1 = (λx. x) {u1}σ in p1) e1 in s1) {unit}〈〈 Unit 〉〉 in r1

))

↪→

(λr. r)

λa2. let r2 = (λt2. let e2 = t2 in let s2 =

(λu2. let p2 = (λx. x) u2 in let {j}σ = p2 in j else wrong) e2 in s2) a2 in

let {x6}〈〈 Unit 〉〉 = r2 in x6 else wrong

((

let r1 = let e1 = {unit}〈〈 Unit 〉〉 in let s1 =

(λu1. let p1 = (λx. x) {u1}σ in p1) e1 in s1 in r1

))

↪→

(λr. r)

λa2. let r2 = (λt2. let e2 = t2 in let s2 =

(λu2. let p2 = (λx. x) u2 in let {j}σ = p2 in j else wrong) e2 in s2) a2 in

let {x6}〈〈 Unit 〉〉 = r2 in x6 else wrong

((

let r1 = let s1 =

(λu1. let p1 = (λx. x) {u1}σ in p1) {unit}〈〈 Unit 〉〉 in s1 in r1

))

↪→

(λr. r)

λa2. let r2 = (λt2. let e2 = t2 in let s2 =

(λu2. let p2 = (λx. x) u2 in let {j}σ = p2 in j else wrong) e2 in s2) a2 in

let {x6}〈〈 Unit 〉〉 = r2 in x6 else wrong

((

let r1 = let s1 =

(let p1 = (λx. x) {{unit}〈〈 Unit 〉〉}σ in p1) in s1 in r1

))

↪→

(λr. r)

λa2. let r2 = (λt2. let e2 = t2 in let s2 =

(λu2. let p2 = (λx. x) u2 in let {j}σ = p2 in j else wrong) e2 in s2) a2 in

let {x6}〈〈 Unit 〉〉 = r2 in x6 else wrong

((

let r1 = let s1 =

(let p1 = ({{unit}〈〈 Unit 〉〉}σ in p1) in s1 in r1

))

↪→ ↪→ ↪→

(λr. r)
λa2. let r2 = (λt2. let e2 = t2 in let s2 =

(λu2. let p2 = (λx. x) u2 in let {j}σ = p2 in j else wrong) e2 in s2) a2 in

let {x6}〈〈 Unit 〉〉 = r2 in x6 else wrong

{{unit}〈〈 Unit 〉〉}σ

23

↪→

(λr. r) let r2 =

let e2 = {{unit}〈〈 Unit 〉〉}σ
in let s2 = (λu2. let p2 = (λx. x) u2 in let {j}σ = p2 in j else wrong) e2 in s2

in let {x6}〈〈 Unit 〉〉 = r2 in x6 else wrong

↪→

(λr. r)(

let r2 = let s2 = let p2 = (λx. x) {{unit}〈〈 Unit 〉〉}σ in let {j}σ = p2 in j else wrong in s2

in let {x6}〈〈 Unit 〉〉 = r2 in x6 else wrong

)

↪→

(λr. r)(

let r2 = let s2 = let p2 = {{unit}〈〈 Unit 〉〉}σ in let {j}σ = p2 in j else wrong in s2

in let {x6}〈〈 Unit 〉〉 = r2 in x6 else wrong

)

↪→

(λr. r)(

let r2 = let s2 = let {j}σ = {{unit}〈〈 Unit 〉〉}σ in j else wrong in s2

in let {x6}〈〈 Unit 〉〉 = r2 in x6 else wrong

)

↪→

(λr. r)(

let r2 = let s2 = {unit}〈〈 Unit 〉〉 in s2

in let {x6}〈〈 Unit 〉〉 = r2 in x6 else wrong

)

↪→

(λr. r)(

let r2 = {unit}〈〈 Unit 〉〉
in let {x6}〈〈 Unit 〉〉 = r2 in x6 else wrong

)

↪→

{
(λr. r)(

let {x6}〈〈 Unit 〉〉 = {unit}〈〈 Unit 〉〉 in x6 else wrong
)

↪→

{
(λr. r)(
unit

)
↪→
{
unit

3 Proof (and code) for Theorem 4.1

The following are the literal encodings of CB [btuc] and CB [btdc] for use in the
interpreter provided by Ahmed et al. [2017].

This is available at http://www.ccs.neu.edu/home/dijamner/paramblame/artifact/.
These terms were constructed and tested with some kind assistance by Jeremy
Siek and others, which we thank them for.

As discussed in the paper, the fact that we have a non-value-polymorphic
source language λF and a value-polymorphic target language λB , means that
we need to introduce a form of thunking for polymorphic functions: the type
∀X. τ is mapped to b∀X. τc def

= ∀X. Unit→ bτc and type abstractions ΛX. t are

24

http://www.ccs.neu.edu/home/dijamner/paramblame/artifact/

mapped to bΛX. tc def
= ΛX.λ_. btc. However, the artifact by Ahmed et al. does

not support a unit type, so in the terms below, we replace type Unit by type
int and we use value 3 in place of the value unit.

1 let tu : (exists B. forall A. int -> < A -> B, B -> A >) -> bool =
2 lam(x:(exists B. forall A. int -> < A -> B, B -> A >)).
3 unpack[forall A. int -> < A -> B, B -> A >, bool] B, x1 = x in
4 let x2 : < bool -> B,B -> bool > = x1 [bool] 3 in
5 (snd x2) ((fst x2) true)
6 in let vuniv : exists B. forall A. int -> < A -> B, B -> A > =
7 (pack *, Lam A. lam (z:int). < lam (x:A). x:A => *, lam (x:*). x:* => A >
8 in B. forall A. int -> < A -> B, B -> A >)
9 in tu vuniv

1 let omega : bool ->* =
2 lam(x:bool).
3 (lam(f :* ->*). (f (f :* ->* =>*)))
4 ((lam(f :* ->*). (f (f :* ->* =>*))) : (*->*)->* =>* ->*)
5 in
6 let td : (exists B. forall A. int -> < A-> B, B ->A >) -> bool =
7 lam(x:(exists B. forall A. int -> <A -> B, B -> A>)).
8 unpack[forall A. int -> <A -> B, B -> A>, bool] B,x1 = x in
9 let x2 : < bool -> B, B -> bool > = x1 [bool] 3 in

10 let z : bool = (snd x2) ((fst x2) true) in
11 let _ :* = omega true in z
12 in let vuniv : exists B. forall A. int -> < A -> B, B -> A> =
13 (pack *, Lam A. lam (z:int). <lam (x:A). x:A => *, lam (x:*). x:* => A>
14 in B. forall A. int -> < A -> B, B -> A >)
15 in td vuniv

References
Amal Ahmed, Justin Damner, Jeremy G. Siek, and Philip Wadler. Theorems
for free for free. In ICFP, 2017.

D. Dreyer, A. Ahmed, and L. Birkedal. Logical step-indexed logical relations.
In Logic In Computer Science, pages 71–80, 2009.

Derek Dreyer, Amal Ahmed, and Lars Birkedal. Logical step-indexed logical
relations. Logical Methods in Computer Science, 7(2), 2011a.

Derek Dreyer, Amal Ahmed, and Lars Birkedal. Logical step-indexed logical
relations - appendix, 2011b.

Benjamin Pierce and Eijiro Sumii. Relating cryptography and polymorphism.
manuscript, 2000. URL http://www.kb.ecei.tohoku.ac.jp/~sumii/pub/
infohide.pdf.

25

http://www.kb.ecei.tohoku.ac.jp/~sumii/pub/infohide.pdf
http://www.kb.ecei.tohoku.ac.jp/~sumii/pub/infohide.pdf

	Proof of Theorem 2.4
	Proof of Theorem 2.4 for encoded existentials

	Proof of Theorem 3.3
	Untyped Version
	Proof (reductions)

	Typed Version
	Proof (reductions)

	Proof (and code) for Theorem 4.1

