
Modular Information Flow through Ownership

Will Crichton
Stanford University

Stanford, USA
wcrichto@cs.stanford.edu

Marco Patrignani
University of Trento

Trento, Italy
marco.patrignani@unitn.it

Maneesh Agrawala
Pat Hanrahan

Stanford University
Stanford, USA

Abstract

Statically analyzing information flow, or how data influences
other data within a program, is a challenging task in impera-
tive languages. Analyzing pointers and mutations requires
access to a program’s complete source. However, programs
often use pre-compiled dependencies where only type sig-
natures are available. We demonstrate that ownership types
can be used to soundly and precisely analyze information
flow through function calls given only their type signature.
From this insight, we built Flowistry, a system for analyzing
information flow in Rust, an ownership-based language. We
prove the system’s soundness as a form of noninterference
using the Oxide formal model of Rust. Then we empirically
evaluate the precision of Flowistry, showing that modular
flows are identical to whole-program flows in 94% of cases
drawn from large Rust codebases. We illustrate the applica-
bility of Flowistry by using it to implement prototypes of a
program slicer and an information flow control system.

CCS Concepts: • Software and its engineering→ Auto-

mated static analysis.

Keywords: information flow, ownership types, rust
ACM Reference Format:

Will Crichton, Marco Patrignani, Maneesh Agrawala, and Pat Han-
rahan. 2022. Modular Information Flow through Ownership. In
Proceedings of the 43rd ACM SIGPLAN International Conference on
Programming Language Design and Implementation (PLDI ’22), June
13–17, 2022, San Diego, CA, USA.ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3519939.3523445

1 Introduction

Information flow describes how data influences other data
within a program. Information flow has applications to secu-
rity, such as information flow control [31], and to developer

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PLDI ’22, June 13–17, 2022, San Diego, CA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-9265-5/22/06. . . $15.00
https://doi.org/10.1145/3519939.3523445

tools, such as program slicing [37]. Our goal is to build a
practical system for analyzing information flow, meaning:
1. Applicable to common language features: the lan-

guage being analyzed should support widely used features
like pointers and in-place mutation.

2. Zero configuration to run on existing code: the ana-
lyzer must integrate with an existing language and exist-
ing unannotated programs. It must not require users to
adopt a new language designed for information flow.

3. No dynamic analysis: to reduce integration challenges
and costs, the analyzer must be purely static — no modifi-
cations to runtimes or binaries are needed.

4. Modular over dependencies: programs may not have
source available for dependencies. The analyzer must have
reasonable precision without whole-program analysis.
As a case study on the challenges imposed by these re-

quirements, consider analyzing the information that flows
to the return value in this C++ function:

1 // Copy elements 0 to max into a new vector

2 vector<int> copy_to(vector<int>& v, size_t max) {

3 vector<int> v2; size_t i = 0;

4 for (auto x(v.begin()); x != v.end(); ++x) {

5 if (i == max) { break; }

6 v2.push_back(*x); ++i;

7 }

8 return v2;

9 }

Here, a key flow is that v2 is influenced by v: (1) push_back
mutates v2 with *x as input, and (2) x points to data within
v. But how could an analyzer statically deduce these facts?
For C++, the answer is by looking at function implementa-
tions. The implementation of push_back mutates v2, and the
implementation of begin returns a pointer to data in v.

However, analyzing such implementations violates our
fourth requirement, since these functions may only have
their type signature available. In C++, given only a function’s
type signature, not much can be inferred about its behavior,
since the type system does not contain information relevant
to pointer analysis.

Our key insight is that ownership types can be leveraged to
modularly analyze pointers and mutation using only a func-
tion’s type signature. Ownership has emerged from several
intersecting lines of research on linear logic [16], class-based
alias management [8], and region-based memory manage-
ment [18]. The fundamental law of ownership is that data

https://orcid.org/0000-0001-8639-6541
https://orcid.org/0000-0003-3411-9678
https://doi.org/10.1145/3519939.3523445
https://doi.org/10.1145/3519939.3523445

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Will Crichton, Marco Patrignani, Maneesh Agrawala, and Pat Hanrahan

cannot be simultaneously aliased and mutated. Ownership-
based type systems enforce this law by tracking which enti-
ties own which data, allowing ownership to be transferred
between entities, and flagging ownership violations like mu-
tating immutably-borrowed data.

Today, the most popular ownership-based language is Rust.
Consider the information flows in this Rust implementation
of copy_to:

1 fn copy_to(v: &Vec<i32>, max: usize) -> Vec<i32> {

2 let mut v2 = Vec::new();

3 for (i, x) in v.iter().enumerate() {

4 if i == max { break; }

5 v2.push(*x);

6 }

7 return v2;

8 }

Focus on the two methods push and iter. For a Vec<i32>,
these methods have the following type signatures:
1 fn push(&mut self, value: i32);

2 fn iter<'a>(&'a self) -> Iter<'a, i32>;

To determine that push mutates v2, we leverage mutability
modifiers. All references in Rust are either immutable (i.e. the
type is &T) or mutable (the type is &mut T). Therefore iter

does not mutate v because it takes &self as input (excepting
interior mutability, discussed in Section 4.3), while push may
mutate v2 because it takes &mut self as input.

To determine that x points to v, we leverage lifetimes. All
references in Rust are annotated with a lifetime, either ex-
plicitly (such as 'a) or implicitly. Shared lifetimes indicate
aliasing: because &self in iter has lifetime 'a, and because
the returned Iter structure shares that lifetime, then we can
determine that Iter may contain pointers to self.

Inspired by this insight, we built Flowistry, a system for
analyzing information flow in the safe subset of Rust pro-
grams. Flowistry satisfies our four design criteria: (1) Rust
supports pointers and mutation, (2) Flowistry does not re-
quire any change to the Rust language or to Rust programs,
(3) Flowistry is a purely static analysis, and (4) Flowistry
uses ownership types to analyze function calls without need-
ing their definition. This paper presents a theoretical and
empirical investigation into Flowistry in five parts:
1. We provide a precise description of how Flowistry com-

putes information flow by embedding its definition within
Oxide [38], a formal model of Rust (Section 2).

2. We prove the soundness of our information flow analysis
as a form of noninterference (Section 3).

3. We describe the implementation of Flowistry that bridges
the theory of Oxide to the practicalities of Rust (Section 4).

4. We evaluate the precision of the modular analysis on a
dataset of large Rust codebases, finding that modular flows
are identical to whole-program flows in 94% of cases, and
are on average 7% larger in the remaining cases (Section 5).

5. We demonstrate the utility of Flowistry by using it to
prototype a program slicer and an IFC checker (Section 6).
We conclude by presenting related work (Section 7) and

discussing future directions for Flowistry (Section 8). Due
to space constraints, we omit many formal details, all auxil-
iary lemmas, and all proofs. The interested reader can find
them in the appendix. Flowistry and our applications of it
are publicly available, open-source, MIT-licensed projects at
https://github.com/willcrichton/flowistry.

2 Analysis

Inspired by the dependency calculus of Abadi et al. [1], our
analysis represents information flow as a set of dependen-
cies for each variable in a given function. The analysis is
flow-sensitive, computing a different dependency set at each
program location, and field-sensitive, distinguishing between
dependencies for fields of a data structure.

While the analysis is implemented in and for Rust, our
goal here is to provide a description of it that is both concise
(for clarity of communication) and precise (for amenability
to proof). We therefore base our description on Oxide [38], a
formal model of Rust. At a high level, Oxide provides three
ingredients:
1. A syntax of Rust-like programs with expressions 𝑒 and

types 𝜏 .
2. A type-checker, expressed with the judgment Σ;Δ; Γ ⊢ 𝑒 :

𝜏 ⇒ Γ′ using the contexts Γ for types and lifetimes, Δ for
type variables, and Σ for global functions.

3. An interpreter, expressed by a small-step operational se-
mantics with the judgment Σ ⊢ (𝜎 ; 𝑒) → (𝜎 ′; 𝑒 ′) using 𝜎

for a runtime stack.
We extend this model by assuming that each expression

in a program is automatically labeled with a unique loca-
tion ℓ . Then for a given expression 𝑒 , our analysis computes
the set of dependencies 𝜅 ::= {ℓ}. Because expressions have
effects on persistent memory, we further compute a depen-
dency context Θ ::= {𝑝 ↦→ 𝜅} from memory locations 𝑝 to
dependencies 𝜅. The computation of information flow is in-
tertwined with type-checking, represented as a modified
type-checking judgment (additions highlighted in red):

Σ;Δ; Γ;Θ ⊢ 𝑒ℓ : 𝜏 • 𝜅 ⇒ Γ′;Θ′

This judgment is read as, “with type contexts Σ,Δ, Γ and
dependency context Θ, 𝑒 at location ℓ has type 𝜏 and depen-
dencies 𝜅, producing a new dependency context Θ′.”

Oxide is a large language — describing every feature, judg-
ment, and inference rule would exceed our space constraints.
Instead, in this section we focus on a few key rules that
demonstrate the novel aspects of our system. We first lay
the foundations for dealing with variables and mutation
(Section 2.1), and then describe how we modularly analyze
references (Section 2.2) and function calls (Section 2.3). The
remaining rules can be found in the appendix.

https://github.com/willcrichton/flowistry

Modular Information Flow through Ownership PLDI ’22, June 13–17, 2022, San Diego, CA, USA

2.1 Variables and Mutation

The core of Oxide is an imperative calculus with constants
and variables. The abstract syntax for these features is below:

Variable 𝑥 Number 𝑛

Path 𝑞 ::= 𝜀 | 𝑛.𝑞
Place 𝜋 ::= 𝑥 .𝑞

Constant 𝑐 ::= () | 𝑛 | true | false
Base Type 𝜏b ::= unit | u32 | bool
Sized Type 𝜏si ::= 𝜏b | (𝜏si

1 , . . . , 𝜏
si
𝑛) | . . .

Expression 𝑒 ::= 𝑐 | 𝜋 | let 𝑥 : 𝜏si
𝑎 = 𝑒1; 𝑒2 |

𝜋 := 𝑒 | 𝑒1; 𝑒2 | . . .
Constants are Oxide’s atomic values and also the base-

case for information flow. A constant’s dependency is simply
itself, expressed through the T-u32 rule:

T-u32

Σ;Δ; Γ;Θ ⊢ 𝑛ℓ : u32 • {ℓ} ⇒ Γ;Θ
Variables and mutation are introduced through let-bindings

and assignment expressions, respectively. For example, this
(location-annotated) program mutates a field of a tuple:

let 𝑡 : (u32, u32) = (1ℓ1 , 2ℓ2); 𝑡 .1 := 3ℓ3
Here, 𝑡 is a variable and 𝑡 .1 is a place, or a description of

a specific region in memory. For information flow, the key
idea is that let-bindings introduce a set of places into Θ, and
then assignment expressions change a place’s dependencies
within Θ. In the above example, after binding 𝑡 , then Θ is:

Θ = {𝑡, 𝑡 .0, 𝑡 .1 ↦→ {ℓ1, ℓ2}}
After checking “𝑡 .1 := 3”, then ℓ3 is added to Θ(𝑡) and
Θ(𝑡 .1), but not Θ(𝑡 .0). This is because the values of 𝑡 and
𝑡 .1 have changed, but the value of 𝑡 .0 has not. Formally, the
let-binding rule is:

T-Let
Σ;Δ; Γ;Θ ⊢ 𝑒1 : 𝜏si

1 • 𝜅1 ⇒ Γ1;Θ1
Γ;Δ1 ⊢ 𝜏si

1 ≲ 𝜏si
𝑎 ⇒ Γ′1 Θ′

1 = Θ1 [∀𝜋□ [𝑥] . 𝜋 ↦→ 𝜅1]
Σ;Δ; gc-loans(Γ′1 , 𝑥 : 𝜏si

𝑎);Θ′
1 ⊢ 𝑒2 : 𝜏si

2 • 𝜅2 ⇒ Γ2, 𝑥 : 𝜏sd;Θ2

Σ;Δ; Γ;Θ ⊢ let 𝑥 : 𝜏si
𝑎 = 𝑒1; 𝑒2 : 𝜏si

2 • 𝜅2 ⇒ Γ2;Θ2

Again, this rule (and many others) contain aspects of Oxide
that are not essential for understanding information flow
such as the subtyping judgment 𝜏1 ≲ 𝜏2 or the metafunction
gc-loans. For brevity we will not cover these aspects here,
and instead refer the interested reader to Weiss et al. [38]. We
have deemphasized (in grey) the judgments which are not
important to understanding our information flow additions.

The key concept is the formula Θ1 [∀𝜋□ [𝑥] . 𝜋 ↦→ 𝜅1].
This introduces two shorthands: first, 𝜋□ [𝑥] means “a place
𝜋 with root variable 𝑥 in a context 𝜋□”, used to decompose a
place. In T-Let, the update to Θ1 happens for all places with

a root variable 𝑥 . Second, Θ1 [𝜋 ↦→ 𝜅1] means “set 𝜋 to 𝜅1 in
Θ1”. So this rule specifies that when checking 𝑒2, all places
within 𝑥 are initialized to the dependencies 𝜅1 of 𝑒1.

Next, the assignment expression rule is defined as updat-
ing all the conflicts of a place 𝜋 :

T-Assign
Σ;Δ; Γ;Θ ⊢ 𝑒 : 𝜏si • 𝜅 ⇒ Γ1;Θ1

Γ1 (𝜋) = 𝜏sx (𝜏sx = 𝜏sd ∨ Δ; Γ1 ⊢uniq 𝜋 ⇒ { uniq𝜋})
Δ; Γ1 ⊢ 𝜏si ≲ 𝜏sx ⇒ Γ′

Θ2 = Θ1 [update-conflicts (Θ1, 𝜋, 𝜅)]
Σ;Δ; Γ;Θ ⊢ 𝜋 := 𝑒 : unit • ∅ ⇒ Γ′[𝜋 ↦→ 𝜏si] ▷ 𝜋 ;Θ2

If you conceptualize a type as a tree and a path as a node
in that tree, then a node’s conflicts are its ancestors and
descendants (but not siblings). Semantically, conflicts are the
set of places whose value change if a given place is mutated.
Recall from the previous example that 𝑡 .1 conflicts with 𝑡

and 𝑡 .1, but not 𝑡 .0. Formally, we say two places are disjoint
(#) or conflict (⊓) when:

𝑥1.𝑞1 # 𝑥2.𝑞2
def= 𝑥1 ≠ 𝑥2 ∨ ((𝑞1 is not a prefix of 𝑞2) ∧

(𝑞2 is not a prefix of 𝑞1))

𝜋1 ⊓𝜋2
def= ¬(𝜋1 # 𝜋2)

Then to update a place’s conflicts in Θ, we define the meta-
function update-conflicts to add 𝜅 to all conflicting places 𝑝 ′.
(Note that this rule is actually defined over place expressions
𝑝 , which are explained in the next subsection.)

update-conflicts (Θ, 𝑝, 𝜅) def=
∀𝑝 ′ ↦→ 𝜅𝑝′ ∈ Θcfl . 𝑝

′ ↦→ 𝜅𝑝′ ∪ 𝜅

where Θcfl = {𝑝 ′ ↦→ 𝜅𝑝′ ∈ Θ | 𝑝 ⊓𝑝 ′}

Finally, the rule for reading places is simply to look up the
place’s dependencies in Θ:

T-Move
Δ; Γ ⊢uniq 𝜋 ⇒ { uniq𝜋} Γ(𝜋) = 𝜏si noncopyableΣ 𝜏

si

Σ;Δ; Γ;Θ ⊢ 𝜋 : 𝜏si • Θ(𝜋) ⇒ Γ [𝜋 ↦→ 𝜏si†];Θ

2.2 References

Beyond concrete places in memory, Oxide also contains ref-
erences that point to places. As in Rust, these references
have both a lifetime (called a “provenance”) and a mutability
qualifier (called an “ownership qualifier”). Their syntax is:

Concrete Provenance 𝑟 Abstract Provenance 𝜚

Place Expression 𝑝 ::= 𝑥 | ∗𝑝 | 𝑝.𝑛
Provenance 𝜌 ::= 𝜚 | 𝑟

OwnershipQual. 𝜔 ::= shrd | uniq
Sized Type 𝜏si ::= . . . | &𝜌 𝜔 𝜏xi

Expression 𝑒 ::= . . . | &𝑟 𝜔 𝑝 | 𝑝 := 𝑒 | letprov⟨𝑟 ⟩ 𝑒

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Will Crichton, Marco Patrignani, Maneesh Agrawala, and Pat Hanrahan

Provenances are created via a letprov expression, and
references are created via a borrow expression &𝑟 𝜔 𝑝 that
has an initial concrete provenance 𝑟 (abstract provenances
are just used for types of function parameters). References
are used in conjunction with place expressions 𝑝 that are
places whose paths contain dereferences. For example, this
program creates, reborrows, and mutates a reference:

letprov⟨𝑟1, 𝑟2, 𝑟3, 𝑟4⟩
let 𝑥 : (u32, u32) = (0, 0);
let 𝑦 : &𝑟2 uniq (u32, u32) = &𝑟1 uniq𝑥 ;
let 𝑧 : &𝑟4 uniq u32 = &𝑟3 uniq (∗𝑦).1;
∗𝑧 := 1ℓ

Consider the information flow induced by ∗𝑧 := 1ℓ . We need
to compute all places that 𝑧 could point-to, in this case 𝑥 .1,
so ℓ can be added to the conflicts of 𝑥 .1. Essentially, we must
perform a pointer analysis [33].

The key idea is that Oxide already does a pointer analysis!
Performing one is an essential task in ensuring ownership-
safety. All we have to do is extract the relevant information
with Oxide’s existing judgments. This is represented by the
information flow extension to the reference-mutation rule:

T-AssignDeref
Σ;Δ; Γ;Θ ⊢ 𝑒 : 𝜏si

𝑛 • 𝜅 ⇒ Γ1;Θ1 Δ; Γ1 ⊢uniq 𝑝 : 𝜏si
𝑜

Δ; Γ1 ⊢uniq 𝑝 ⇒ {𝑙} Δ; Γ1 ⊢ 𝜏si
𝑛 ≲ 𝜏si

𝑜 ⇒ Γ′

Θ2 = Θ1 [∀ 𝜔𝑝 ′ ∈ {𝑙} . update-conflicts (Θ1, 𝑝
′, 𝜅)]

Σ;Δ; Γ;Θ ⊢ 𝑝 := 𝑒 : unit • ∅ ⇒ Γ′ ▷ 𝑝;Θ2

Here, the important concept is Oxide’s ownership safety
judgment: Δ; Γ ⊢𝜔 𝑝 ⇒ {𝑙}, read as “in the contexts Δ and Γ,
𝑝 can be used𝜔-ly and points to a loan in {𝑙}.” A loan 𝑙 ::= 𝜔𝑝

is a place expression with an ownership-qualifier. In Oxide,
this judgment is used to ensure that a place is used safely at a
given level of mutability. For instance, in the example at the
top of this column, if ∗𝑧 := 1 was replaced with 𝑥 .1 := 1, then
this would violate ownership-safety because 𝑥 is already
borrowed by 𝑦 and 𝑧.

In the example as written, the ownership-safety judgment
for ∗𝑧 would compute the loan set:

{𝑙} = { uniq (∗𝑧), uniq (∗𝑦).1, uniq𝑥 .1}

Note that 𝑥 .1 is in the loan set of ∗𝑧. That suggests the loan
set can be used as a pointer analysis. The complete details
of computing the loan set can be found in Weiss et al. [38,
p. 12], but the summary for this example is:
1. Checking the borrow expression “&𝑟1 uniq𝑥” gets the loan

set for 𝑥 , which is just {uniq𝑥}, and so sets Γ(𝑟1) = {uniq𝑥}.
2. Checking the assignment “𝑦 = &𝑟1 uniq𝑥” requires that

&𝑟1 uniq (u32, u32) is a subtype of &𝑟2 uniq (u32, u32), which
requires that 𝑟1 “outlives” 𝑟2, denoted 𝑟1 :> 𝑟2.

3. The constraint 𝑟1 :> 𝑟2 adds Γ(𝑟1) to Γ(𝑟2), so Γ(𝑟2) =

{uniq𝑥}.

4. Checking “&𝑟3 uniq (∗𝑦).1” gets the loan set for (∗𝑦).1,
which is:

{uniq𝑝.1 | uniq𝑝 ∈ Γ(𝑟2)}∪{uniq (∗𝑦).1} = {uniq𝑥 .1, uniq (∗𝑦).1}
That is, the loans for 𝑟2 are looked up in Γ (to get {𝑥}),
and then the additional projection _.1 is added on-top of
each loan (to get {𝑥 .1}).

5. Then Γ(𝑟4) = Γ(𝑟3) because 𝑟3 :> 𝑟4.
6. Finally, the loan set for ∗𝑧 is:

Γ(𝑟4) ∪ {uniq (∗𝑧)} = {uniq𝑥 .1, uniq (∗𝑦).1, uniq (∗𝑧)}
Applying this concept to the T-AssignDeref rule, we

compute information flow for reference-mutation as: when
mutating 𝑝 with loans {𝑙}, add 𝜅𝑒 to all the conflicts for every
loan uniq𝑝 ′ ∈ {𝑙}.

2.3 Function Calls

Finally, we examine how to modularly compute information
flow through function calls, starting with syntax:

Type Var 𝛼 Frame Var 𝜑

Expression 𝑒 ::= . . . | 𝑓 ⟨Φ, 𝜌, 𝜏⟩(𝜋)
Global Entry 𝜀 ::= fn 𝑓 ⟨𝜑, 𝜚, 𝛼, 𝜚1 : 𝜚2⟩(𝑥 : 𝜏si

𝑎) → 𝜏si
𝑟 { 𝑒 }

Global Env. Σ ::= • | Σ, 𝜀
Oxide functions are parameterized by frame variables 𝜑

(for closures), abstract provenances 𝜚 (for provenance poly-
morphism), and type variables 𝛼 (for type polymorphism).
Unlike Oxide, we restrict to functions with one argument
for simplicity in the formalism. Calling a function 𝑓 requires
an argument 𝜋 and any type-level parameters Φ, 𝜌 and 𝜏 .

The key question is: without inspecting its definition, what
is the most precise assumption we can make about a func-
tion’s information flow while still being sound? By “precise”
we mean “if the analysis says there is a flow, then the flow
actually exists”, and by “sound” we mean “if a flow actually
exists, then the analysis says that flow exists.” For example
consider this program:

fn f⟨𝜚1, 𝜚2⟩(𝑥 : (&𝜚1 uniq u32,&𝜚2 shrd u32)){ ??? }
let 𝑥 : u32 = 1ℓ1 ; let 𝑦 : u32 = 2ℓ2 ;
letprov⟨𝑟1, 𝑟2⟩ let 𝑡 : (&𝑟1 uniq u32,&𝑟2 shrd u32)

= (&𝑟1 uniq𝑥,&𝑟2 shrd𝑦);
f⟨𝑟1, 𝑟2⟩(𝑡)

First, what can f (𝑡) mutate? Any data behind a shared ref-
erence is immutable, so only ∗𝑡 .0 could possibly be mutated,
not ∗𝑡 .1. More generally, the argument’s transitive mutable
references must be assumed to be mutated.

Second, what are the inputs to the mutation of ∗𝑡 .0? This
could theoretically be any possible value in the input, so both
∗𝑡 .0 and ∗𝑡 .1. More generally, every transitively readable place
from the argument must be assumed to be to be an input to
the mutation. So in this example, a modular analysis of the

Modular Information Flow through Ownership PLDI ’22, June 13–17, 2022, San Diego, CA, USA

information flow from calling cp would add {ℓ1, ℓ2} to Θ(𝑥)
but not Θ(𝑦).

To formalize these concepts, we first need to describe
the transitive references of a place. The 𝜔-refs(𝑝, 𝜏) meta-
function computes a place expression for every reference
accessible from 𝑝 . If 𝜔 = uniq then this just includes unique
references, otherwise it includes unique and shared ones.

𝜔-refs(𝑝, 𝜏b) = ∅
𝜔-refs(𝑝, (𝜏si

1 , . . . , 𝜏
si
𝑛)) =

⋃
𝑖 𝜔-refs(𝑝.𝑖, 𝜏si

𝑖
)

𝜔-refs(𝑝,&𝜌 𝜔 ′ 𝜏xi) =
{
{∗𝑝} ∪ 𝜔-refs(∗𝑝, 𝜏xi) if 𝜔 ≲ 𝜔 ′

∅ otherwise

Here, 𝜔 ≲ 𝜔 ′ means “a loan at 𝜔 can be used as a loan
at 𝜔 ′”, defined as uniq shrd and 𝜔 ≲ 𝜔 ′ otherwise. Then
𝜔-loans(𝑝, 𝜏,Δ, Γ) can be defined as the set of concrete places
accessible from those transitive references:

𝜔-loans(𝑝, 𝜏,Δ, Γ) def=⋃
𝑝1∈𝜔-refs(𝑝,𝜏)

{𝑝2 | 𝜔𝑝2 ∈ {𝑙}} where Δ; Γ ⊢𝜔 𝑝1 ⇒ {𝑙}

Finally, the function application rule can be revised to
include information flow as follows:

T-App
Σ;Δ; Γ ⊢ Φ Δ; Γ ⊢ 𝜌 Σ;Δ; Γ ⊢ 𝜏si

Σ(𝑓) = fn 𝑓 ⟨𝜑, 𝜚, 𝛼, 𝜚1 : 𝜚2⟩(𝑥 : 𝜏si
𝑎) → 𝜏si

𝑟 { 𝑒 }
Σ;Δ; Γ;Θ ⊢ 𝜋 : 𝜏si

𝑎 [Φ/𝜑] [𝜌/𝜚] [𝜏 si/𝛼] • 𝜅 ⇒ Γ1;Θ
Δ; Γ1 ⊢ 𝜚2 [𝜌/𝜚] :> 𝜚1 [𝜌/𝜚] ⇒ Γ2

𝜅arg = 𝜅 ∪⋃
𝑝∈shrd-loans(𝜋,𝜏 si

𝑎 ,Δ,Γ2) Θ(𝑝)

Θ′ = Θ[∀𝑝 ∈ uniq-loans(𝜋, 𝜏si
𝑎 ,Δ, Γ2) .

update-conflicts
(
Θ, 𝑝, 𝜅arg

)
]

Σ;Δ; Γ;Θ ⊢ 𝑓 ⟨Φ, 𝜌, 𝜏si⟩(𝜋) : 𝜏si
𝑟 [Φ/𝜑] [𝜌/𝜚] [𝜏 si/𝛼] • 𝜅arg ⇒ Γ2;Θ′

The collective dependencies of the input 𝜋 are collected
into 𝜅arg, and then every unique reference is updated with
𝜅arg. Additionally, the function’s return value is assumed to
be influenced by any input, and so has dependencies 𝜅arg.

Note that this rule does not depend on the body 𝑒 of the
function 𝑓 , only its type signature in Σ. This is the key to
the modular approximation. Additionally, it means that this
analysis can trivially handle higher-order functions. If 𝑓

were a parameter to the function being analyzed, then no
control-flow analysis is needed to guess its definition.

3 Soundness

To characterize the correctness of our analysis, we seek
to prove its soundness: if a true information flow exists in a
program, then the analysis computes that flow. The standard
soundness theorem for information flow systems is nonin-
terference [17]. At a high level, noninterference states that
for a given program and its dependencies, and for any two

execution contexts, if the dependencies are equal between
contexts, then the program will execute with the same ob-
servable behavior in both cases. For our analysis, we focus
just on values produced by the program, instead of other
behaviors like termination or timing.

To formally define noninterference within Oxide, we first
need to explore Oxide’s operational semantics. Oxide pro-
grams are executed in the context of a stack of frames that
map variables to values:

Stack 𝜎 ::= • | 𝜎 ♮ 𝜍

Stack Frame 𝜍 ::= • | 𝜍, 𝑥 ↦→ 𝑣

For example, in the empty stack •, the expression “let 𝑥 :
u32 = 1; 𝑥 := 2” would first add 𝑥 ↦→ 1 to the stack. Then
executing 𝑥 := 2 would update 𝜎 (𝑥) = 2. More generally,
we use the shorthand 𝜎 (𝑝) to mean “reduce 𝑝 to a concrete
location 𝜋 , then look up the value of 𝜋 in 𝜎 .”

The key ingredient for noninterference is the equivalence
of dependencies between stacks. That is, for two stacks 𝜎1
and 𝜎2 and a set of dependencies 𝜅 in a context Θ, we say
those stacks are the same up to 𝜅 if all 𝑝 with Θ(𝑝) ⊆ 𝜅 are
the same between stacks. Formally, the dependencies of 𝜅
and equivalence of heaps are defined as:

deps(Θ, 𝜅) def= {𝑝 | 𝑝 ↦→ 𝜅𝑝 ∈ Θ ∧ 𝜅𝑝 ⊆ 𝜅}

𝜎1 ∼𝑃 𝜎2
def= ∀𝑝 ∈ 𝑃 . 𝜎1 (𝑝) = 𝜎2 (𝑝)

𝜎1 ∼Θ
𝜅 𝜎2

def= 𝜎1 ∼deps(Θ,𝜅) 𝜎2

Then we define noninterference as follows:

Theorem 3.1 (Noninterference). Let 𝑒 such that:

Σ; •; Γ;Θ ⊢ 𝑒 : 𝜏 • 𝜅 ⇒ Γ′;Θ′

For 𝑖 ∈ {1, 2}, let 𝜎𝑖 such that:

Σ ⊢ 𝜎𝑖 : Γ and Σ ⊢ (𝜎𝑖 ; 𝑒)
∗−→ (𝜎 ′

𝑖 ; 𝑣𝑖)
Then:
(a) 𝜎1 ∼Θ

𝜅 𝜎2 =⇒ 𝑣1 = 𝑣2
(b) ∀𝑝 ↦→ 𝜅𝑝 ∈ Θ′ . 𝜎1 ∼Θ

𝜅𝑝
𝜎2 =⇒ 𝜎 ′

1 (𝑝) = 𝜎 ′
2 (𝑝)

This theorem states that given a well-typed expression
𝑒 and corresponding stacks 𝜎𝑖 , then its output 𝑣𝑖 should be
equal if the expression’s dependencies 𝜅 are initially equal.
Moreover, for any place expression 𝑝 , if its dependencies in
the output context Θ′ are initially equal then the stack value
will be the same after execution.

Note that the context Δ is required to be empty because an
expression 𝑒 can only evaluate if it does not contain abstract
type or provenance variables. The judgment Σ ⊢ 𝜎𝑖 : Γ
means “the stack 𝜎𝑖 is well-typed under Σ and Γ”. That is, for
all places 𝜋 in Γ, then 𝜋 ∈ 𝜎 and 𝜎 (𝜋) has type Γ(𝜋).

The proof of Theorem 3.1, found in the appendix, guar-
antees that we can soundly compute information flow for
Oxide programs.

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Will Crichton, Marco Patrignani, Maneesh Agrawala, and Pat Hanrahan

1 fn get_count(

2 h: &mut HashMap<String, u32>,

3 k: String

4) -> u32 {

5 if !h.contains_key(&k) {

6 h.insert(k, 0); 0

7 } else {

8 *h.get(&k).unwrap()

9 }

10 }

start

true false

_9: Θ(_8) ∪ {b5[0]}

_8: Θ(_7) ∪ {b4[0]}

_7: Θ(_5) ∪ Θ(_6) ∪ {b3[2]}
_6: Θ(k) ∪ {b3[1]}
_5: Θ(*h) ∪ {b3[0]}

*h: Θ(*h) ∪ Θ(k) ∪ Θ(_4) ∪ {b1[1], b2[0]}

_4: Θ(_3) ∪ {b1[0]}

_3: Θ(_1) ∪ Θ(_2) ∪ {b0[3]}
_2: Θ(k) ∪ {b0[1]}
_1: Θ(*h) ∪ {b0[0]} _1 = &’1 (*h)

_2 = &’2 k
_3 = contains_key(_1, _2)

 b0

_4 = not _3
switch _4

b1

insert(h, k, 0)
b2

_5 = &’3 (*h)
_6 = &’4 k
_7 = get(_5, _6)

b3

_8 = unwrap(_7)
b4

_9 = (*_8)
return _9

b5

return 0
b6

Figure 1. Example of how Flowistry computes information flow. On the left is a Rust function get_count that finds a value
in a hash map for a given key, and inserts 0 if none exists. On the right get_count is lowered into Rust’s MIR control-flow
graph, annotated with information flow. Each rectangle is a basic block, named at the top. Arrows indicate control flow (panics
omitted). Beside each instruction is the result of the information flow analysis, which maps place expressions to locations in
the CFG (akin to Θ in Section 2). For example, the insert function call adds dependencies to *h because it is assumed to be
mutated, since it is a mutable reference. Additionally, the switch instructions and _4 variable are added as dependencies to h
because the call to insert is control-dependent on the switch.

4 Implementation

Our formal model provides a sound theoretical basis for
analyzing information flow in Oxide. However, Rust is a
more complex language than Oxide, and the Rust compiler
uses many intermediate representations beyond its surface
syntax. Therefore in this section, we describe the key details
of how our system, Flowistry, bridges theory to practice.
Specifically:
1. Rust computes lifetime-related information on a control-

flow graph (CFG) program representation, not the high-
level AST. So we translate our analysis to work for CFGs
(Section 4.1).

2. Rust does not compute the loan set for lifetimes directly
like in Oxide. So we must reconstruct the loan sets given
the information exported by Rust (Section 4.2).

3. Rust contains escape hatches for ownership-unsafe code
that cannot be analyzed using our analysis. So we describe
the situations in which our analysis is unsound for Rust
programs (Section 4.3).

4.1 Analyzing Control-Flow Graphs

The Rust compiler lowers programs into a “mid-level repre-
sentation”, or MIR, that represents programs as a control-flow
graph. Essentially, expressions are flattened into sequences

of instructions (basic blocks) which terminate in instructions
that can jump to other blocks, like a branch or function call.
Figure 1 shows an example CFG and its information flow.

To implement the modular information flow analysis for
MIR, we reused standard static analysis techniques for CFGs,
i.e., a flow-sensitive, forward dataflow analysis pass where:
• At each instruction, we maintain a mapping from place

expressions to a set of locations in the CFG on which the
place is dependent, comparable to Θ in Section 2.

• A transfer function updates Θ for each instruction, e.g.
𝑝 := 𝑒 follows the same rules as in T-AssignDeref by
adding the dependencies of 𝑒 to all conflicts of aliases of 𝑝 .

• The input Θin to a basic block is the join of each of the
output Θout

𝑖 for each incoming edge, i.e. Θin =
∨

𝑖 Θ
out
𝑖 .

The join operation is key-wise set union, or more precisely:

Θ1 ∨ Θ2
def= {𝑥 ↦→ Θ1 (𝑥) ∪ Θ2 (𝑥) | 𝑥 ∈ Θ1 ∨ 𝑥 ∈ Θ2}

• We iterate this analysis to a fixpoint, which we are guar-
anteed to reach because ⟨Θ,∨⟩ forms a join-semilattice.
To handle indirect information flows via control flow, such

as the dependence of h on contains_key in Figure 1, we
compute the control-dependence between instructions. We
define control-dependence following Ferrante et al. [15]: an
instruction 𝑌 is control-dependent on 𝑋 if there exists a

Modular Information Flow through Ownership PLDI ’22, June 13–17, 2022, San Diego, CA, USA

directed path 𝑃 from 𝑋 to 𝑌 such that any 𝑍 in 𝑃 is post-
dominated by 𝑌 , and 𝑋 is not post-dominated by 𝑌 . An
instruction 𝑋 is post-dominated by 𝑌 if 𝑌 is on every path
from 𝑋 to a return node. We compute control-dependencies
by generating the post-dominator tree and frontier of the
CFG using the algorithms of Cooper et al. [9] and Cytron
et al. [11], respectively.

Besides a return, the only other control-flow path out of
a function in Rust is a panic. For example, each function
call in Figure 1 actually has an implicit edge to a panic node
(not depicted). Unlike exceptions in other languages, panics
are designed to indicate unrecoverable failure. Therefore we
exclude panics from our control-dependence analysis.

4.2 Computing Loan Sets from Lifetimes

To verify ownership-safety (perform “borrow-checking”),
the Rust compiler does not explicitly build the loan sets of
lifetimes (or provenances in Oxide terminology). The bor-
row checking algorithm performs a sort of flow-sensitive
dataflow analysis that determines the range of code during
which a lifetime is valid, and then checks for conflicts e.g. in
overlapping lifetimes (see the non-lexical lifetimes RFC [24]).

However, Rust’s borrow checker relies on the same funda-
mental language feature as Oxide to verify ownership-safety:
outlives-constraints. For a given Rust function, Rust can out-
put the set of outlives-constraints between all lifetimes in the
function. These lifetimes are generated in the same manner
as in Oxide, such as from inferred subtyping requirements
or user-provided outlives-constraints. Then given these con-
straints, we compute loan sets via a process similar to the
ownership-safety judgment described in Section 2.2. In short,
for all instances of borrow expressions &𝑟 𝜔 𝑝 in the MIR
program, we initialize Γ(𝑟) = {𝑝}. Then we propagate loans
via Γ(𝑟) = ⋃

𝑟 ′:>𝑟 Γ(𝑟 ′) until Γ reaches a fixpoint.

4.3 Handling Ownership-Unsafe Code

Rust has a concept of raw pointers whose behavior is com-
parable to pointers in C. For a type T, an immutable ref-
erence has type &T, while an immutable raw pointer has
type *const T. Raw pointers are not subject to ownership
restrictions, and they can only be used in blocks of code de-
marcated as unsafe. They are primarily used to interoperate
with other languages like C, and to implement primitives
that cannot be proved as ownership-safe via Rust’s rules.

Our pointer and mutation analysis fundamentally relies
on ownership-safety for soundness. We do not try to ana-
lyze information flowing directly through unsafe code, as it
would be subject to the same difficulties of C++ in Section 1.
While this limits the applicability of our analysis, empirical
studies have shown that most Rust code does not (directly)
use unsafe blocks [2, 14]. We further discuss the impact and
potential mitigations of this limitation in Section 8.

5 Evaluation

Section 3 established that our analysis is sound. The next
question is whether it is precise: how many spurious flows
are included by our analysis? We evaluate two directions:
1. What if the analysis had more information? If we could

analyze the definitions of called functions, how much
more precise are whole-program flows vs. modular flows?

2. What if the analysis had less information? If Rust’s type
system was more like C++, i.e. lacking ownership, then
how much less precise do the modular flows become?

To answer these questions, we created three modifications
to Flowistry:
• Whole-program: the analysis recursively analyzes infor-

mation flow within the definitions of called functions. For
example, if calling a function f(&mut x, y) where f does
not actually modify x, then the Whole-program analysis
will not register a flow from y to x.

• Mut-blind: the analysis does not distinguish between
mutable and immutable references. For example, if calling
a function f(&x), then the analysis assumes that x can be
modified.

• Ref-blind: the analysis does not use lifetimes to reason
about references, and rather assumes all references of the
same type can alias. For example, if a function takes as
input f(x: &mut i32, y: &mut i32) then x and y are as-
sumed to be aliases.
The Whole-program modification represents the most

precise information flow analysis we can feasibly implement.
The Mut-blind and Ref-blind modifications represent an
ablation of the precision provided by ownership types. Each
modification can be combined with the others, representing
23 = 8 possible conditions for evaluation.

To better understand Whole-program, say we are ana-
lyzing the information flow for an expression f(&mut x, y)

where f is defined as f(a, b) { (*a).1 = b; }. After ana-
lyzing the implementation of f, we translate flows to param-
eters of f into flows on arguments of the call to f. So the
flow b → (*a).1 is translated into y → x.1. Additionally,
if the definition of f is not available, then we fall back to the
modular analysis. Importantly, due to the architecture of the
Rust compiler, the only available definitions are those within
the package being analyzed. Therefore even with Whole-
program, we cannot recurse into e.g. the standard library.

With these three modifications, we compare the number of
flows computed from a dataset of Rust projects (Section 5.1)
to quantitatively (Section 5.2) and qualitatively (Section 5.3)
evaluate the precision of our analysis.

5.1 Dataset

To empirically compare these modifications, we curated a
dataset of Rust packages (or “crates”) to analyze. We had two
selection criteria:

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Will Crichton, Marco Patrignani, Maneesh Agrawala, and Pat Hanrahan

Table 1. Dataset of crates used to evaluate information flow precision, ordered in increasing number of variables analyzed. Each
project often contains many crates, so a sub-crate is specified where applicable, and the root crate is analyzed otherwise. Metrics
displayed are LOC (lines of code), number of variables, number of functions, and the average number of MIR instructions per
function (size of CFG).

Project Crate Purpose LOC # Vars # Funcs Avg. Instrs/Func

rayon Data parallelism library 15,524 10,607 1,079 16.6
Rocket core/lib Web backend framework 10,688 12,040 741 25.5
rustls rustls TLS implementation 16,866 23,407 868 42.4
sccache Distributed build cache 23,202 23,987 643 62.1
nalgebra Numerics library 31,951 35,886 1,785 26.7
image Image processing library 20,722 39,077 1,096 56.8
hyper HTTP server 15,082 44,900 790 82.9
rg3d 3D game engine 54,426 59,590 3,448 25.7
rav1e Video encoder 50,294 76,749 931 115.4
RustPython vm Python interpreter 47,927 97,637 3,315 51.0

Total: 286,682 435,979 14,696

1. To mitigate the single-crate limitation of Whole-program,
we preferred large crates so as to see a greater impact from
the Whole-program modification. We only considered
crates with over 10,000 lines of code as measured by the
cloc utility [12].

2. To control for code styles specific to individual applica-
tions, we wanted crates from a wide range of domains.

After a manual review of large crates in the Rust ecosys-
tem, we selected 10 crates, shown in Table 1. We built each
crate with as many feature flags enabled as would work on
our Ubuntu 16.04 machine. Details like the specific flags and
commit hashes can be found in the appendix.

For each crate, we ran the information flow analysis on
every function in the crate, repeated under each of the 8
conditions. Within a function, for each local variable 𝑥 , we
compute the size of Θ(𝑥) at the exit of the CFG — in terms of
program slicing, we compute the size of the variable’s back-
ward slice at the function’s return instructions. The resulting
dataset then has four independent variables (crate, function,
condition, variable name) and one dependent variable (size
of dependency set) for a total of 3,487,832 data points.

Our main goal in this evaluation is to analyze precision,
not performance. Our baseline implementation is reasonably
optimized — the median per-function execution time was
370.24𝜇s. But Whole-program is designed to be as precise as
possible, so its naive recursion is sometimes extremely slow.
For example, when analyzing the GameEngine::render func-
tion of the rg3d crate (with thousands of functions in its call
graph), the modular analysis takes 0.13s while the recursive
analysis takes 23.18s, a 178× slowdown. Future work could
compare our modular analysis to whole-program analyses
across the precision/performance spectrum, such as in the
extensive literature on context-sensitivity [33].

0 10−2 100 102
0

1 · 105

2 · 105

3 · 105

4 · 105

Co
un

t

y-linear

0 10−2 100 102

102

104

106

Co
un

t,
lo

g
sc

al
e

y-log

% di�erence in dependency set size, log scale (with zero)

Figure 2. Distribution in differences of dependency set size
between Whole-program and Modular analyses. The x-
axis is a log-scale with 0 added for comparison. Most sets
are the same, so 0 dominates (left). A log-scale (right) shows
the tail more clearly.

5.2 Quantitative Results

We observed no meaningful patterns from the interaction
of modifications — for example, in a linear regression of
the interaction of Mut-blind and Ref-blind against the
size of the dependency set, each condition is individually
statistically significant (𝑝 < 0.001) while their interaction is
not (𝑝 = 0.337). So to simplify our presentation, we focus only
on four conditions: three for each modification individually
active with the rest disabled, and one for all modifications
disabled, referred to as Modular.

5.2.1 Whole-program. For Whole-program, we com-
pare against Modular to answer our first evaluation ques-
tion: how much more precise is a whole-program analysis
than a modular one? To quantify precision, we compare the
percentage increase in size of dependency sets for a given
variable between two conditions. For instance, if Whole-
program computes |Θ(𝑥) | = 2 and Modular computes

https://github.com/rayon-rs/rayon
https://github.com/SergioBenitez/Rocket
https://github.com/ctz/rustls
https://github.com/mozilla/sccache
https://github.com/dimforge/nalgebra
https://github.com/image-rs/image
https://github.com/hyperium/hyper
https://github.com/mrDIMAS/rg3d
https://github.com/xiph/rav1e
https://github.com/RustPython/RustPython

Modular Information Flow through Ownership PLDI ’22, June 13–17, 2022, San Diego, CA, USA

10−2 100 102
0

5,000

10,000

Co
un

t

Modular - Whole-program

10−2 100 102

% increase in dependency set size, log scale

Mut-blind - Modular

10−2 100 102

Ref-blind - Modular

Figure 3. Distribution in differences between Modular and
each alternative condition, with zeros excluded to highlight
the shape of each distribution. Mut-blind and Ref-blind
both reduce the precision more often and more severely than
Modular does vs. Whole-program.

|Θ(𝑥) | = 5 for some 𝑥 , then the difference is (5 − 2)/2 =

1.5 = 150%.
Figure 2 shows a histogram of the differences between

Whole-program and Modular for all variables. In 94% of
all cases, the Whole-program and Modular conditions
produce the same result and hence have a difference of 0.
In the remaining 6% of cases with a non-zero difference,
visually enhanced with a log-scale in Figure 2-right, the
metric follows a right-tailed log-normal distribution. We can
summarize the log-normal by computing its median, which
is 7%. This means that within the 6% of non-zero cases, the
median difference is an increase in size by 7%. Thus, the
modular approximation does not significantly increase the
size of dependency sets in the vast majority of cases.

5.2.2 Mut-blind andRef-blind. Next, we address our
second evaluation question: how much less precise is an anal-
ysis with weaker assumptions about the program than the
Modular analysis? For this question, we compare the size
of dependency sets between the Mut-blind and Ref-blind
conditions versus Modular. Figure 3 shows the correspond-
ing histograms of differences, with the Whole-program vs.
Modular histogram included for comparison.

First, the Mut-blind and Ref-blind modifications reduce
the precision of the analysis more often and with a greater
magnitude than Modular does vs. Whole-program. 39%
of Mut-blind cases and 17% of Ref-blind cases have a non-
zero difference. Of those cases, the median difference in size
is 50% for Mut-blind and 56% for Ref-blind.

Therefore, the information from ownership types is valu-
able in increasing the precision of our information flow anal-
ysis. Dependency sets are often larger without access to
information about mutability or lifetimes.

5.3 Qualitative Results

The statistics convey a sense of how often each condition
influences precision. But it is equally valuable to understand

the kind of code that leads to such differences. For each
condition, we manually inspected a sample of cases with
non-zero differences vs. Modular.

5.3.1 Modularity. One common source of imprecision in
modular flows is when functions take a mutable reference
as input for the purposes of passing the mutable permission
off to an element of the input.
1 fn crop<I: GenericImageView>(

2 image: &mut I, x: u32, y: u32,

3 width: u32, height: u32

4) -> SubImage<&mut I> {

5 let (x, y, width, height) =

6 crop_dimms(image, x, y, width, height);

7 SubImage::new(image, x, y, width, height)

8 }

For example, the function crop from the image crate re-
turns a mutable view on an image. No data is mutated,
only the mutable permission is passed from whole image to
sub-image. However, a modular analysis on the image input
would assume that image is mutated by crop.

Another common case is when a value only depends on
a subset of a function’s inputs. The modular approximation
assumes all inputs are relevant to all possible mutations, but
this is naturally not always the case.
1 fn solve_lower_triangular_with_diag_mut<R2,C2,S2>(

2 &self, b: &mut Matrix<N, R2, C2, S2>, diag: N,

3) -> bool {

4 if diag.is_zero() { return false; }

5 // logic mutating b...

6 true

7 }

For example, this function from nalgebra returns a boolean
whose value solely depends on the argument diag. However,
a modular analysis of a call to this function would assume
that self and b is relevant to the return value as well.

5.3.2 Mutability. The reason Mut-blind is less precise
than Modular is quite simple — many functions take im-
mutable references as inputs, and so many more mutations
have to be assumed.
1 fn read_until<R, F>(io: &mut R, func: F)

2 -> io::Result<Vec<u8>>

3 where R: Read, F: Fn(&[u8]) -> bool

4 {

5 let mut buf = vec![0; 8192]; let mut pos = 0;

6 loop {

7 let n = io.read(&mut buf[pos..])?; pos += n;

8 if func(&buf[..pos]) { break; }

9 // ...

10 }

11 }

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Will Crichton, Marco Patrignani, Maneesh Agrawala, and Pat Hanrahan

10−2 100 102
0

2000

4000

hyper

10−2 100 102

image

10−2 100 102

nalgebra

10−2 100 102

rav1e

10−2 100 102

rayon

10−2 100 102
0

2000

4000

rg3d

10−2 100 102

Rocket

10−2 100 102

rustls

10−2 100 102

RustPython

10−2 100 102

sccache

Co
un

t

% increase in dependency set size, log scale

Figure 4. Distribution of non-zero differences between Modular and Mut-blind, broken down by crate.

For instance, this function from hyper repeatedly calls an
input function func with segments of an input buffer. With-
out a control-flow analysis, it is impossible to know what
functions read_untilwill be called with. And so Mut-blind
must always assume that func could mutate buf. However,
Modular can rely on the immutability of shared references
and deduce that func could not mutate buf.

5.3.3 Lifetimes. Without lifetimes, our analysis has to
make more conservative assumptions about objects that
could possibly alias. We observed many cases in the Ref-
blind condition where two references shared different life-
times but the same type, and so had to be classified as aliases.
1 fn link_child_with_parent_component(

2 parent: &mut FbxComponent,

3 child: &mut FbxComponent,

4 child_handle: Handle<FbxComponent>,

5) { match parent {

6 FbxComponent::Model(model) => {

7 model.geoms.push(child_handle),

8 },

9 // ..

10 }}

For example, the link_child_with_parent_component
function in rg3d takes mutable references to a parent and
child. These references are guaranteed not to alias by the
rules of ownership, but a naive pointer analysis must assume
they could, so modifying parent could modify child.

5.4 Threats to Validity

Finally, we address the issue: how meaningful are the results
above? How likely would they generalize to arbitrary code
rather than just our selected dataset? We discuss a few threats
to validity below.

Are the results due to only a few crates? If differences
between techniques only arose in a small number of situa-
tions that happen to be in our dataset, then our technique
would not be as generally applicable. To determine the vari-
ation between crates, we generated a histogram of non-zero
differences for the Modular vs. Mut-blind comparison,
broken down by crate in Figure 4.

As expected, the larger code bases (e.g. rav1e and Rust-
Python) have more non-zero differences than smaller code-
bases — in general the correlation between non-zero dif-
ferences and total number of variables analyzed is strong,
𝑅2 = 0.79. However variation also exists for crates with
roughly the same number of variables like image and hyper.
Mut-blind reduces precision for variables in hyper more
often than image. A qualitative inspection of the respective
codebases suggests this may be because hyper simply makes
greater use of immutable references in its API.

These findings suggest that the impact of ownership types
and the modular approximation likely do vary with code
style, but a broader trend is still observable across all code.

Would Whole-program be more precise with access

to dependencies? A limitation of our whole-program anal-
ysis is our inability to access function definitions outside
the current crate. Without this limitation, it may be that the
Modular analysis would be significantly worse than Whole-
program. So for each variable analyzed by Whole-program,
we additionally computed whether the information flow for
that variable involved a function call across a crate boundary.

Overall 96% of cases reached at least one crate boundary,
suggesting that this limitation does occur quite often in prac-
tice. However, the impact of the limitation is less clear. Of the
96% of cases that hit a crate boundary, 6.6% had a non-zero
difference between Modular and Whole-program. Of the

Modular Information Flow through Ownership PLDI ’22, June 13–17, 2022, San Diego, CA, USA

(a) A program slicer integrated into VSCode. Above, the user selects
a slicing criterion like the variable f. Then the slicer highlights
the criterion in green, and fades out lines that are not part of the
backward slice on f. For example, write_all mutates the file so it
is in the slice, while metadata reads the file so it is not in the slice.
Below, the user can manipulate aspects of a program such as com-
menting out code related to timing. The user computes a forward
slice on start, adds this slice to their selection (in blue), then tells
the IDE to comments out all lines in the selection.

(b)An IFC checker. Above, the ifc_traits library exports a Secure
for users to mark sensitive data, like Password, and insecure oper-
ations like insecure_print. Below, a compiler plugin invoked on
the program checks for information flows from data with a type im-
plementing Secure to insecure operations. Here insecure_print
is conditionally executed based on a read from PASSWORD, so this
flow is flagged.

Figure 5. Two applications of information flow built using Flowistry.

4% that did not hit a crate boundary, 0.6% had a non-zero
difference. One would expect that Whole-program would
be the most precise when the whole program is available (no
boundary), but instead it was much closer to Modular.

Ultimately it is not clear how much more precise Whole-
program would be given access to all a crate’s dependencies,
but it would not necessarily be a significant improvement
over the benchmark presented.

Is ownership actually important for precision? The
finding that Ref-blind only makes a difference in 17% of
cases may seem surprisingly small. For instance, Shapiro
and Horwitz [32] found in a empirical study of slices on
C programs that “using a pointer analysis with an average
points-to set size twice as large as a more precise pointer
analysis led to an increase of about 70% in the size of [slices].”

A limitation of our ablation is that the analyzed programs
were written to satisfy Rust’s ownership safety rules. Dis-
abling lifetimes does not change the structure of the pro-
grams to become more C-like — Rust generally encourages a
code style with fewer aliases to avoid dealing with lifetimes.
A fairer comparison would be to implement an application
idiomatically in both Rust and Rust-but-without-feature-X,
but such an evaluation is not practical. It is therefore likely
that our results understate the true impact of ownership
types on precision given this limitation.

6 Applications

We have demonstrated that ownership can be leveraged to
build an information flow analysis that is static, modular,
sound, and precise. Our hope is that this analysis can serve
as a building block for future static analyses. To bootstrap
this future, we have used Flowistry to implement prototypes
of a program slicer and an IFC checker, shown in Figure 5.

The program slicer in Figure 5a is a VSCode extension
that fades out all lines of code that are not relevant to the
user’s selection, i.e. not part of the modular slice. Rather
than present a slice of the entire program like in prior slicing
tools, we can use Flowistry’s modular analysis to present
lightweight slices of just within a given function. Users can
apply the slicer for comprehension tasks such as reducing
the scope of a bug, or for refactoring tasks such as removing
an aspect of a program like timing or logging.

The IFC checker in Figure 5b is a Rust library and compiler
plugin. It provides the user a library with the traits Secure
and Insecure to indicate the relative security of data types
and operations. Then the compiler plugin uses Flowistry to
determine whether information flows from Insecure vari-
ables to Secure variables. Users can apply the IFC checker
to catch sensitive data leaks in an application. This proto-
type is purely intraprocedural, but future work could build
an interprocedural analysis by using Flowistry’s output as
procedure summaries in a larger information flow graph.

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Will Crichton, Marco Patrignani, Maneesh Agrawala, and Pat Hanrahan

7 Related Work

Our work draws on three core concepts: information flow,
modular static analysis, and ownership types.

Information flow. Information flow has been histori-
cally studied in the context of security, such as ensuring
low-security users of a program cannot infer anything about
its high-security internals. Security-focused information flow
analyses have been developed for Java [25], Javascript [4],
OCaml [27], Haskell [34], and many other languages.

Each analysis satisfies some, but not all, of our require-
ments from Section 1. For instance, the JFlow [25] and Flow-
Caml [27] languages required adding features to the base
language, violating our second requirement. Some meth-
ods like that of Austin and Flanagan [4] for Javascript rely
on dynamic analysis, violating our third requirement. And
Haskell only supports effects like mutation through monads,
violating our first requirement.

Nonetheless, we draw significant inspiration from mech-
anisms in prior work. Our analysis resembles the slicing
calculus of Abadi et al. [1]. The use of lifetimes for modular
analysis of functions is comparable to security annotations
in Flow-Caml [27]. The CFG analysis draws on techniques
used in program slicers, such as the LLVM dg slicer [7].

Modular static analysis. The key technique to making
static analysis modular (or “compositional” or “separate”) is
symbolically summarizing a function’s behavior, so that the
summary can be used without the function’s implementa-
tion. Starting from Rountev et al. [29] and Cousot and Cousot
[10], one approach has been to design a system of “procedure
summaries” understood by the static analyzer and distinct
from the language being analyzed. This approach has been
widely applied for static analysis of null pointer derefer-
ences [40], pointer aliases [13], data dependencies [35], and
other properties.

Another approach, like ours, is to leverage the language’s
type system to summarize behavior. Tang and Jouvelot [36]
showed that an effect system could be used for a modular
control-flow analysis. Later work in Haskell used its powerful
type system and monadic effects to embed many forms of
information flow control into the language [6, 23, 30, 34].

Ownership types. Rust and Oxide’s conceptions of own-
ership derive from Clarke et al. [8] and Grossman et al. [18].
For instance, the Cyclone language of Grossman et al. uses
regions to restrict where a pointer can point-to, and uses
region variables to express relationships between regions in
a function’s input and output types. A lifetime is similar in
that it annotates the types of pointers, but differs in how it
is analyzed.

Recent works have demonstrated innovative applications
of Rust’s type system for modular program analysis. As-
trauskas et al. [3] embed Rust programs into a separation
logic to verify pre/post conditions about functions. Jung et al.

[20] use Rust’s ownership-based guarantees to implement
more aggressive program optimizations.

Closer to our domain, Balasubramanian et al. [5] imple-
mented a prototype IFC system for Rust by lowering pro-
grams to LLVM and verifying them with SMACK [28], al-
though their system is hard to contrast with ours given the
high-level description in their paper. Njor and Gústafsson
[26] implemented a static taint analysis for Rust, although it
is not field-sensitive, alias-sensitive, or modular.

8 Discussion

Looking forward, two interesting avenues for future work on
Flowistry are improving its precision and addressing sound-
ness in unsafe code. For instance, the lifetime-based pointer
analysis is sound but imprecise in some respects. Lifetimes
often lose information about part-whole relationships. Con-
sider the function that returns a mutable pointer to a specific
index in a vector:
1 fn get_mut<'a>(&'a mut self, i: usize)

2 -> Option<&'a mut T>;

These lifetimes indicate only that the return value points to
something in the input vector. The expressions v.get_mut(i)
and v.get_mut(i + 1) are considered aliases even though
they are not. Future work could integrate Flowistry with
verification tools like Prusti [3] to use abstract interpretation
for a more precise pointer analysis in such cases.

Additionally, Rust has many libraries built on unsafe code
that can lose annotations essential to information flow, such
as interior mutability. For example, shared-memory concur-
rency in Rust looks like this:
1 let n: Arc<Mutex<i32>> = Arc::new(Mutex::new(0));

2 let n2: Arc<Mutex<i32>> = Arc::clone(&n);

3 *n2.lock().unwrap() = 1;

Arc::clone does not share a lifetime between its input and
output, so a lifetime-based pointer analysis therefore cannot
deduce that n2 is an alias of n, and Flowistry would not rec-
ognize that the mutation on line 3 affects n. Future work can
explore how unsafe libraries could be annotated with the
necessary metadata needed to analyze information flow, sim-
ilar to how RustBelt [21] identifies the pre/post-conditions
needed to ensure type safety within unsafe code.

Overall, we are excited by the possibilities created by hav-
ing a practical information flow analysis that can run today
on any Rust program. Many exciting systems for tasks like
debugging [22], example generation [19], and program re-
pair [39] rely on information flow in some form, and we hope
that Flowistry can support the development of these tools.

Acknowledgments

This work was partially supported by the Italian Ministry
of Education through funding for the Rita Levi Montalcini
grant (call of 2019).

Modular Information Flow through Ownership PLDI ’22, June 13–17, 2022, San Diego, CA, USA

References

[1] Martín Abadi, Anindya Banerjee, Nevin Heintze, and Jon G. Riecke.
1999. A Core Calculus of Dependency. In Proceedings of the 26th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(San Antonio, Texas, USA) (POPL ’99). Association for Computing
Machinery, New York, NY, USA, 147–160. https://doi.org/10.1145/
292540.292555

[2] Vytautas Astrauskas, Christoph Matheja, Federico Poli, Peter Müller,
and Alexander J. Summers. 2020. How Do Programmers Use Unsafe
Rust? Proc. ACM Program. Lang. 4, OOPSLA, Article 136 (nov 2020),
27 pages. https://doi.org/10.1145/3428204

[3] Vytautas Astrauskas, Peter Müller, Federico Poli, and Alexander J.
Summers. 2019. Leveraging Rust Types for Modular Specification and
Verification. Proc. ACM Program. Lang. 3, OOPSLA, Article 147 (oct
2019), 30 pages. https://doi.org/10.1145/3360573

[4] Thomas H. Austin and Cormac Flanagan. 2009. Efficient Purely-
Dynamic Information Flow Analysis. In Proceedings of the ACM SIG-
PLAN Fourth Workshop on Programming Languages and Analysis for
Security (Dublin, Ireland) (PLAS ’09). Association for Computing Ma-
chinery, New York, NY, USA, 113–124. https://doi.org/10.1145/1554339.
1554353

[5] Abhiram Balasubramanian, Marek S. Baranowski, Anton Burtsev, Au-
rojit Panda, Zvonimir Rakamarić, and Leonid Ryzhyk. 2017. System
Programming in Rust: Beyond Safety. In Proceedings of the 16th Work-
shop on Hot Topics in Operating Systems (Whistler, BC, Canada) (Ho-
tOS ’17). Association for Computing Machinery, New York, NY, USA,
156–161. https://doi.org/10.1145/3102980.3103006

[6] Pablo Buiras, Dimitrios Vytiniotis, and Alejandro Russo. 2015. HLIO:
Mixing Static and Dynamic Typing for Information-Flow Control
in Haskell. In Proceedings of the 20th ACM SIGPLAN International
Conference on Functional Programming (Vancouver, BC, Canada) (ICFP
2015). Association for Computing Machinery, New York, NY, USA,
289–301. https://doi.org/10.1145/2784731.2784758

[7] Marek Chalupa. 2016. Slicing of LLVM bitcode. Master’s thesis. Masaryk
University.

[8] David G. Clarke, John M. Potter, and James Noble. 1998. Ownership
Types for Flexible Alias Protection. In Proceedings of the 13th ACM SIG-
PLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications (Vancouver, British Columbia, Canada) (OOPSLA ’98).
Association for Computing Machinery, New York, NY, USA, 48–64.
https://doi.org/10.1145/286936.286947

[9] Keith D Cooper, Timothy J Harvey, and Ken Kennedy. 2001. A simple,
fast dominance algorithm. Software Practice & Experience 4, 1-10 (2001),
1–8.

[10] Patrick Cousot and Radhia Cousot. 2002. Modular Static Program
Analysis. In Proceedings of the 11th International Conference on Compiler
Construction (CC ’02). Springer-Verlag, Berlin, Heidelberg, 159–178.

[11] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck.
1989. An Efficient Method of Computing Static Single Assignment
Form. In Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (Austin, Texas, USA) (POPL ’89).
Association for Computing Machinery, New York, NY, USA, 25–35.
https://doi.org/10.1145/75277.75280

[12] Al Danial. 2021. cloc: Count Lines of Code. https://github.com/
AlDanial/cloc

[13] Isil Dillig, Thomas Dillig, Alex Aiken, and Mooly Sagiv. 2011. Precise
and Compact Modular Procedure Summaries for Heap Manipulating
Programs. In Proceedings of the 32nd ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (San Jose, California,
USA) (PLDI ’11). Association for Computing Machinery, New York,
NY, USA, 567–577. https://doi.org/10.1145/1993498.1993565

[14] Ana Nora Evans, Bradford Campbell, and Mary Lou Soffa. 2020. Is Rust
Used Safely by Software Developers?. In Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering (Seoul, South

Korea) (ICSE ’20). Association for Computing Machinery, New York,
NY, USA, 246–257. https://doi.org/10.1145/3377811.3380413

[15] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. 1987. The
Program Dependence Graph and Its Use in Optimization. ACM Trans.
Program. Lang. Syst. 9, 3 (jul 1987), 319–349. https://doi.org/10.1145/
24039.24041

[16] Jean-Yves Girard. 1987. Linear logic. Theoretical Computer Science 50,
1 (1987), 1–101. https://doi.org/10.1016/0304-3975(87)90045-4

[17] J. A. Goguen and J. Meseguer. 1982. Security Policies and Security
Models. In 1982 IEEE Symposium on Security and Privacy. IEEE. https:
//doi.org/10.1109/sp.1982.10014

[18] Dan Grossman, Greg Morrisett, Trevor Jim, Michael Hicks, Yanling
Wang, and James Cheney. 2002. Region-Based Memory Management
in Cyclone. In Proceedings of the ACM SIGPLAN 2002 Conference on
Programming Language Design and Implementation (Berlin, Germany)
(PLDI ’02). Association for Computing Machinery, New York, NY, USA,
282–293. https://doi.org/10.1145/512529.512563

[19] Andrew Head, Elena L. Glassman, Björn Hartmann, and Marti A.
Hearst. 2018. Interactive Extraction of Examples from Existing Code.
In Proceedings of the 2018 CHI Conference on Human Factors in Com-
puting Systems. Association for Computing Machinery, New York, NY,
USA, 1–12. https://doi.org/10.1145/3173574.3173659

[20] Ralf Jung, Hoang-Hai Dang, Jeehoon Kang, and Derek Dreyer. 2019.
Stacked Borrows: An Aliasing Model for Rust. Proc. ACM Program.
Lang. 4, POPL, Article 41 (dec 2019), 32 pages. https://doi.org/10.1145/
3371109

[21] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer.
2017. RustBelt: Securing the Foundations of the Rust Programming
Language. Proc. ACM Program. Lang. 2, POPL, Article 66 (dec 2017),
34 pages. https://doi.org/10.1145/3158154

[22] Amy J. Ko and Brad A. Myers. 2004. Designing the Whyline: A De-
bugging Interface for Asking Questions about Program Behavior. In
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (Vienna, Austria) (CHI ’04). Association for Computing Ma-
chinery, New York, NY, USA, 151–158. https://doi.org/10.1145/985692.
985712

[23] Peng Li and S. Zdancewic. 2006. Encoding information flow in Haskell.
In 19th IEEE Computer Security Foundations Workshop (CSFW’06). 12
pp.–16. https://doi.org/10.1109/CSFW.2006.13

[24] Niko Matsakis. 2017. Non-lexical lifetimes. https://rust-lang.github.
io/rfcs/2094-nll.html

[25] Andrew C. Myers. 1999. JFlow: Practical Mostly-Static Information
Flow Control. In Proceedings of the 26th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages (San Antonio, Texas,
USA) (POPL ’99). Association for Computing Machinery, New York,
NY, USA, 228–241. https://doi.org/10.1145/292540.292561

[26] Emil Jørgensen Njor and Hilmar Gústafsson. 2021. Static Taint Analysis
in Rust. Master’s thesis. Aalborg University.

[27] François Pottier and Vincent Simonet. 2003. Information Flow Infer-
ence for ML. ACM Trans. Program. Lang. Syst. 25, 1 (jan 2003), 117–158.
https://doi.org/10.1145/596980.596983

[28] Zvonimir Rakamaric and Michael Emmi. 2014. SMACK: Decoupling
Source Language Details from Verifier Implementations. In Proceedings
of the 26th International Conference on Computer Aided Verification
(CAV) (Lecture Notes in Computer Science, Vol. 8559), Armin Biere and
Roderick Bloem (Eds.). Springer, 106–113. https://doi.org/10.1007/978-
3-319-08867-9_7

[29] Atanas Rountev, Barbara G. Ryder, and William Landi. 1999. Data-Flow
Analysis of Program Fragments. In Proceedings of the 7th European
Software Engineering Conference Held Jointly with the 7th ACM SIG-
SOFT International Symposium on Foundations of Software Engineering
(Toulouse, France) (ESEC/FSE-7). Springer-Verlag, Berlin, Heidelberg,
235–252.

[30] Alejandro Russo, Koen Claessen, and John Hughes. 2008. A Library for
Light-Weight Information-Flow Security in Haskell. In Proceedings of

https://doi.org/10.1145/292540.292555
https://doi.org/10.1145/292540.292555
https://doi.org/10.1145/3428204
https://doi.org/10.1145/3360573
https://doi.org/10.1145/1554339.1554353
https://doi.org/10.1145/1554339.1554353
https://doi.org/10.1145/3102980.3103006
https://doi.org/10.1145/2784731.2784758
https://doi.org/10.1145/286936.286947
https://doi.org/10.1145/75277.75280
https://github.com/AlDanial/cloc
https://github.com/AlDanial/cloc
https://doi.org/10.1145/1993498.1993565
https://doi.org/10.1145/3377811.3380413
https://doi.org/10.1145/24039.24041
https://doi.org/10.1145/24039.24041
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1109/sp.1982.10014
https://doi.org/10.1109/sp.1982.10014
https://doi.org/10.1145/512529.512563
https://doi.org/10.1145/3173574.3173659
https://doi.org/10.1145/3371109
https://doi.org/10.1145/3371109
https://doi.org/10.1145/3158154
https://doi.org/10.1145/985692.985712
https://doi.org/10.1145/985692.985712
https://doi.org/10.1109/CSFW.2006.13
https://rust-lang.github.io/rfcs/2094-nll.html
https://rust-lang.github.io/rfcs/2094-nll.html
https://doi.org/10.1145/292540.292561
https://doi.org/10.1145/596980.596983
https://doi.org/10.1007/978-3-319-08867-9_7
https://doi.org/10.1007/978-3-319-08867-9_7

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Will Crichton, Marco Patrignani, Maneesh Agrawala, and Pat Hanrahan

the First ACM SIGPLAN Symposium on Haskell (Victoria, BC, Canada)
(Haskell ’08). Association for Computing Machinery, New York, NY,
USA, 13–24. https://doi.org/10.1145/1411286.1411289

[31] A. Sabelfeld and A.C. Myers. 2003. Language-based information-flow
security. IEEE Journal on Selected Areas in Communications 21, 1 (2003),
5–19. https://doi.org/10.1109/JSAC.2002.806121

[32] Marc Shapiro and Susan Horwitz. 1997. The Effects of the Precision of
Pointer Analysis. In Proceedings of the 4th International Symposium on
Static Analysis (SAS ’97). Springer-Verlag, Berlin, Heidelberg, 16–34.

[33] Yannis Smaragdakis and George Balatsouras. 2015. Pointer analysis.
Foundations and Trends in Programming Languages 2, 1 (2015), 1–69.

[34] Deian Stefan, Alejandro Russo, John C. Mitchell, and David Maz-
ières. 2011. Flexible Dynamic Information Flow Control in Haskell.
In Proceedings of the 4th ACM Symposium on Haskell (Tokyo, Japan)
(Haskell ’11). Association for Computing Machinery, New York, NY,
USA, 95–106. https://doi.org/10.1145/2034675.2034688

[35] Hao Tang, Xiaoyin Wang, Lingming Zhang, Bing Xie, Lu Zhang, and
Hong Mei. 2015. Summary-Based Context-Sensitive Data-Dependence
Analysis in Presence of Callbacks. In Proceedings of the 42nd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (Mumbai, India) (POPL ’15). Association for Computing Ma-
chinery, New York, NY, USA, 83–95. https://doi.org/10.1145/2676726.

2676997
[36] Yan Mei Tang and Pierre Jouvelot. 1994. Separate abstract interpreta-

tion for control-flow analysis. In Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 224–243. https://doi.org/10.1007/3-540-
57887-0_98

[37] Mark Weiser. 1981. Program Slicing. In Proceedings of the 5th Interna-
tional Conference on Software Engineering (San Diego, California, USA)
(ICSE ’81). IEEE Press, 439–449.

[38] Aaron Weiss, Olek Gierczak, Daniel Patterson, and Amal Ahmed. 2019.
Oxide: The Essence of Rust. arXiv:arXiv:1903.00982v3

[39] Ming Wen, Junjie Chen, Rongxin Wu, Dan Hao, and Shing-Chi Che-
ung. 2018. Context-Aware Patch Generation for Better Automated
Program Repair. In Proceedings of the 40th International Conference
on Software Engineering (Gothenburg, Sweden) (ICSE ’18). Associa-
tion for Computing Machinery, New York, NY, USA, 1–11. https:
//doi.org/10.1145/3180155.3180233

[40] Greta Yorsh, Eran Yahav, and Satish Chandra. 2008. Generating Pre-
cise and Concise Procedure Summaries. In Proceedings of the 35th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (San Francisco, California, USA) (POPL ’08). Asso-
ciation for Computing Machinery, New York, NY, USA, 221–234.
https://doi.org/10.1145/1328438.1328467

https://doi.org/10.1145/1411286.1411289
https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.1145/2034675.2034688
https://doi.org/10.1145/2676726.2676997
https://doi.org/10.1145/2676726.2676997
https://doi.org/10.1007/3-540-57887-0_98
https://doi.org/10.1007/3-540-57887-0_98
https://arxiv.org/abs/arXiv:1903.00982v3
https://doi.org/10.1145/3180155.3180233
https://doi.org/10.1145/3180155.3180233
https://doi.org/10.1145/1328438.1328467

	Abstract
	1 Introduction
	2 Analysis
	2.1 Variables and Mutation
	2.2 References
	2.3 Function Calls

	3 Soundness
	4 Implementation
	4.1 Analyzing Control-Flow Graphs
	4.2 Computing Loan Sets from Lifetimes
	4.3 Handling Ownership-Unsafe Code

	5 Evaluation
	5.1 Dataset
	5.2 Quantitative Results
	5.3 Qualitative Results
	5.4 Threats to Validity

	6 Applications
	7 Related Work
	8 Discussion
	Acknowledgments
	References

