
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Automatically Synthesizing Leakage Contracts from
Counterexamples

Elvira Moreno-Sanchez∗
IMDEA Software Institute

Universidad Politécnica de Madrid
Madrid, Spain

Ryan Williams∗
Northeastern University

Boston, USA

Marco Guarnieri
IMDEA Software Institute

Madrid, Spain

Marco Patrignani
University of Trento

Trento, Italy

1 INTRODUCTION

Microarchitectural attacks [2, 3] exploit subtle differences in a pro-
gram’s execution time—due to CPU optimizations—to leak informa-
tion. Attackers can exploit them to infer secret data from seemingly
secure programs. To defend against such attacks, programmers
need to reason about a CPU’s microarchitecture. However, the In-
struction Set Architecture (ISA)— the traditional abstraction layer
between software and hardware—lacks microarchitectural details.

Leakage contracts [1] have been recently proposed as a new
security abstraction at ISA-level. Such contracts allow specifying at
ISA-level the information leaked by a CPU through microarchitec-
tural side-channels; thereby providing a basis for secure program-
ming. However, modern CPUs do not come with dedicated leakage
contracts. While deriving such a contract for a specific CPU (and
microarchitecture) could be done through an extensive and manual
reverse engineering effort, scaling this process to the large number
of available commercial CPUs requires automation.

In this work, we propose an automated approach for synthesiz-
ing leakage contracts directly from hardware measurements. This
approach will allow us to automatically derive leakage contracts
for existing commercial CPUs with limited manual effort. We make
the following contributions:

• We develop a domain-specific language (DSL) for formal-
izing ISA-level leakage contracts. Our DSL is expressive enough to
capture leaks from real-world CPUs. Additionally, contracts spec-
ified in our DSL are executable. That is, they can be applied to
arbitrary x86 programs (and associated inputs) to derive the corre-
sponding leakage traces recording all leaks modeled by the contract.

• We develop a counterexample-based synthesis approach,
which we overview in Section 2, for automatically learning leakage
contracts from hardware measurements. Our synthesis approach
incrementally learns the leakage contract associated with a CPU by
(1) generating random test cases for detecting leaks, (2) executing
these test cases on the target CPU to derive hardware measure-
ments, and (3) refining the candidate contract to account for the
newly discovered leaks.

• We implemented a prototype of our synthesis approach in a
tool called Malcos. The tool uses the Rosette framework [5] as a
back-end for synthesis and relies on the Revizor fuzzer [4] to gener-
ate test cases and detect leaks in CPUs. We are currently evaluating
(1) the expressiveness of our DSL, and (2) the quality (in terms of

∗Both authors contributed equally to this research.

x

cand cex, pex

new expression

Checker

Refiner

Expression synthesis

1

34

new_cand

CPU learned
contract

Constraints generation

x

(new leaks)

(no new leaks)

2

Figure 1: Malcos synthesis approach

soundness and precision) of the leakage contracts synthesized by
Malcos. So far, we validated Malcos results on selected simple
target contracts.

2 MALCOS

In this section, we overview Malcos’s synthesis approach with an
example. Next, we first describe the leakage profile of our target
CPU and the overview of our approach.
Target CPU: In our example, we consider a CPU that implements
a simple register file compression (RFC) optimization [6]. This opti-
mization reduces the physical size of the register file by mapping all
logical registers that store the value 0 to the same physical register.
These compression schemes, however, often reduce the pressure
on the register file thereby resulting in timing leaks, exposing the
value of the program counter.
Overview: Figure 1 shows the workflow of the Malcos synthesis
approach, which relies on two main components:

(1) The checker that, given a candidate contract, tries to dis-
cover leaks in the target CPU that are not captured by the contract.
That is, the checker looks for a counterexample cex to contract
satisfiability [1]. This counterexample is a sequence of instructions
together with a pair of initial states that produce the same leakage
traces according to the candidate contract, but result in different mi-
croarchitectural observations. Concretely, Malcos uses the Revizor
black-box CPU fuzzer [4] as a checker, which relies on cache-based
side-channels as a source of microarchitectural observations.

(2) The refiner that, given a counterexample (describing a newly
discovered leak), generates a new expression to be added to the

1

https://orcid.org/0000-0001-8551-6572

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Elvira Moreno-Sanchez, Ryan Williams, Marco Guarnieri, and Marco Patrignani

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

expr1 B operand-value 0 IF [(operand-type 0 = reg) and
(operand-access 0 = write)]

Figure 2: Learned expression

contract that captures the new leak. The refiner instantiates the
problem of discovering such an expression as a syntax-driven syn-
thesis task implemented on top of the Rosette solver.

We now explain how Malcos can learn the contract associated
with our target CPU when starting from an empty candidate con-
tract, i.e., cand = ∅. For simplicity, we consider a simple microar-
chitectural attacker that can observe whenever RFC happens. First,
Malcos runs the checker to identify leaks that are not captured by
the candidate (1). For this, the checker generates multiple random
test cases (each one consisting of a program and a pair of initial
states), executes them on our target CPU, and performs microarchi-
tectural observations to detect potential leaks. Given that cand = ∅
while the target CPU leaks through RFC, the checker discovers the
following counterexample describing the RFC leak:

𝑝 := MOVE 𝑥,𝑦, 𝑠1 := (𝑦 ↦→ 0) 𝑠2 := (𝑦 ↦→ 𝑛 ≠ 0)

Here, the program 𝑝 consists of an instruction assigning to regis-
ter 𝑥 the value of register 𝑦, where the value of 𝑦 is 0 in state 𝑠1 and
any value different from 0 in state 𝑠2. Therefore, RFC happens when
executing 𝑝 from 𝑠1, but does not happen when executing 𝑝 from 𝑠2,
which results in different microarchitectural observations for the
attacker. That is, the test case cex := ⟨𝑝, 𝑠1, 𝑠2⟩ is a counterexample
for the candidate contract cand = ∅.

Next, Malcos uses the refiner to analyze the counterexample
cex := ⟨𝑝, 𝑠1, 𝑠2⟩ and generate a DSL expression capturing the
leak. The refiner starts by simulating the architectural execution
of the counterexample (using the Unicorn CPU simulator) and col-
lects information about all architectural states (e.g., register values,
operand information for the executed instructions, the program
counter) explored during execution. The refiner uses all this in-
formation to generate the symbolic constraints for the synthesis
problem (2). Then, the refiner uses the Rosette solver to identify a
new DSL expression expr1 that distinguish the counterexample cex
(3), i.e., for which the executions of 𝑝 starting from 𝑠1 and 𝑠2 lead
to different expr1 values. For instance, Malcos might learn the ex-
pression expr1 (Figure 2), which distinguishes the counterexample.
The expression exposes the value of the first operand whenever the
first operand is a register and it is the target of a register write.

The refiner adds the newly discovered expression expr1 to the
candidate contract cand. Malcos works in a iterative fashion by
performing a new round of checking and refinement to discover fur-
ther leaks ignored by the new candidate contract cand (4). Given
that the contract from Figure 2 is sufficient to capture the RFC leaks
(since it exposes all values written to registers during execution),
Malcos terminates and outputs the learned contract in Figure 2.
Fixing over-approximations: Malcos iteratively refines the can-
didate contract from counterexamples. This, however, can lead to
contracts that over-approximate leaks in the target CPU, i.e., the
candidate contract might expose more information than needed to
capture the actual leaks.

For instance, consider the learned contract in Figure 2, which
exposes the value of written registers during program execution.
While this distinguishes any two executions leaking through RFC,

expr2 B PC IF [(operand-type 0 = reg) and
(operand-access 0 = write) and (operand-value 0 = 0)]

Figure 3: Learned expression using positive examples

it would also distinguish executions where no RFC happens, e.g.,
where no register takes the value 0. To mitigate these overapproxi-
mations, we extend our synthesis approach to account for positive
examples, that is, test cases that are indistinguishable for both the
contract and the microarchitectural attacker. For instance, given the
initial candidate contract, cand = ∅, apart from the counterexample
cex := ⟨𝑝, 𝑠1, 𝑠2⟩, the checker can discover positive examples like
the following one:

𝑝 := MOVE 𝑥,𝑦, 𝑠3 := (𝑦 ↦→ 𝑛 ≠ 0) 𝑠4 := (𝑦 ↦→𝑚 ≠ 0)
This positive example consists of the same program 𝑝 described

above, and a new pair of states (𝑠3, 𝑠4) where the values 𝑛 and
𝑚 are any value other than 0, thus resulting in no different mi-
croarchitectural observations for the attacker. That is, the test case
pex := ⟨𝑝, 𝑠3, 𝑠4⟩ is a positive example for the candidate, cand = ∅.

Our synthesis approach now aims at synthesizing a DSL ex-
pression that (1) distinguishes the counterexample cex while (2)
distinguishing as few positive examples pex1, . . . , pex𝑛 as possible.
Using positive examples Malcos can learn the expression expr2
(see Figure 3), which exposes the program counter, pc whenever
the first operand is a register and it is written with a value 0.

The expression expr2 is more precise than expr1, while still cap-
turing RFC leaks because it only exposes whenever 0 is written to
a register rather than exposing all register values.

3 PRELIMINARY EVALUATION

To evaluate the impact of positive examples, we performed a pre-
liminary evaluation using a simulated CPU that leaks the value of
the program counter throughout the execution (associated with the
contract expr B PC IF True) and measured precision and sound-
ness, where precision measures how many of the leaks captured
by the synthesised contracts are true positives, whereas soundness
measures the number of false negatives.

In our experiments, we ran Malcos to synthesize contracts with
and without positive examples. To validate the precision and sound-
ness of the synthesized contract, we further randomly generated 50
programs with 15 inputs each, which we used as validation set. For
these validation test cases, we then collected contract and microar-
chitectural traces for (1) the simulated CPU, and (2) the synthesized
contracts. The results show that, without positive examples, the
average precision of the contracts is 30%, while with positive ex-
amples it increases to 100%. In contrast, soundness is stable at an
average of 100% with and without positive examples.

REFERENCES

[1] M. Guarnieri, B. Köpf, J. Reineke, and P. Vila. 2021. Hardware-software contracts
for secure speculation. In S&P. IEEE.

[2] P. Kocher et al. 2020. Spectre attacks: Exploiting speculative execution. Commun.
ACM 63, 7 (2020).

[3] M. Lipp et al. 2020. Meltdown: Reading kernel memory from user space. Commun.
ACM 63, 6 (2020).

[4] O. Oleksenko, C. Fetzer, B. Köpf, and M. Silberstein. 2022. Revizor: Testing black-
box CPUs against speculation contracts. In ASPLOS.

[5] E. Torlak and R. Bodik. 2013. Growing solver-aided languages with Rosette. In
Onward!

[6] J. R. S. Vicarte et al. 2021. Opening pandora’s box: A systematic study of new
ways microarchitecture can leak private data. In ISCA. IEEE.

2

	1 Introduction
	2 Malcos
	3 Preliminary evaluation
	References

