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Secure compilation is a discipline aimed at developing compilers that preserve the security properties of

the source programs they take as input in the target programs they produce as output. This discipline is

broad in scope, targeting languages with a variety of features (including objects, higher-order functions,

dynamic memory allocation, call/cc, concurrency) and employing a range of different techniques to ensure that

source-level security is preserved at the target level. This paper provides a survey of the existing literature on

formal approaches to secure compilation with a focus on those that prove fully abstract compilation, which has

been the criterion adopted by much of the literature thus far. This paper then describes the formal techniques

employed to prove secure compilation in existing work, introducing relevant terminology, and discussing the

merits and limitations of each work. Finally, this paper discusses open challenges and possible directions for

future work in secure compilation.
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1 INTRODUCTION
Compilers are programs that transform code written in one language, called the source language,
into code written in another language, called the target language. Many source languages are high

level, so they provide powerful abstractions for the program to use, such as types and module

systems. When source programs interoperate with each other, e.g., by calling each other’s functions,

they have to adhere to the available source-level abstractions.
1
Target languages, on the other

hand, are typically low level and either have different abstractions or are devoid of any high-level

abstraction. Thus, the abstractions provided by target languages rarely coincide with those provided

by source languages.
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As an example, consider the Java code of Listing 1, which is translated into the C code of

Listing 2—for the sake of brevity, both code snippets have been simplified to a minimum.

1 package Bank;
2

3 public class Account{
4 private int balance = 0;
5

6 public void deposit( int amount ) {
7 this.balance += amount;
8 }
9 }

Listing 1. Example of Java source code.

1 typedef struct account_t {
2 int balance = 0;
3 void ( ∗deposit ) ( struct Account∗, int ) = deposit_f;
4 } Account;
5

6 void deposit_f( Account∗ a, int amount ) {
7 a→balance += amount;
8 return;
9 }

Listing 2. C code obtained from compiling the Java code of Listing 1.

When the Java code in Listing 1 interacts with other Java code, the latter cannot access the contents

of balance since it is a private field. However, when the Java code is compiled into the C code in

Listing 2 and then interacts with arbitrary C code, the latter can access the contents of balance by

doing simple pointer arithmetic. Given a pointer to a C Account struct, an attacker can add the

size (in words) of an int to it and read the contents of balance, effectively violating a confidentiality
property that the source program had.

This violation occurs because there is a discrepancy between what abstractions the source

language offers and what abstraction the target language has. This discrepancy is both inevitable

and dangerous. The inevitability stems from the fact that source languages provide powerful

abstractions whose goal is allowing a programmer to write better code. The danger stems from the

fact that source-level abstractions can be used to enforce security properties, but target languages

that do not preserve such security properties are vulnerable to attacks. Unfortunately, most target

languages cannot preserve the abstractions of their source-level counterparts [1, 67].

In order to withstand the danger posed by exploitable target languages, secure compilation

techniques can be adopted. Secure compilation is a discipline that studies compilers (or, more

generally, compilation schemes) that preserve the security properties of source languages in their

compiled, target-level counterparts. Secure compilation is concerned with the security of partial
programs (also called components in this paper) since attackers are modelled as the environment such

programs interact with. Partial programs are programs that do not implement all the functionality

they require to operate. Instead, they are linked together with an environment (often also called

a context) that provides the missing functionality in order to create a runnable whole program.

An open environment is used to model possible attackers to the component, which is not possible

when whole programs are considered.

Secure compilers use a variety of techniques to protect compiled components from attacker

contexts. Once devised, such compilers must be proven to be secure, i.e., they must be proven to

conform to some criterion that implies secure compilation. As we discuss later in this survey, a
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variety of formal statements can capture when a compiler is secure. One such formal criterion that

has been widely adopted for secure compilation is compiler full abstraction [1].

Informally, a compiler is fully abstract when it translates equivalent source-level components into

equivalent target-level ones. Formally, a fully-abstract compiler preserves and reflects observational
equivalence (usually contextual equivalence) between source and target programs. Reflection of

observational equivalence means that the compiler outputs target-level components that behave

as their source-level counterparts, this is generally a consequence of the compiler being correct.

Preservation of observational equivalence implies that the source-level abstractions in the generated

target-level output are not violated by a target-level client. For example, consider two instances P1
and P2 of the same component which contains two different values for some variable x. Denote their
compiled counterparts by JP1K and JP2K. If the compilation scheme is fully abstract, and if P1 and P2
are equivalent, then JP1K and JP2K must also be. So, if the content of JxK is confidential (for example,

the value stored in x could be private and never communicated), no program interacting with JP1K
or JP2K can observe it. Notice that a fully abstract compiler does not eliminate source-level security

flaws. A fully abstract compiler is, in a sense, conservative, as it introduces no more vulnerabilities

at the target-level than the ones already exploitable at the source-level.

One of the goals of this survey is to describe fully abstract compilation as well as other formal

criteria for secure compilation. A second goal is to present work on compilers that are proven to

conform to these formal criteria. Furthermore, since the work in this area uses different techniques

to attain proofs of secure compilation, a final goal of this paper is to explain these proof techniques.

The rest of the paper is organised as follows. To understand threat models for secure compilation,

Section 2 first discusses the kind of attacks that secure compilers need to defend against. To

understand the security properties these attacks violate, and to connect their preservation with

secure compilation criteria, Section 3 then describes how to formally express security properties

using observational equivalence. To state which security guarantees a compiler provides, Section 4

continues by presenting different compiler properties and the kind of security guarantees they yield.

Finally, Section 5 presents the survey of research on secure compilation, describing the published

papers on this subject. Section 6 concludes this paper by presenting open challenges and future

research directions.

Appendix A of this paper expands on the topic of Section 3, describing other widely adopted

program equivalences. Additionally to show that a compiler upholds a property, a formal proof is

required, so Appendix B also discusses the proof techniques used in secure compilation work.

This paper makes the following contributions:

• it presents the formal techniques adopted to reason about and formalise a secure compiler as

well as to prove it secure,

• it surveys existing work on secure compilation, detailing methodology, contributions and

limitations of each work;

• it highlights open problems and future research directions.

What This Survey is Not About
It is important to specify what the reader will not find in this paper. We have deliberately chosen

to focus on papers that approach secure compilation from a formal angle. That said, there are
many other papers that cover compiler implementations tailored to addressing a specific attack or

a specific exploit [69, 120], but which do not take a formal approach. One example is the work on

Code Pointer Integrity (CPI), which aims to compile C/C++ code relying on target-level support for

isolated memory to prevent out-of-bound access of sensitive pointers [69]. Such work, which does

not provide a formal statement of correctness, is not covered in this survey.
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Another category of work that is not covered in this survey focuses on target-level enforcement

of specific security policies (but without establishing any connection to source-level properties).

For instance, Inlined Reference Monitors (IRM) are aimed at hardening target code with runtime

checks that enforce a specific security policy [31, 44–46]. Another well known example is Control-

Flow Integrity (CFI), which involves a rewriting of target code to enforce that no jumps can be

made outside of the locations specified in the target control-flow graph [3, 4]. CFI can be used to

implement efficient IRM, Software Fault Isolation (SFI) [132] and other properties [4]. Note that

CFI, IRM, and other analogous methods can be incorporated into a secure compiler to ensure that

it enforces the particular security properties these methods guarantee. Many of these papers are

also often mainly concerned with implementing the specific countermeasure they describe instead

of providing a correctness criterion that the countermeasure enforces. Hence, such papers are not

discussed in this survey.

By excluding these papers from the survey we do not want to diminish their research contribu-

tions. On the contrary, we believe that starting from the few pointers provided in this section, the

interested reader can find out more about these categories of research and use those techniques

when building secure compilers. However, the goal of the survey is to cover a different broad

family of research, one that focuses on the foundational principles and reasoning tools for secure

compilation.

A note on colours. When dealing with compilers it is important to clearly distinguish between

their source and target languages.We use a blue, bold font for source elements and a pink, sans-serif
one for target elements, but use black for notions common to both languages to avoid repeating

them in two colours.

2 SOURCE-LEVEL ABSTRACTIONS AND TARGET-LEVEL ATTACKS
This section explains the security relevance of secure compilation and the threat models considered

when developing a secure compiler.

The secure compilation literature contains several examples of source-level security properties

that can be violated by target-level attackers. These violations define part of the threat model that

work on secure compilation needs to address since they define possible attacks on compiled code.

Attackers are often modelled as target-level programs as this captures their ability to operate at that

level, injecting or linking arbitrary target code, which means they can do anything that target-level

code can. This power often stems from an exploitable security vulnerability that the system is

assumed have, though the details of the vulnerability are often unspecified.

The capabilities of an attacker vary depending on the target language considered. For example,

when using untyped assembly code, the attacker can access and alter the contents of the whole

address space (she is generally assumed to operate at Kernel level to capture the most dangerous

threat). When using simply-typed λ-calculus terms, the attacker must supply well-typed code that

can only interact with existing code via functions calls. What the attacker cannot do in any case

is to employ techniques that are not available in the target language. So, if the target language

is strongly typed, an attacker cannot violate the well-typedness. Additionally, side channels (e.g.,

timing) are often out of the scope of compiler security since they are often not expressible in the

target language. We will come back to protection against side channels in Section 6.

The remaining details of the threat model, i.e., the intended security properties and the definition

of the system under attack, vary in each paper on secure compilation so we omit them here.

To illustrate what attackers can do with compiled code, this section presents a series of examples

of the most relevant threats that a secure compiler needs to mitigate. These examples are taken

from the surveyed work; their syntax is massaged for uniformity of presentation.
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Example 2.1 (Confidentiality of values [9]). Consider the Java-like code below, where function
setSecret sets the field secret to 1 and then returns 0.

1 private secret : Int = 0;
2

3 public setSecret() : Int {
4 secret = 1;
5 return 0;
6 }

The field secret is used to store confidential data (it is private) and it is inaccessible from other

source-level code, so a target-level attacker should not be able to retrieve its value. If this code

gets compiled to a language where memory locations are identified by natural numbers (e.g., an

untyped assembly language or λµ-hashref [61]), then the address where secret is stored can be

read by attackers. By dereferencing the number associated with the location of secret, attackers
can violate the intended confidentiality property of the code.

Example 2.2 (Integrity of values [9]). Analogous to Example 2.1, function proxy below sets the

variable secret to 1, and then calls the function callback, that was passed in as a parameter.

1 public proxy( callback : Unit → Unit ) : Int {
2 var secret = 1;
3 callback();
4 return 0;
5 }

The variable secret is inaccessible to the code in the callback function at the source level. However,
if this code is compiled to a target language that can manipulate the call stack, it can access the

secret variable and change its value. Similarly, malicious target-level code can manipulate the

return address stored on the stack, altering the expected flow of computation.

Example 2.3 (Finite memory size [61]). When dealing with memory, its size can also affect the

behaviour of a component, however the memory size is often not a concern of source languages.

Consider a source language with a dynamic memory allocation operation new. Function kernel
below allocates n new Objects, calls a function callback and executes security-relevant code before
returning 0.

1 public kernel( n : Int, callback : Unit →Unit ) : Int {
2 for (i = 0 to n){
3 new Object();
4 }
5 callback();
6 // security-relevant code
7 return 0;
8 }

At the source level, the security-relevant code will always be executed. However, if this code is
compiled to a language that limits its memory to contain only n Objects, code execution can be

disrupted during the callback. If the callback allocates another object, the security-relevant code
will not be executed.

Example 2.4 (Deterministic memory allocation [61]). Dynamic memory allocation is a feature

that leads to complications, as illustrated in the code below. In this example, the code allocates two

Objects, and then returns the first one.

1 public newObjects( ) : Object {
2 var x = new Object();
3 var y = new Object();
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4 return x;
5 }

While at source level Object y is inaccessible, this is not true in certain target languages. A target-

level attacker that knows the memory allocation order can predict where an object will be allocated

and influence its memory contents. She can tamper with y by guessing or by calculating its address.

Example 2.5 (Well-typedness of programs [99]). When the source language is strongly typed and

the target one is not (e.g., untyped assembly as the target language), complications can arise, as

illustrated in the code below. In this example, the code provides an implementation of a Pair class

(with the expected first and second fields) and a method to access the first element getFirst().
The code also provides an implementation of a Secret class whose field secret is inaccessible.

1 class Pair {
2 private first, second : Obj = null;
3 public getFirst(): Obj {
4 return this.first;
5 }
6 }
7 class Secret {
8 private secret : Int = 0;
9 }
10 object o : Secret

The value of secret cannot be leaked at the source level, but when compiled to untyped assemby

code, the compiled counterparts of this code can leak its secret value. An attacker can perform a

call to method getFirst() with current object o; this will return the secret field, since fields are

accessed by offset in assembly.

Example 2.6 (Well-bracketed control flow [102]). Consider untyped assembly as the target language

and the following three components being compiled.

1 class Main {
2 public static main(): Obj { Proxy.proxy(); }
3 }
4

5 class Proxy {
6 public static proxy(): Obj { Mod.callFun(); }
7

8 public static fun():Obj { ... }
9 }
10

11 class static Mod {
12 public callFun():Obj { Proxy.fun(); }
13 }

The sequence of calls is the following: Main→Proxy→Mod→Proxy.
In all assembly languages, calls and returns are jumps to addresses in memory. So, the second

time Proxy is called, it can return to Main, as it learnt the address to return there when Main
called it. However, that instruction bypasses the rest of the call stack and particularly Mod in a way

that is not possible in the code above, where control flow follows a well-bracketed sequence of

calls/returns. If Main and Mod had a shared invariant, it can thus be violated in this way.

Example 2.7 (Information flow [22]). Another form of information leakage is information flow.

Information flow is generally concerned with a public output (called low security) being affected by

secure input (called high security). The code of Listing 3 presents an example of direct information

flow: a high-security value, indicated with the subscript h is stored in a low-security memory cell,

indicated with the subscript l .
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1 public storeValue( value : Inth ) : Intl {
2 var location : Locl = value;
3 return 0;
4 }

Listing 3. Example code with direct information flow.

A more subtle form of information flow comes in the form of indirect information flow, as

presented in Listing 4.

1 public isZero( value : Inth ) : Intl {
2 if ( value == 0 ) {
3 return 1
4 }
5 return 0
6 }

Listing 4. Example code with indirect information flow.

In this case assume the attacker does not have direct access to the memory, yet she can detect

whether value is 0 or not by observing the output of the function. This is called indirect information

flow because the presence of a high-security value in the guard of a branching construct influences

the output of the branch.

A target language that does not prevent information flow cannot withstand these leaks.

Example 2.8 (Continuation manipulation for declassification leak). Consider a target language
with call with current continuation, also known as call/cc. This is a Scheme construct that lifts

the continuation of a function (i.e., what happens after the body of the said function is executed) as

a first-class language citizen and thus lets a programmer manipulate it.

A declassification policy is a common security policy that states that something, e.g., a key, is

secure only until a certain event or period in time, and afterwards it is publicly accessible.

Consider the following source program. It contains a key used to perform some secure commu-

nication over the network (network_send( encrypt( secret, k ) ). That program engages in

three interactions, counted using a private variable x, before releasing the no-longer-secret key.

1 public key : Key = null;
2 private k : Key = secret;
3 private x : Int = 0;
4

5 public three-times-protocol( ) : Object {
6 continue();
7 network_send( encrypt( secret, k ) );
8 x++;
9 continue();
10 network_send( encrypt( secret, k ) );
11 x++;
12 continue();
13 network_send( encrypt( secret, k ) );
14 x++;
15 // the key is declassified
16 }
17 private continue( ) : Object {
18 if( x > 2 ){
19 key = k;
20 }
21 callback();
22 }

Listing 5. Example code with a declassification violation.

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2018.



1:8 Marco Patrignani, Amal Ahmed, and Dave Clarke

A target-level attacker implementing callback() can capture the continuation

c =x++;continue();network_send( encrypt( secret, k ) );x++;continue();//...

that is passed after the first invocation of continue(). She can use it just to increment x up to

three and throw away the continuation of the continuation, i.e.,

continue()network_send( encrypt( secret, k ) );;x++;//...

Then, she can replay the initial continuation c and call continue() for the second time. However,

the code will operate as this is the third time by looking at x, and the attacker can thus receive

the key k over the public variable key before time. This is only possible in the target code, where

continuations can be manipulated, and not in the source program.

Example 2.9 (Network-based threats [7]). Networked components are subject to a large number of

attacks which are generally focussed on the information being communicated across the network.

The Dolev-Yao attacker model is often used to model network-based attacks [41]. A Dolev-Yao

attacker can eavesdrop, intercept, and synthesise any message being communicated on a network.

Intuitively, it is seen as an arbitrary process E running alongside of other processes A and B,
which are also executing in parallel. E is given access to the communication medium shared

between A and B, the same way a computer can sniff all WiFi packets in an open network. By

inspecting all communicated messages, E can trivially see any unencrypted confidential data being

communicated between A and B. Moreover, E can impersonate either A or B and it can replay

previously sent messages, which could cause faulty behaviour in any other process. Additionally, E
can mount forward secrecy attacks by buffering communicated messages and then reconstructing

their meaning later on, when it receives some missing piece of information with which it can

understand the buffered messages. Sometimes, only one party of the communication is trusted, so

instead of having A communicating with B, Amay be communicating with E. In this case, A does

not only need to protect the communication, it also needs to monitor E, which could stray from

the communication protocol and enact fault-inducing behaviour.

The literature on network-based attacks is vast; a more precise analysis is presented in Sec-

tion 5.2.1 and in the related work of the surveyed work.

3 EXPRESSING SECURITY PROPERTIES AS PROGRAM EQUIVALENCES
In order to withstand the attacks described so far, as well as other security breaches, it is important

to formally specify the security properties of components. In many of the work surveyed in this

paper, program equivalence techniques are often used to express these concepts.
2
Contextual

equivalence (Section 3.1) is the most coarse-grained program equivalence; its relevance for security

has been discussed in many papers [9, 14, 61, 99, 101] and the formal statement of fully abstract

compilation relies on it. This section defines contextual equivalence and shows how it can be

used to formally capture the security concerns of the example code presented in Section 2. Other

equivalences that can be used in place of contextual equivalence are presented in Appendix A.

As discussed in Section 1, secure compilation is only relevant when compiling components. Thus,

the program equivalence techniques presented in this paper describe the behaviour of components

or partial programs. There are other techniques for reasoning about equivalence of whole programs,

which we do not present here as they are out of scope for secure compilation.

2
Other techniques such as properties [116] and hyperproperties [32] exist, but we do not focus on them as the surveyed

work does not rely on them.
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3.1 Contextual Equivalence
Contextual equivalence (also known as observational equivalence) provides a notion of observation

of the behaviour of a component (generally divergence) and states when two components exhibit

the same observable behaviour. The notion of contextual equivalence (Definition 3.3 below) relies

on the definition of context and of divergence (Definition 3.1 and 3.2). This section also discusses

the pros and cons of contextual equivalence (Section 3.1.1).

Definition 3.1 (Context). A context C is a program with a hole (denoted by [·]), which can be

filled by a component P , generating a new whole program: C[P].

Contexts can be used to model the external code that can interact with a specific piece of software

(in this case, the hole-filling component P ). Based on the language of P , contexts can assume a variety

of forms. For example, if P is the λ-calculus expression λx .(xx ), a context is another λ-calculus
expression with a hole, such as (λy.(yy)) [·] or [·] (λy.(yy)). In this case, if P is plugged in the hole

of either context, the resulting whole program is (λy.(yy)) (λx .(xx )), which is commonly known

as Ω, the diverging term. Analogously, when P is the Java code of Listing 1 contexts are other Java

programs which refer to (and use) the classes P defines, such as the Java code in Listing 6.

1 package main;
2 import Bank.Account;
3

4 public class Main{
5 public static void main( String [] args ){
6 Account acc = new Account();
7 }
8 }

Listing 6. Example of a Java context interacting with the code of Listing 1.

From a semantics perspective, plugging a component in a context makes the program whole, so

its behaviour can be observed via its operational semantics. A different way to close the term would

be via system-level semantics [55]. In this kind of approach, the context (called the opponent) is

not constrained by the syntax of a language as is the case with contextual equivalence, so it can

model a powerful attacker to the code. Since this approach has not been used in secure compilation

work we do not discuss it further.

Definition 3.2 (Divergence). A component P diverges if it performs an unbound number of

reduction steps. We denote that P diverges as P⇑ .

Definition 3.3 (Contextual equivalence [110]). Two components P1 and P2 are contextually equiv-

alent if they are interchangeable in any context without affecting the observable behaviour of the

program: P1 ≃ctx P2 ≜ ∀C. C[P1]⇑ ⇐⇒ C[P2]⇑ .

For strictly-terminating languages, the requirement that both programs diverge or both terminate

must be replaced with the requirement that both terminate yielding equal values of ground type

(e.g., integers or bools).

Using contextual equivalence, only what can be observed by the context is of any relevance; this

changes from language to language, as different languages have different functionality. Contexts can

model malicious attackers that interoperate with the secure software (the hole-filling component

P ), possibly mounting attacks such as those described in Section 2.

Contextual equivalence can be used to model security properties of source code, as described by

Example 3.4 below, for various examples from Section 2.

Example 3.4 (Security properties via contextual equivalence). The code snippet of Example 2.1

described confidentiality properties. That code is presented alongside a new snippet in Figure 1
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(relevant differences in side-by-side snippets are coloured in red). If the two snippets are contex-

tually equivalent, then the value of secret is confidential to the code. In fact, the two snippets

assign different values to secret, so if they are contextually equivalent, then secret must not be

discernible by external code.

1 private secret : Int = 0;
2

3 public setSecret( ) : Int {
4 secret = 0;
5 return 0;
6 }

1 private secret : Int = 0;
2

3 public setSecret( ) : Int {
4 secret = 1;
5 return 0;
6 }

Fig. 1. These code snippets express confidentiality properties.

The code snippet of Example 2.2 described integrity properties. Figure 2 presents that code

alongside other code that checks whether the variable secret has been modified during the

callback. Since secret is allocated on the stack, returning from function proxy will erase it; if it

were allocated globally, its integrity would need to be checked at each lookup of its value. If these

code snippets are contextually equivalent, then secret cannot be modified during the callback.

1 public proxy( callback : Unit → Unit )
: Int {

2 var secret = 0;
3 callback();
4 if ( secret == 0 ) {
5 return 0;
6 }
7 return 1;
8 }

1 public proxy( callback : Unit → Unit )
: Int {

2 var secret = 0;
3 callback();
4

5 return 0;
6

7

8 }

Fig. 2. These code snippets express integrity properties.

The code snippet of Example 2.3 described memory size properties. Figure 3 presents that code

alongside other code that does not allocate n new Objects. In Example 2.3, external code could

disrupt the execution flow by overflowing the memory. If these code snippets are contextually

equivalent, then the memory size does not affect the computation.

1 public kernel( n : Int, callback : Unit
→ Unit ) : Int {

2 for (Int i = 0; i < n; i++){
3 new Object();
4 }
5 callback();
6 // security-relevant code
7 return 0;
8 }

1 public kernel( n : Int, callback : Unit
→ Unit ) : Int {

2

3

4

5 callback();
6 // security-relevant code
7 return 0;
8 }

Fig. 3. These code snippets express unbounded memory size properties.

The code snippet of Example 2.4 describes memory allocation properties. Figure 4 presents that

code alongside other code that returns the second allocated object instead of the first one. If these

code snippets are contextually equivalent, then the memory allocation order is invisible to an

attacker, as she is unable to distinguish between objects based on their allocation order.
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1 public newObjects( ) : Object {
2 var x = new Object();
3 var y = new Object();
4 return x;
5 }

1 public newObjects( ) : Object {
2 var x = new Object();
3 var y = new Object();
4 return y;
5 }

Fig. 4. These code snippets express memory allocation properties.

3.1.1 Discussion. Contextual equivalence shows its limitations both in the attacks it can express

and complexity it introduces in proofs. Timing attacks or, more generally, side-channels attacks

cannot be expressed with contextual equivalence. Thus, these attacks are generally disregarded by

secure compilation techniques; they can be countered using orthogonal protection mechanisms

which are beyond the scope of this survey. This interesting future work is discussed in Section 6.

Moreover, although other definitions of contextual equivalence exist (for example, Curien [34]

uses reduction to the same value instead of divergence), no alternative formulation drops the uni-

versal quantification on contexts. Reasoning (and proving properties) about contexts is notoriously

complex [18, 52, 61, 99]. To compensate for this difficulty, different forms of equivalence can be used,

e.g., trace semantics [62, 64, 100, 102], weak bisimulation [113], applicative bisimilarity [12] and

logical relations [16], but only if they are proved to be as precise as contextual equivalence. These
equivalences are described in Appendix A. Given an equivalence ≈, if ≈ is correct and complete

w.r.t. ≃ctx, then it can be used in place of ≃ctx.Correctness in this case captures that ≈ does not

distinguish between programs that are equivalent for ≃ctx, completeness on the other hand captures

that all programs that are equivalent for ≃ctx are still equivalent for ≈ [34, 85, 110].
3
In fact, many

proofs of compiler full abstraction rely on a program equivalence that is as precise as contextual

equivalence to be carried out.

Having presented how to formalise security properties as program equivalence, we next discuss

how to define compiler properties that preserve such security properties.

4 A SPECTRUM OF COMPILER PROPERTIES
This section presents the three main kinds of compiler properties that have been frequently studied

in the literature. The three properties are: (1) that compilation is type-preserving (Section 4.1), which

establishes that a compiler from a typed source language to a typed target transforms well-typed

source terms into well-typed target terms; (2) that compilation is semantics-preserving (informally

known as compiler correctness, Section 4.2), which establishes that a compiler generates a target

program with the same observable behaviour as the source program; and (3) that compilation

is equivalence-preserving (Section 4.3), which establishes that the compiler translates programs

that are equivalent in the source language—e.g., contextually equivalent or indistinguishable to an

observer at a given security level—into programs that are similarly equivalent in the target language.

Each of these properties is pertinent to secure compilation. Equivalence-preservation is the most

obviously relevant as it is a requirement for fully abstract compilation. Semantics-preservation

is important because it would be a dubious achievement to build a secure compiler that is not

correct. Finally, type-preservation has been employed as a means of enforcing full abstraction. It

has also been used in the absence of a proof of full abstraction to offer confidence that—under some

assumptions which we discuss later—certain security properties hold at the target level.

Before we dive into details, we define what we mean by a compiler in the rest of the paper.

Definition 4.1 (Compiler). A compiler J · KST is a function from source S to target T components.

3
In this case, ≈ is said to be fully-abstract, but we drop this terminology to avoid confusion with fully-abstract compilation.
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Definition 4.2 (Modular compiler). A compiler is modular if linking a set of source components

and then compiling the resulting program is equivalent to individually compiling each of those

source components and then linking the resulting target components—i.e., if JC1+ · · ·+CnKST =
JC1KST+ · · ·+JCnKST. where we write + to denote linking.

4.1 Type-Preserving Compilation
A compiler that is type preserving translates well-typed source programs into well-typed target

programs. The seminal work by Tarditi et al. [127] and Morrisett et al. [90] showed how to design

typed intermediate languages (TILs) and typed assembly languages (TALs) so that source-language

types can be translated into target-language types such that target-level type checking ensures type

and memory safety. Let Γ denote a source-level typing environment and let the judgment Γ ⊢ P
mean that P is well-typed in Γ. (An alternative formulation could be Γ ⊢ P : τ , which also specifies

that P has type τ ). Formally, type-preserving compilation can be expressed as Γ ⊢ P⇒ JΓKST ⊢ JPKST.
This statement would, of course, have to be tuned to the specific typing judgements of the source

and target languages under consideration.
4

Morrisett et al. [90] showed how to design a typed assembly language (TAL) that extends an

idealized RISC-like assembly with a type system that be can used to ascribe types to basic blocks,

to data stored in register files, and to closures and tuples on the heap. They show how to compile

a variant of System F with integers, products, and term-level recursion to TAL. The compilation

pipeline consists of five type-preserving passes: conversion to continuation-passing style (CPS),

which makes the control-flow explicit; closure conversion, which transforms functions into a

closure that pairs closed functions with their environment, using an existential type to hide the

type of the environment from clients of the closure; hoisting of closures to top-level; allocation of

closures and tuples on the heap; and code generation to TAL.

Since the late 1990s, there have been numerous results on type-preserving compilation, showing

how to extend the original idea to compilers for object-oriented languages [30, 75] or security-typed

languages [22, 23, 84, 139].

An important point to note is that type-preserving compilers do not necessarily guarantee

preservation of source-level security properties. For instance, a type-preserving compiler could

compile an object-oriented language with private fields into a un(i)typed language. The translation is

clearly type preserving but not security preserving since target-level clients of the object (attackers)

can read the contents of private fields, leading to a security violation (Example 2.5). To ensure

data stored in private fields is kept hidden from target-level clients, a type-preserving compiler

can use a more clever type translation. For instance, League et al. [75] present a type translation

that makes use of target-level type abstraction—specifically, existential types, which can be used to

guarantee information hiding—to ensure that data stored in private fields of source objects remains

hidden from target-level clients of the object. Thus, determining whether type-preserving compilers

preserve security properties requires inspecting the type translation.

League et al. [75] and Chen et al. [30] present type-preserving compilers that also preserve

security guarantees. These are secure compilers, so we discuss them in Section 5.1.

4.1.1 Security-Type-Preserving Compilation. Security-type-preserving compilation is a form of

type-preserving compilation with security relevance. Security-typed languages provide a type

system for information-flow control that allows programmers to label data with a security levels

drawn from a security lattice. In such languages, type checking ensures that high-security data

never influences low-security outputs, a property formally known as noninterference. Starting with

4
Technically speaking, the target language does not have to be statically typed: any compiler that translates to a dynamically

typed (un(i)typed) target language is type preserving.
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the seminal work of Volpano et al. [131], security type systems have been developed in a variety of

forms (e.g., [130, 140? ]) and proved to satisfy noninterference. Formally, noninterference states that

if a program P with an environment Γ that tracks the types and security labels for each free variable

in P (cfr Example 2.7), running P with identical low-security values but unrelated high-security

values yields the same low-security outputs. Noninterference of P is denoted with NIΓ (P ). For
well-typedness to imply noninterference, the following must hold: Γ ⊢ P ⇒ NI(P ).

We say a compiler is security-type preserving when it translates well-typed source components

into well-typed target components and well-typedness implies noninterference at both the source

and the target level [22, 23]. Thus, security-type-preserving compilation must satisfy the following

properties in order to imply secure compilation.

(1) The security properties of interest in the source language are enforced by means of a type

system for information-flow control.

(2) The target language must be equipped with a security type system as well.

(3) Security types should be preserved: a target variable must be assigned the same security level

as its source-level counterpart.

(4) The compiler must be correct.

The first property has been described above.

The second property requires security typed target languages. Several researchers have shown

how low-level languages, such as assembly, can be equipped with a security type system as described

in the previous section. An important requirement that this induces is that attackers written in

these languages must also be well typed, and types are used to ensure that compiled code may only

be linked with well behaved attackers that cannot compromise security.

The third property requires that the compiler preserves the security labels of variables. For

instance, if a compiler translates a high-security source variable into a low-security target variable,

then the contents of that variable would become visible to low-security observers at the target level,

allowing security violations. An implication of this requirement is that both languages must have

the same security lattice, but it would also suffice for there to be an order-preserving one-to-one

embedding of the source lattice in the target lattice.

More formally, if we denote a target-level context as ∆ and a target-level program as M. a

security-type-preserving compiler must satisfy the following requirements:

(1) Γ ⊢ P⇒ JΓKST ⊢ JPKST,
(2) Γ ⊢ P⇒ NIΓ (P),
(3) ∆ ⊢ M⇒ NI∆ (M).

On the positive side, proving a compiler to be security type-preserving does not require any

reasoning about contextual equivalence. On the negative side, not all target languages enjoy a type

system (e.g., untyped assembly), and those that do, do not necessarily enjoy one that is powerful

enough to imply noninterference.

As discussed above, a type-preserving compiler is not necessarily a secure one. Some source

language enforce security properties by means other than a noninterference type system, e.g.,

by using private fields. The strength of security-type-preserving compilation is demonstrating

that noninterference is preserved. The additional result stating that well-typed source and target

programs are noninterfering, when combined with manually inspecting the type translation to

ensure that it preserves security labels of data, makes such a compilation scheme secure. In other

words, the fact that security is preserved is taken care of by the target-level noninterference theorem,

whose applicability is granted by the type-preservation result of the compiler.
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4.2 Semantics-Preserving Compilation
There is a significant body of work on proving compiler correctness—that is, establishing that

compilation preserves the semantics or behaviour of source programs. In this paper, we use the

term semantics-preserving compilation and correct compilation interchangeably. Most compiler-

verification work over the last decade has focused on whole-program compiler correctness, which

assumes that compiled code will not be linked with any other code. However, for the purpose of

this survey, we are primarily interested in establishing correct compilation of components, since
secure compilation is most interesting in the presence of target-level linking since: (1) such linking

scenarios arise in nearly every realistic software system, and (2) secure compilation aims to ensure

that compiled components are protected from the target-level attacker code that these compiled

components might be linked with. Several recent compiler-verification efforts have tackled compo-
sitional compiler correctness, which formally takes target-level linking (composition) into account.

However, as we discuss below, all of these efforts specify compositional compiler correctness—the

theorem to be proved—in different ways, leading to different benefits and drawbacks. There is

currently no consensus on how to formally specify correct compilation of components.

4.2.1 Whole-Program Compiler Correctness. A compiler is correct if it produces target-level

programs that behave the same as their source-level counterparts. We state this property as follows.

Definition 4.3 (Compiler correctness). A whole-program compiler is correct if all its source ob-

servables (e.g., reads and prints, indicated with Behav(·)) are the same as its target observables:

P is whole and Behav(P) = Behav(JPKST)

For the sake of simplicity this definition assumes that the source language is deterministic and

that source and target observables come from the same alphabet.
5
For a non-deterministic source

language, we wish to show that the compiled target version refines the source—that is, replace =
with ⊇ since we wish to show that every target behavior is a possible source behavior. Also, if we
use different alphabets for observables in source and target, we must replace the equivalence = or

refinement ⊇ with a cross-language relation between observables.

Compilers are complex software artefacts that frequently contain bugs due to which the compiler

might fail to preserve the semantics (behaviour) of source programs. One way to ensure that a

compiler is correct is to verify it [76, 77]. A verified compiler is one that has been proved to be

semantics-preserving with the aid of a proof assistant such as Coq, which allows bug-free extraction

of the compiler implementation, erasing proofs in the verified artefact.

The CompCert project is the most well-known effort to provide a verified compiler; CompCert

is a Coq-verified multi-pass compiler from a considerable subset of C to PowerPC, ARM and

x86 assembly [76, 77]. Other work has followed and extended the CompCert approach to verify

compilers for multi-threaded languages [78], just-in-time compilation [91], C with relaxed memory

concurrency [117], high-level functional languages [68], and much more.

4.2.2 Compositional Compiler Correctness. While the results above apply only to compilation

of whole programs, there is also recent work on various forms of compositional compiler correctness
that guarantees correct compilation of components. Unlike whole-program compiler correctness,

compositional compiler correctness must account for the possibility of linking compiled code with

other target-level code (or attackers). Different results in this area impose different restrictions on

what code they may be linked with—intuitively, these restrictions correspond to assumptions about

the attacker model.

5
The interested reader is referred to Leroy [77] for a discussion on lifting the determinism hypothesis.
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At a high level, all compositional compiler correctness results must find some way to formally

specify when a source component P should be considered equivalent to a target component P′—
which we write as P ≈ P′—and then prove that P ≈ JPKST. Recent work formalizes source-target

equivalence in remarkably different ways.

One way to specify source-target equivalence is to use a cross-language logical relation that relates
source and target programs. Benton and Hur [24] were the first to put this technique to use to verify

a nontrivial compiler from a call-by-value λ-calculus to an SECD machine, and later for System F

with recursion to the same target language [25]. Hur and Dreyer extended the approach to verify a

compiler from ML to an idealized assembly [60]. Both results show that if a source component P
compiles to a target component JPKST then P is logically related to JPKST by the cross-language relation.
This approach does not scale to modular verification of multi-pass compilers. The latter would

require proving transitivity of cross-language logical relations—i.e., that a relation between source

and intermediate-language components and another between intermediate and target-language

components compose to imply source-target relatedness—which is open problem for realistic

languages. Neis et al. [93] specify source-target equivalence using a parametric inter-language
simulation (PILS), a variation on cross-language logical relations that can be proved transitive.

They show how to verify a multi-pass compiler from an ML-like source to an idealized assembly.

Both the cross-language logical relation and the PILS approaches only supports linking with target

code shown to be related to some code in the same source language—that is, they assume that

target-level attackers are no more powerful than source attackers.

Perconti andAhmed [106] specify source-target equivalence by first defining amulti-language [80]

that embeds the source and target language of the compiler and then using multi-language contex-

tual equivalence to specify source-target equivalence. They prove for a type-preserving compiler

that if a source component P compiles to target component JPKST, then P should be contextually

equivalent (in the multi-language) to ST (JPKST) (where the boundary ST is used to sensibly embed

a target component in a source context). They give a two-pass verified compiler for System F with

existential and recursive types (language F ) that performs closure conversion (to an intermedi-

ate language C) and heap allocation (to a language A), and proved the correctness of each pass

using contextual equivalence for the multi-language FCA. Stewart et al. [121] specify source-target

equivalence using a structured simulation that captures rely-guarantee invariants needed across all

passes of the CompCert C compiler. They give an interaction semantics, which provides an abstract

specification of interoperability between source and target components, which allows linking

with any target component that respects CompCert’s memory model (which is uniform across all

intermediate languages of the CompCert compiler). It is unclear how to extend this approach to

compilers whose source and target languages use different memory models (e.g., ML and assembly).

Both the multi-language and the interaction-semantics approach can accommodate linking with

target-level attackers that are more powerful than any source-level attacker.

Finally, Kang et al. [66] prove correctness of a modified version of CompCert, dubbed SepComp-

Cert, which support separate compilation. That is, it restricts linking to only those components

produced by the same compiler therefore assuming a more limited attacker than all other results.

Each of these projects use a different formal statement for compositional compiler correctness.

While there is work underway on a unified statement of compositional compiler correctness, details

of this subject are beyond the scope of the current paper, so we refer the reader to the work of Pat-

terson and Ahmed [105]. Nonetheless, all of the above formal statements of compositional compiler

correctness should imply the following property—a restricted form of equivalence reflection—as a
corollary, when both programs are deterministic or have the same kind of nondeterminism (e.g.,

they both support internal choice like process calculi).
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Property 1 (Corollary of correct compositional compilation).

∀P1, P2 ∈ S. P1 ≃ctx P2 ⇐= JP1KST
w
≃
ST
ctx JP2KST

Intuitively, this holds from compiler correctness and the fact that the compiler can be applied

both to a program and to a context.

The above property uses a form of equivalence at the target level (
w

≃
ST
ctx) that is called “well-

behaved” contextual equivalence, which is defined as follows.

Definition 4.4 (Well-behaved contextual equivalence).

P1 w

≃
ST
ctx P2 ≜ ∀CT ∈ T.(∃CS ∈ S.CS ≈ CT) ⇒ (CT[P1]⇑ ⇐⇒ CT[P2]⇑ )

Well-behaved contextual equivalence is analogous to contextual equivalence except that, instead

of arbitrary target-level contexts, it considers only target-level contexts CT that behave like some

source-level context CS (written CS ≈ CT using the aforementioned source-target equivalence) [96].

Well-behaved contexts replicate the expressiveness of source-level contexts at the target level, so

well-behaved target contexts, in essence, model other correctly compiled source-level code.

4.3 Equivalence-Preserving Compilation
A growing body of research is devoted to studying compilation that preserves certain forms of

source-level equivalence. This has mostly taken the form of fully abstract compilation, which we

discuss next in Section 4.3.1. There are also compilers that preserve other forms of source-level

equivalence, which we discuss in Section 4.3.2 along with potential avenues for future work along

these lines.

4.3.1 Fully Abstract Compilation. A compiler is fully abstract if it has that property that two

source-level components are indistinguishable at the source target if and only if their compiled

versions are indistinguishable at the target-level.

Definition 4.5 (Fully abstract compilation [1]). A compiler is fully abstract if it preserves and

reflects contextual equivalence: ∀P1, P2 ∈ S. P1 ≃ctx P2 ⇐⇒ JP1KST ≃ctx JP2KST.

Reflection of contextual equivalence usually follows as a consequence of compiler correctness,

but preservation of contextual equivalence implies that no security flaws (as expressible via equiva-

lences) are introduced by the compilation scheme. The security relevance of equivalence-preserving

compilation comes from the fact that, as discussed in Section 3, many security properties can be

expressed in terms of (source-level) contextual equivalence. Equivalence-preserving compilation

considers all target-level contexts when establishing that the compiled components are indistin-

guishable, so it captures the power of an attacker operating at the level of the target-language. As

mentioned in Section 1, if the source language is already insecure (i.e., it fails to provide abstrac-

tions that ensure security), then it can be “securely compiled” to a target language by preserving

contextual equivalence, but the output of the compilation will still be insecure. Finally, note that

(compositional) compiler correctness does not imply fully abstract compilation, nor vice versa; for

details, we refer the reader to Section 1 of New et al. [94].

Source-Level Reasoning. An additional benefit of fully abstract compilers comes in the form of

source-level reasoning. Source-level reasoning means that in order to understand how a component

behaves, the programmer need only think about how it interacts with other code at the source

level; there is no need to think about interactions with code from some other (possibly lower-

level) language. From a security point of view, this property ensures that security properties of

implementations follow from reviewing the source code and its source-level semantics [21, 109].

Source-level reasoning simplifies the task of a programmer, who need not be concerned with the

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2018.



Formal Approaches to Secure Compilation 1:17

behaviour of target-level code (attackers) and can focus only potential source-level behaviors when

reasoning about safety and security properties of their code.

Compiler full abstraction can also be formulated using stochastic assumptions, for example that

certain values can be guessed only with negligible odds, by relying on probabilistic contextual

equivalence (Definition A.5). This type of full abstraction result is called probabilistic full abstraction.
A fully abstract translation from one language to another is not always possible [97]. When it is

achievable, the proof of full abstraction of a compiler is generally split into two theorems based

on the preservation (⇒) and reflection (⇐) directions. So, Definition 4.5 may be split into two

sub-statements:

Preservation = ∀P1, P2 ∈ S. P1 ≃ctx P2 ⇒ JP1KST ≃ctx JP2KST
Reflection = ∀P1, P2 ∈ S. JP1KST ≃ctx JP2KST ⇒ P1 ≃ctx P2

Both statements have a universal quantification over all possible contexts, due to the expansion

of the definition of contextual equivalence (Definition 3.3). This makes these proofs particularly

complicated, as languages such as assembly have contexts that do not offer a clearly inductive (or

co-inductive) structure, and so are of little help for the proof. Some work adopt other equivalences,

as seen in Section 3, that are as precise as contextual equivalence in order to simplify these proofs.

For example contextual equivalence at the target level can be replaced with trace equivalence (
T

=,

presented inDefinitionA.11) [61, 64, 99, 102] orwith logical relations (Appendix A.4) [17, 18, 26, 129],

changing the statement of preservation as follows:

Preservation with traces = ∀P1, P2 ∈ S. P1 ≃ctx P2 ⇒ JP1KST T

=JP2K
S
T

This statement does not involve a conclusion involving a universal quantification over all possible

target-level contexts, so it is simpler to prove than the original Preservation statement. Appendix B

discusses in detail existing proof techniques for proving this part of compiler full-abstraction, which

is where the security relevance of the compiler, as well as all complications arise.

A correct compiler provides a good starting point for a fully abstract one, since if a compiler is

correct we have Property 1 that

Reflection with well-behaved contexts = ∀P1, P2 ∈ S. JP1KST
w

≃
ST
ctxJP2K

S
T ⇒ P1 ≃ctx P2

The reflection statement for fully abstract compilers has a stronger assumption, since it considers all

contexts, not just well-behaved ones (which are a subset of all contexts). This gives us the following

assumption that can be used to prove the Reflection statement from Reflection with well-behaved
contexts.

∀P1, P2 ∈ S. JP1KST ≃ctx JP2KST ⇒ JP1KST
w

≃
ST
ctxJP2K

S
T

The connection between fully abstract compilation and security is strong [58]; though it has also

been studied without security as a main concern [111, 112]. In this other context, fully abstract

translations were used to compare the expressiveness of different λ-calculi; if such a translation

between two calculi exists, then they are equi-expressive.

A Note on Language-based Reflection. Some modern compilation schemes are fully abstract but

they also have little security relevance. This is because the source languages involved have reflection
i.e., the ability to examine and modify the structure and behaviour of an object at runtime. As

highlighted in the past [88, 134], reflection rules out any sensible notion of contextual equivalence

and with reflection, contextual equivalence is reduced to alpha-equivalence. Thus, a fully abstract

compiler would be one that translates components with the same syntactic structure into compo-

nents with the same syntactic structure, for example without any possibility to define confidential
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data. Since reflection nullifies any useful abstraction based on the behaviour of compiled programs,

reflection makes it almost impossible to define security properties. Thus, although a fully abstract

compilation scheme may be definable for a language with reflection, it would not be secure, as the

language would not be able to express any useful security property.

Modular Fully Abstract Compilation. For modular compilers from typed source to untyped target

languages, full abstraction alone has shortcomings (explained in Section 5.2.3), as highlighted by

Patrignani et al. [102] and by Juglaret et al. [64]. For such compilers to be secure, a property that has

been proposed is modular full-abstraction (Definition 4.6). Denote a list of components C1, · · · ,Cn

as C.

Definition 4.6 (Modular full-abstraction). A compiler J · KST has modular full-abstraction if

∀C1S ,C
2
S ,C

3
S ,C

4
S .(∀CT. JC

2
S KST ≃ctx CT) ⇒ (∀C′T. JC

4
S KST ≃ctx C

′
T) ⇒

(C1S+C
2
S ≃ctx C

3
S+C

4
S ⇐⇒ JC1S KST+CT ≃ctx JC3S KST+C

′
T)

This property can be derived just by full abstraction (Section 4.3.1) and compiler modularity

(Definition 4.2). The definition of modular full abstraction is equivalent to the following one

(Definition 4.7), but it was presented that way to be as general as possible.

Definition 4.7 (Modular full-abstraction #2). A compiler J · KST has modular full-abstraction if:

∀C1S ,C
2
S ,C

3
S ,C

4
S . C

1
S + C

2
S ≃ctx C

3
S + C

4
S ⇐⇒ JC1S KST+JC

2
S KST ≃ctx JC3S KST+JC

4
S KST.

Modular full-abstraction is only relevant in a setting where the source is typed and the target is

untyped. If the target is also typed, types enforce that a compiler is modular.

Secure compartmentalizing Compilation. A flavour of secure compilation that is reminiscent of

the “preservation” part of full-abstraction is secure compartmentalising compilation (SCC) [64].

SCC is applicable for source languages with undefined behaviour while target languages do not and

for compartmentalised programs, i.e., programs that can be split in a fixed series of components

each implementing a certain interface. Define a component to be fully defined if its undefined

behaviour cannot affect other components.

Definition 4.8 (Secure compartmentalizing compilation). A compiler is SCC if:

• For any compartmentalized program and for all ways of partitioning this program into a

set of uncompromised components CS and their interfaces CI, and a set of compromised

components BS and their interfaces BI, so that CS is fully defined with respect to BI, and
• for all ways of replacing the uncompromised components with components DS that satisfy

the same interfaces CI and are fully defined with respect to BI,
• if JCSKST+JBSKST ;ctx JDSKST+JBSKST,
• then there exist components AS satisfying interfaces BI and fully defined with respect to CI
such that CS+AS ;ctxDS+AS.

Intuitively, the source is allowed to have undefined behaviour because the assumption about

full definedness ensures that undefined behaviour in a component does not affect code and data of

other components.

The direction of this implication is exactly the contrapositive statement of preservation of

compiler full abstraction. In fact, SCC can be implied by a form of full abstraction that is modular

and that constrains the context into fixed partitionings of its components, while arbitrary contexts

are loose in this regard.
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4.3.2 Other (Relational) Notions. Fully abstract compilers preserve contextual equivalence, but

compilers can alternatively preserve other source-level relational properties that are relevant for

security. Next, we discuss such secure compilation results.

Noninterference-Preserving Compilation. Bowman and Ahmed [26] present a translation from the

dependency core calculus (DCC) [2]—which can be used to encode secure information flow—into a

language with higher-order polymorphism (but no security types or lattices). They show that the

translation is correct (preserves semantics) and, more notably, that it preserves noninterference,

i.e., the property that a low-level observer (attacker) cannot distinguish high-level (protected)

computations. Note that noninterference is a relational property: it is expressed using a logical

relation e1 ≈ζ e2 : τ that captures observer-sensitive equivalence, namely that two terms of type τ
look “equivalent” to an observer with level ζ . To express noninterference in the target, Bowman

and Ahmed formalize a notion of observer-sensitive equivalence that makes essential use of both

first-order and higher-order parametric polymorphism. In particular, they show how to encode

DCC’s security lattice and protection judgment using a protection ADT encoded in the target.

Note that since observer-sensitive equivalence is not the same as contextual equivalence for DCC,

Bowman and Ahmed’s result is not a full abstraction result. Nonetheless, the proof relies on a

backtranslation like full abstraction results.

Trace-Preserving Compilation. Patrignani and Garg [103] have proposed an alternative secure-

compilation statement based on traces called Trace-Preserving Compilation (TPC). Trace-preserving

compilation was studied for reactive languages, where traces fully describe the behaviour of a

component and therefore trace equivalence and contextual equivalence coincide. Thus, TPC is stated

in terms of traces and not in terms of preservation of equivalences.t Intuitively, a trace-preserving

compiler generates code that (i) preserve the behaviour of their source-level counterparts when the

low-level environment provides valid inputs and (ii) correctly identify and recover from invalid
inputs. Invalid inputs are those that have no source-level counterpart (e.g., if booleans are encoded

as the integers 0 and 1 by a compiler, then 2would an invalid boolean input in the target). Condition

(i) implies what is often called correct compilation—that the target preserves source behaviour

when all interacting components have been compiled using the same (or an equivalent) compiler.

Condition (ii) ensures that compiled code detects target-level attacks and responds to them in a

secure way. Formally, we indicate the set of traces describing the behaviour of a program P as

TR (P ). Traces λ are lists of action λ and we differentiate input and output actions (i.e., received and

generated by P ) by decorating them with ? and ! respectively.

To formally define TPC we need a cross-language relation among actions ≈⊆ λ × λ that is total,

invertible and injective. This relation identifies what are valid and invalid actions and it can be

used to state when whole traces are related by applying it pointwise to the elements of two traces

λ and λ. Additionally,
√
is a target-only action that has no source-level counterpart and that is

opaque, i.e., it does not depend on any hidden internal state. Finally, define obs(λ) to be the set of

all even-length prefixes of trace λ, i.e., those that end with an observable generated by compiled

component.
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Definition 4.9 (TPC). J · K is TPC if ∀P

TR (JPK) = {λ | obs(λ) =
⋃
n∈N

intn (P)}

int0 (P) = {λ | ∃λ ∈ TR (P). λ ≈ λ}

intn+1 (P) = {λ | λ ≡ λ1λ?
√
λ2 and λ1λ2 ∈ intn (P) and ∄

√
∈ λ1

and no source trace relates to λ1λ?}

The case for int0 ( · ) yields all valid traces, which satisfy condition (i) above. The other case

satisfies condition (ii) as it considers traces that receive an invalid action (λ?) and respond to it with
√
, which we know does not leak information. The n + 1 case adds only one such

√
at any possible

position in the trace, so long as it is in response to an invalid action.

Since it is defined in terms of traces, TPC has been related with hyperproperties preservation,

proving that any trace-preserving compiler preserves a relevant subclass of hyperproperties:

hypersafety [32]. Intuitively, hypersafety captures systems where “something bad does not happen”

and it includes termination insensitive non interference as well as observational determinism.

Patrignani and Garg [103] define how to preserve the meaning of hypersafety across languages

and as an example it shows how the meaning of noninterference is preserved, so a TPC compiler

preserves also noninterference correctly.

Example 4.10 (TPC preserves noninterference). We now give a brief example of how TPC preserves

noninterference (and analogously any hypersafety), which also motivates what makes a trace-

preserving compiler secure.

Noninterference is a hyperproperty because it is concerned with multiple runs of the same

program, two in this case, that differ on the secret inputs but are the same on the public outputs. A

TPC compiler preserves noninterference because it produces code whose target traces include those

that relate to the source ones, so we know that those do not violate noninterference. Additionally,

the other traces include

√
, and we know that

√
is opaque (which in the noninterference setting

means public) so it is ok to respond with it to extra target inputs, as doing so does not leak any

information.

TPC has also been proven to be strictly stronger than general full abstraction under the assump-

tion that trace equivalence and contextual equivalence coincide. However, if a compiled component

replies uniformly and securely (e.g., by halting the computation) to all invalid inputs, the two

notions coincide. This is particularly relevant since all existing fully abstract compilers actually

behave this way, so they attain TPC and so it is clear that they also preserve hyperproperties.

Future Definitions. In future work, it might be useful to consider compilation schemes that

preserve more limited notions of equivalence, instead of contextual equivalence. In particular, this

might help with the significant limitation of dynamically enforced full abstraction results, namely

the large performance overheads of compiled code. For instance, one could preserve only integrity

properties, so as to prevent code from being tampered with, but not checking for violations of

confidentiality properties. This would demand insertion of fewer dynamic checks in compiled code

and could potentially improve its efficiency. We expect these and other such notions will be the

subject of future work on dynamically enforced secure compilation [53].

This section has presented the different formal statements of a secure compiler. Discussing the

techniques used to prove that these statements is done in Appendix B; this paper now surveys

existing secure compilation work that adopt them.
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5 ACHIEVING SECURE COMPILATION
This section surveys the existing research on secure compilation. We broadly partition existing work

in two main branches depending on how they achieve secure compilation: statically (Section 5.1)

or dynamically (Section 5.2). Each of these sections presents a list of the work that fit the related

approach. For each work we give a brief description of which source and languages it uses as well

as which interesting features these languages have. Additionally we give a high-level overview of

the compiler and of how it achieves security. Finally, for each work we state what formal compiler

property is proven and by virtue of which proof technique.

5.1 Static Secure Compilation
Only one way of achieving secure compilation statically exists for now, which is by relying on a

type system for the target language (Section 5.1).

To prove the steps of the type-preserving compiler of Morrisett et al. [90] correct (cfr Section 4.1),

Ahmed and Blume [17] proved that typed closure conversion from (and to) System F is fully abstract.

This translation exploits additional typed wrappers for source terms in the target language. Typed

closure conversion turns each function into a closure: a pair consisting of a function pointer and an

environment that provides bindings from free variables to values. The conversion is type-directed

and generates typed pairs, which are given the type of their closure environment. Typed wrappers

are terms that translate source values v of type τ to target values of type Jτ K based on the syntactic

structure of v and of type τ . As a proof technique the authors adopt a cross-language step-indexed
logical relation [16] to prove the translation fully abstract. Moreover, the proofs exploit several key

properties of typed wrappers: wrapper termination (i.e., wrapper functions are total), cancellation

(i.e., a translation from τ to Jτ K and one from Jτ K to τ cancel each other) and parametricity (enabling

the usage of wrappers for abstract types). In subsequent work, Ahmed and Blume proved that

a typed CPS translation from the simply-typed λ-calculus to System F is also fully abstract [18].

Moreover, they invalidated one of the type-preserving steps of the type-preserving compiler to

TAL of Morrisett et al. [90], namely that CPS conversion to TAL is type preserving. Instead of

using global “answer types” (i.e., the type of the continuation), the typed CPS translation of Ahmed

and Blume gives each continuation its own individually abstract answer type. Consequently, a

well-typed function in typed CPS form can only use its continuation, and this prevents “bad” target

terms from being well-typed. To prove the translation fully abstract, the authors combine source and

target language in a Matthews and Findler-style multilanguage system [80] so that both languages

have access to each other’s values. Preservation and reflection of contextual equivalence is proven

by using a multilanguage step-indexed logical relations.

Barthe et al. [22] devised a secure compilation scheme from a WHILE language to a typed,

stack-based assembly language. Both languages have information flow type systems, which is

the mechanism exploited by the compilation scheme to be secure. Information-flow type systems

enforce non-interference, as seen in Section 4.1.1. The secure compilation scheme produces target

code that has the non-interference properties of the source code, thus making the translation

security types-preserving. Since the security properties of the source language stem only from the

type system, the compilation is secure. Subsequently, the authors extended their secure compilation

results to a concurrent setting, extending both source and target languages with thread creation [23].

The compilation scheme exploits the typing information to label its output code as being either

high or low security. Then, this information is fed into a secure scheduler, which uses it to ensure

that the interleaving of observable events may not depend on sensitive data. Together, the compiler

and the scheduler prevent internal timing leaks to an attacker with access to low security variables.
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Tse and Zdancewic attempted a security-preserving translation from the dependency core

calculus (DCC) to System F [129]. DCC extends Moggi’s computational λ-calculus [89] with a

notion of program dependency that captures security, partial evaluation, program slicing, and call-

tracking properties [2]. The translation uses type variables in System F as keys to access translated

DCC data at a given security level so that the data can be accessed only with the right key. To

support decrypting low-security data with a high-security key, keys can be downgraded along the

security lattice ordering. To prove that the compiler is secure, they showed that the translation

preserves and reflects the observer-sensitive equivalence formalized using logical relations. The

proof that compiled terms are non-interfering should then follow from the parametricity theorem

for System F. However, there was a flaw in Tse and Zdancewic’s proof, pointed out by Shikuma

and Igarashi. The latter then proved an analogous result for an extension of DCC with protection

contexts, which they translate to the simply-typed λ-calculus extended with base types to represent

each label ℓ in the source-language security lattice Lℓ [118].

A secure compilation scheme from DCC (without protection contexts) to Fω was then developed

by Bowman and Ahmed [26] who showed how to enforce source-level noninterference using

parametric polymorphism at the target. To prove that the translation preserves noninterference,

they developed a cross-language open logical relation (inspired by the work of Zhao et al. [142]).
Their proof relies on back-translating compiled target-level terms of translation type—i.e., whose

type is the translation, written τ+ of some source type τ—into source terms of type τ , as in the

aforementioned work on typed CPS translation [18]. Unlike the standard logical relations (as seen

in Appendix A.4), their relation needs to be open as their translation produces types and terms

with free variables. If they were closed, they would not be able to back-translate terms. All this

work targets the terminating fragment of DCC; it is still unknown if DCC extended with recursion

can be still securely compiled to a parametric calculus.

League et al. [75] developed a secure compilation scheme from Featherweight Java (FJ) [107]

to Fω that exploits the latter’s higher order type system (extended with ordered records, fixed-

point functionality, recursive types, existential types and row polymorphism) to be secure. The

compilation scheme translates each FJ class into an Fω term where fields are collected in one record

and methods are collected in a separate record which represents the virtual method table shared

by all instances of the class. In this type-preserving translation, compiled Fω terms preserve the

typing information of their source level counterparts. The type system of FJ is not the only security

mechanism: classes can have private fields which are securely compiled by using existential types.

The dependent type system of DCIL has been adopted as the basis for a type-preserving compiler

for FINE programs [30]. DCIL is an object-oriented bytecode format that extends Microsoft’s

Common Intermediate Language (CIL) with dependent types. FINE is an ML-like language deriving

from F#; it provides dependent refinement types and affine (use at most once) types. These make

FINEwell-suited for writing security-critical components, as programmers can employ the advanced

type system to specify complex access control policies. Chen et al. provided a compiler that exploits

the dependent types of DCIL to ensure that the functional dependencies of FINE functions are

respected and that affine-typed terms are used at most once [30]. Since types are the only security

abstraction of FINE, the type-preserving compiler is secure. This secure compiler is the basis for

the work of Swamy et al. [124], which focusses on the security features of F * and their applicability
in a distributed setting, though this work not provide formal security properties of the compiler.

New et al. [94] recently presented a fully abstract closure conversion result for a translation

whose target language contains control effects but the source does not. They perform closure

conversion from a simply-typed lambda calculus with recursive types to System F extended with a

modal type system to track exceptions. The type translation ensures that compiled code can only

be linked with computations that are well-behaved—specifically, they may not throw un-handled
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exceptions. A key contribution of this work is a new back-translation technique, called universal
embedding, that is needed for the proof of full abstraction (this is discussed in Appendix B.3.1).

5.2 Dynamic Secure Compilation
Compilers that achieve security dynamically do so in three main ways: using cryptography in the

target language (Section 5.2.1), inserting runtime checks (Section 5.2.2) and exploiting security

architectures (Section 5.2.3).

5.2.1 Cryptographic Primitives for the Target Language. This section describes work devising

compilers for distributed and concurrent languages, which are subject to the Dolev-Yao attacker

presented in Example 2.9. These papers achieve secure compilation by exploiting target-level

cryptographic primitives to protect messages exchanged between target-level processes.

Abadi, Fournet and Gonthier extensively studied the application of cryptographic primitives

to securely compile inter-process, message-passing-based communication, both in concurrent

and distributed settings [5–7]. These authors adopt source languages that are variations of the

join calculus, a model of concurrency where processes send and receive messages on first-class

channels. The join calculus is reminiscent of the π -calculus [86, 114]; these languages are also

equivalently expressive (up to weak barbed congruence [48]). The target language chosen in

these secure-compilation results is the secure join calculus (or Sjoin calculus), which extends the

join calculus with security primitives for encryption ({M}k) and decryption (case L of {M}k in P)
of message M with key k.
The first work [5] presents a fully abstract compilation scheme for processes which are given

secure local and global communication primitives. Here, translated processes are wrapped in a

“firewall” process that (i) maintains key pairs for cryptographic primitives and (ii) transforms com-

munication on global channels into security protocols employing those primitives. The translation

is proven to preserve and reflect weak bisimulation, which is the notion that frequently replaces

contextual equivalence for concurrent calculi (Appendix A.2).

Subsequentwork by the same authors [6] develops a secure compilation scheme for the join calculus

extended with support for principals, so that the calculus has authentication primitives. In the

target language, principals are translated into key pairs that are used to generate unforgeable

certificates that prove principals identities. The translation is proven to preserve and reflect weak

bisimulation, but only in the presence of noise in the network (i.e., enough encrypted messages) to

prevent traffic analysis.

Additional work by these authors provided a secure compilation scheme for the join calculus

extended with constructs to create secure channels [7]. In this translation, target processes are given

a cryptographic key for each communication channel they define and placed behind a “firewall” that

keeps track of key usage. Communication is translated into the execution of cryptographic protocols

which use nonces and other techniques to thwart different kind of attacks. Full abstraction of the

translation is again proven by showing that weak bisimulation is preserved and reflected, again

relying on the presence of noise in the network. Given LAN or wireless network implementations,

the assumption of noise in the network seems well justified.

This line of work was further expanded by Bugliesi and Giunti [27], who provided a secure

compilation scheme from a dynamically typed π -calculus to the applied Spi calculus which relies

on cryptographic operations to secure channel communication. The Spi calculus is an extension

of the π -calculus with cryptographic primitives, much as the Sjoin calculus is to the join calculus.

The usage of the π -calculus (as opposed to the join calculus of previous work) allows forward

secrecy attacks (cfr Example 2.9) to be modelled. This is because in the π -calculus a communicated

channel can also be used to perform input, while this is not possible in the join calculus. This work
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presents a translation that protects against these attacks by extending translated processes with self-

signed certificates and a proxy server. Self-signed certificates are the target-level implementation

of source-level channels; these certificates include the channel identity and two encryption keys

corresponding to the input and output capabilities. The proxy server keeps track of cryptographic

keys related to channels to preserve the expected interactions between processes. Full abstraction

of the compilation scheme is proven by showing it preserves and reflects weak bisimulation.

Techniques similar to those employed by Abadi, Fournet, and Gonthier are also employed by

Adão and Fournet [13], who develop a secure compilation scheme for a π -calculus extended with

secure channels, mobile names, and high-level certificates. The characteristic of their work is

the target language and the adversary model. The target language is a set of machines that have

input and output network interfaces and can perform cryptographic operations. The adversary is

modelled as a probabilistic algorithm that controls that network and some corrupted machines.

The compilation scheme is again proven to preserve and reflect weak bisimulation.

The work of Laud [74] also exploits encrypted and signed messages to securely compile the

programming language ABS into the applied π -calculus extended with cryptographic operations.

ABS is a concurrent, object-oriented language with asynchronous method calls and futures [63].

The compilation scheme translates each asynchronous method call into an explicit message which

is uniquely identified by means of a fresh cryptographic key. Compiled objects are also uniquely

identified by means of fresh keys associated to them. The semantics of both the source and the

target languages are given in terms of LTSs, where attackers are modelled as other LTSs that can

synchronise on visible actions. The translation is proven to preserve and reflect weak bisimulation

defined on these LTSs.

Duggan [43] provide a secure compilation scheme from a π -calculus-like language with cryp-

tographic types and principals to the Spi calculus. Cryptographic types express cryptographic

guarantees on values at the type-system level since types indicate that certain values are encrypted

or signed by certain principals. The information regarding principals is hidden for communication

over an insecure medium, while it is exposed when the medium is trusted. The type system performs

static checks to ensure that values are used in the expected manner. It also performs dynamic

checks on cryptographic-typed values when principals data is unavailable. The compilation scheme

inserts cryptographic operations only when a dynamic check is required, thus minimising the

computational overhead introduced by cryptography. As in work mentioned above, principals are

translated to pairs of keys which are used for encryption and signing of network messages. As

before, contextual equivalence is replaced by weak bisimulation for fully abstract compilation.

Session types ensure that distributed parties adhere to a protocol. The latter is encoded as

a session: a sequence of actions detailing what messages are communicated between various

peers [29]. Corin et al. [33] presented a secure compiler from F# extended with session types

to F# extended with libraries providing cryptographic primitives. The secure compiler produces

code that is shielded from the attempts of other peers to deviate from their session by exploiting

the cryptographic primitives of the target language. The compiler does not introduce additional

messages but it maps each session action to a cryptographic message between the same sender and

receiver. Each cryptographic message contains a unique session identifier and the signatures of the

sender and of the senders of the previous messages, so it can be uniquely identified. Any attempt

to tamper with the integrity of the session can thereby be detected and any such message can be

dropped. The secure compiler is proven fully abstract by adopting a labelled operational semantics

which makes explicit the communication between secure code and a potential attacker.

In the case of distributed languages, Fournet et al. [50], present a fully abstract compilation

scheme for a distributed WHILE language featuring a type system with security levels. The target

language is a WHILE language extended with cryptographic libraries and with threads that reside
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at different locations. The compiler performs four passes of the source code in order to generate

secure target code. First, source code with location annotations is sliced into local programs,

each meant to run in a different location. Second, each local component is extended with global

variables to keep track of its state. Then, for each global variable, a local replica is created, together

with additional functionality for explicit updates between these replicas. Finally, global variable

updates are protected with cryptographic operations and the keys that regulate these operations

are disseminated to the threads. To prove that the translation is secure, each step is proven to be

computationally sound, i.e., it preserves noninterference [51]; each step is also proven to be correct.

Another class of distributed languages is multi-tier languages, which are adopted to develop web

applications split into several tiers (i.e., client, server, database, etc.) that can reside on different

machines. Baltopoulos and Gordon [21] describe a secure compilation scheme for the multi-tier

language TINYLINKS into F7, an ML dialect extended with refinement types. The secure compiler is

proven to preserve data integrity and control integrity properties of well-typed source components

in the generated target components by exploiting authenticated encryption mechanisms. Malicious

attackers are modelled as untyped contexts which also have power over the network connecting

the different tiers. The compiler is secure because it is proven to translate well-typed components

into robustly-safe F7 expressions. These expressions are a subset of F7 expressions that are immune

to attacks on data and control integrity.

5.2.2 Dynamic Check Insertion. This section describes work that achieves secure compilation

mainly through the addition of dynamic checks in the generated target code. Specifically, while

there is other work that adds dynamic checks to make their compilation schemes secure, since

they rely primarily on mechanisms other than the checks, they will not be discussed here, but in

the next section. When adding dynamic checks in the generated target code, it is crucial that the

attacker must not be able to tamper with these checks as that would render them void. Each of the

results presented below adopt different techniques to protect the inserted checks.

Ghica andAl-Zobaidi [54] describe a fully abstract compilation scheme from a λ-calculus extended
with iteration to VHDL digital circuits. Security of compilation is achieved through the addition of

a runtime monitor that forces external code communicating with the generated digital circuits to

respect the expected communication protocol. The attacker is prevented from tampering with the

hardware and thus cannot disrupt the runtime monitor.

Fournet, Swamy, Chen, Dagand, Strub, and Livshits [52] use defensive wrappers in concert

with other techniques described below to securely translate a monomorphic ML-like language

with mutable references and exceptions (dubbed f*), to an encoding (dubbed js*) of JavaScript in
f*. The compiler first translates f* terms into js* terms, then defensively wraps these terms to

protect them from features of js* that can be exploited by a malicious attacker. Defensive wrappers

provide dynamic type checks for the untyped js* code. For the compiler to be secure, compiled code

first makes a local copy of trusted values from the global namespace, to prevent an attacker from

redefining these values. Second, it exports defensively-wrapped, translated terms into the global

namespace to make them globally available. The authors prove that the translation is fully abstract

using a labelled bisimulation, called applicative bisimulation, in place of contextual equivalence.

Using Fournet et al.’s wrappers, Swamy et al. [125] have developed a compiler that is type

preserving for a gradually-typed language into JavaScript. The source language is TypeScript
∗
, a

gradually-typed [119] version of JavaScript made sound and extended with UN types to typecheck

opponent code [49, 57]. The compiler uses wrappers around typed values to convert them safely from

? (the dynamic type of the gradual language) to UN types and vice-versa. Additionally, it provides

extra objects that ensure that TypeScript
∗
typing is sound (unlike normal TypeScript). By ensuring

that specific JavaScript files are loaded first, the compiler prevents that the additional TypeScript
∗
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objects and wrappers can be tampered with by a JavaScript attacker. The compiler preserves

memory safety of the additional objects and typing; for the proof of the latter both TypeScript
∗
and

JavaScript are modelled in f*, which is typed and thus allows stating type-preservation.

Devriese et al. [37] devised a simple compiler from the simply-typed lambda calculus with a

fix operator to the untyped lambda calculus. The compiler performs type erasure and dynamic

typechecks on values that are received from outside the compiled function. Each value taken from

the context is checked to match the expected type, e.g., a value of type Unit is checked to be JunitKST,
a pair is checked to syntactically be a pair (and each element is checked to be of the right type).

While the result is unsurprising, the technique used to establish full abstraction is the first of its

kind as they rely on an approximate backtranslation (as described in Appendix B.3.3). The proof

was then mechanised, making it the first full abstraction result to be fully mechanised in Coq [36].

5.2.3 Security Architectures for Memory Protection. Memory-related attacks (such as those

captured by Theorems 2.1, 2.2 and 2.4) have resulted in a large body of research on memory

protection mechanisms. The most relevant of these mechanisms for secure compilation are Address

Space Layout Randomisation and Protected Module Architectures. The remainder of this section

presents each security mechanism, followed by the secure compilation results using them.

Address Space Layout Randomisation (ASLR). ASLR is a technique that randomises the memory

layout of key data areas of a program such as the base of the stack, of the heap, of libraries,

etc. when creating an executable. The executable is divided in segments whose order is randomised

by the dynamic linker (i.e., just before running the executable). This technique is used to hinder an

attacker from mounting “return to libc” attacks, and from using previously acquired knowledge of

the location of certain data to access that data in subsequent runs of a program. When a “return to

libc” attack is mounted, the attacker exploits a buffer overflow to overwrite the return address of a

function to a known function, e.g., one residing in libc. This known function can then be used to

mount the attack, e.g., the libc contains functions to execute shell commands that can be used to

carry out the intended attack.

Considering Example 2.1, if the memory is large, and the location of secret is randomised at

every run, an attacker will not be able to access the secret with high probability and thus cannot

break its confidentiality. In the case of Example 2.4, the attacker will not be able to guess the

location where Object y is allocated, so she cannot tamper with it.

Abadi and Plotkin [9] adopted ASLR to achieve probabilistic fully abstract compilation in a

λ-calculus setting. Their source language is a simply-typed λ-calculus extended with an abstract

memory: a mapping from locations to values; locations can be public or private. Their target

language is a λ-calculus extended with a concrete memory: a mapping from natural numbers (in

this case they assume an unbounded memory) to values. Abadi and Plotkin prove that with a large

enough memory, ASLR ensures that an attacker operating at the target level has a negligible chance

of guessing values, thus achieving probabilistic full abstraction.

Subsequently, Jagadeesan et al. [61] extended this secure compilation scheme to a source language

with more complex features. The source language is λµhashref-calculus, a λ-calculus extended with
operations for testing the hash of a reference and with the following features: dynamic memory

allocation, higher-order references and call-with-current-continuation. The target language is the

λµprobref-calculus, a λ-calculus with the ability to reverse the hash of a reference. Reversing a

hash succeeds when a reference is known, but it is complex when the reference is unknown due to

the large memory layout and the random allocation of references in memory. The authors develop

LTSs for both λµhashref-calculus and λµprobref-calculus which yield trace semantics which is

then used in place of contextual equivalence to prove full abstraction of the translation (as explained
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in Appendix A.2). The hashref feature grants the attacker the power to compare references and

to know the format of a reference so that he can guess reference locations. Although it is not

what lambda calculi typically provide, this kind of knowledge is available in C-like languages, so

hashref is a justified addition to the language. The probref feature does not have a corresponding

language construct but it models an attacker trying to break a hash function (e.g., by running

collision attacks [135]).

Protected Module Architectures (PMA). PMA is an assembly-level isolation mechanism imple-

mented in several research [81, 82, 95, 122] and industrial prototypes such as the Intel SGX pro-

cessor [83]. PMA logically partitions the memory in a protected and an unprotected section. The

protected section is further divided into a code and a data section. The code section contains a

variable number of entry points: the only addresses to which instructions in unprotected memory

can jump and execute. The data section is accessible only from the protected section. Code running

in the unprotected section has unconstrained access to unprotected memory.

Considering Example 2.2, if the variable secret is allocated in the protected data section, its

integrity cannot be tampered with from code executing in the unprotected memory section.

A protection mechanism analogous to PMA is sandboxing [56, 141]: a trustworthy environment

extended with a location (the sandbox) where non-trustworthy code is placed and monitored so

as to detect any malicious action it performs. Conceptually, sandboxing seems to be dual of PMA,

thus we expect that the same insights developed in the secure compilation work for PMA would

lead to the development of a secure compiler for sandboxed programs. However, no such secure

compiler has been devised yet.

Agten et al. [14] were the first to present a fully abstract compilation scheme that uses PMA to

preserve confidentiality and integrity properties of their source language. They devised a secure

compilation scheme for a language with objects, interfaces and first-class method references to an

assembly language extended with PMA. The compilation scheme places the objects to be secured

in the PMA protected memory partition. Then, it creates entry points for methods appearing in

interfaces, so that external code can call them. Secure methods activation records are allocated on

a secure stack that resides within the protected memory section. Dynamic checks are introduced

for all values communicated to and from the unprotected section in order to prevent ill-formed

values affecting the computation (analogous to the wrappers of Fournet, Swamy, Chen, Dagand,

Strub, and Livshits [52]). For example, primitive-typed values are checked to be inhabitants of that

type, so a Bool value is checked to be one of two values, the compiled versions of true and false.
Patrignani et al. [99, 101] expanded the work of Agten et al. to a source language with dynamic

memory allocation, exceptions and inner classes. This source language is an extension of Java Jr. [62]:

a Java-like object-oriented language that provides strong encapsulation of classes and objects, which

are not visible outside the package that defines them. Moreover, packages communicate based

on exported interfaces and exported objects. With the introduction of class types, the secure

compilation scheme introduces more dynamic checks. Objects are checked to see whether they

define the method they are called on, which is possible as objects are allocated in the secure memory

partition alongside their type information (which is also used for dynamic dispatch). Similar checks

are performed on parameters whose type is a securely-defined class. Moreover, the identities of

objects passed to the unprotected code are replaced with natural numbers, so as to obscure the

allocation strategy of objects in the protected memory section and prevent related attacks. When

an exception is thrown from unprotected code, it is also checked to be among the exceptions that

could be thrown (i.e., defined in the method signature) and not a maliciously crafted one.

This work was subsequently extended by Patrignani et al. [102] to support modular (secure)

compilation. In fact, the authors showed that if the fully abstract compiler above is used to compile
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two components and link the related PMA modules with each other, the resulting target program

is vulnerable to attacks. These attacks went unnoticed since they rely on invariants being shared

between multiple components and multiple PMA modules, but the compiler above only considers

one of them. To support modular secure compilation, the compiler introduces a central module Sys
that is a proxy for method calls and returns, so it enforces well-bracketed control flow. All compiled

components divert their calls through it and they accept incoming jumps to entry points only if

they come from Sys. Additionally, Sys tracks globally-shared objects, so runtime typechecks on

them can be performed inside modules.

The work of Agten et al. [14] and the first result by Patrignani et al. [99, 101] both prove

compiler full-abstraction while the second result Patrignani et al. [102] proves modular compiler full-

abstraction. When proving these properties, they assume that reflection of contextual equivalence

holds, claiming that most compilers achieve this. By relying on a fully abstract trace semantics

for the target language [100], they prove the contrapositive of the preservation of contextual

equivalence. This is proven by devising an algorithm that always constructs a source-level context

that differentiates between two components that exhibit different target-level traces.

Still exploiting the PMA architecture, Larmuseau et al. lift the PMA mechanism into the op-

erational semantics of a Matthews and Findler-style multi-language system [80]. They securely

compile both a simply typed λ-calculus [72] and a lightweight ML featuring locations and basic

data structures to this multi-language system [71]. For both results, they prove that the compilation

scheme preserves and reflects weak bisimulation. They subsequently extended these results with

the derivation of a secure abstract machine for ML that uses PMA to protect against a malicious

context [73]. Each step of the abstract machine is proven to be fully abstract (much like a multi-pass

compiler), so the whole abstract machine is fully abstract.

The Pump Machine. A general-purpose security architecture is the Pump machine [39, 40], which

is the base of the Crash-Safe machine [20]. The architecture permits arbitrary meta-data tracking

at the machine code level, which can be used to enforce security policies such as information flow.

All registers and memory cells have tags linked to them which are checked upon execution of any

instruction to match the policy bound to that instruction. If this check fails, then the instruction is

not executed. Otherwise it is executed, the tags are updated and the tag combination is cached to

improve later similar checks. Since tags are arbitrary logical statements, the Pump machine can

isolate code and data and predefined entry points for executing code (analogous to PMA modules)

which are called compartments.

An idealised version of this architecture has been targeted with a compiler for an unsafe source

language with components procedures and buffers [64]. The target language is a compartmen-

talised RISC machine that creates isolated compartments that can only jump between each other

end exchange data via registers. The compiler translates each source component into a target

compartment, creating entry points to the compartment for each function that can be called from

outside the compartment. At each jump towards the outside of a compartment, all registers that do

not carry jump-related information are reset. The returning address is enforced to be linear, so it

cannot be misused and this guarantees well-bracketed control flow. By instrumenting the target

language with a fully abstract trace semantics, they prove secure compartmentalising compilation.

An analogous but much richer result was also presented by Juglaret et al. [65]. This work is still

considering an attacker model of mutually-distrustful compartments that can be compromised by an

attacker. The source language is an object-oriented language while the target is still a RISC machine

with symbolic micro policies (i.e., the Pump machine with an abstraction over how micropolicies

are implemented). The compiler also deals with an intermediate language that is an object-oriented

stack machine. Each class is compiled to its own component, with a local stack and entry point for
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public methods. As before, returning is handled linearly. Parameters’ types are encoded in tags, so

compiled code uses them to perform runtime typechecks upon receiving context parameters.

5.3 Remarks on the Static and Dynamic Techniques
The two families of techniques for achieving compiler security have two different models in mind.

The static technique generally involves a larger trusted computing base, where often all the software

up to the linker is trusted, and this often includes a typechecker. It is at this linking time that the

attacker is typechecked and, should her code be ill-typed, no linking will happen (if the code is

well-typed, no attack can arise). The attacker thus lies just above this software and he supplies

malicious code that needs to be linked against the code to be protected. In contrast, the dynamic

techniques generally consider a setting with a smaller trusted computing base, where the attacker

potentially controls all the software running on the system except for the compiler and the linker.

The code to be compiled runs no checks on the attacker code, and it simply links against any

possible code. By relying on the additional dynamic checks, when the attacker code misbehaves,

such misbehaviour is prevented from having security repercussions.

We envision that the two technique can be integrated in the development of compilers and we

discuss this subject further now in Section 6.

6 OPEN CHALLENGES AND FUTURE PERSPECTIVES
This section discusses challenges and directions for future work on secure compilation.

One of the greatest challenges for secure compilation is the development of a secure compiler for

a realistic programming language, comprising I/O, libraries and so forth. The existing approaches

show promising results, but the application of secure compilation techniques to mainstream

programming languages has not yet been achieved. A real compiler comprises many intermediate

steps, where a source program is translated to a series of intermediate programs before being turned

into a target one. These intermediate languages often have types, which are used to perform static

analysis and guide code optimisation. Often, only the last step of the compiler goes from typed to

untyped languages. We can therefore envision that both static and dynamic techniques are useful

when devising a realistic compiler which preserves security throughout all intermediate steps.

Specifically, the fine line between static and dynamic approaches can be bridged using proof

carrying code (PCC [92]). Some of the surveyed work envisage such a cooperation between PCC and

secure compilation [21, 75, 90] and some papers use some form of PCC to guide the compiler during

the translation [22, 23]. PCC is a mechanism that binds a component to a proof of its properties, so

that a host can check the properties of a component before executing it. PCC can be integrated

with secure compilation to allow the insecure code to prove that it is compliant to a pre-defined

agreement, i.e., it is not malicious. This way, static techniques can be employed by compiling a

component to a typed language, erase its types and deliver it with a proof that it is well-typed.

This reduces the trusted computing base as only the proof checker is required to be trustworthy.

Such a component will need to use dynamic techniques when linking against components without

a proof, but it will need no additional feature to link against code that comes with a proof of its

well-typedness, thus incurring in no overhead. This subject brings us to the next intriguing topic

for secure compilers: efficiency.

Efficiency of securely-compiled code is rarely considered in existing work. Two main research

paths are envisioned to provide more efficient secure compilers, besides the already-discussed use

of PCC: code optimisation and changes to the criterion for compiler security. Code optimisation

has rarely been considered explicitly as a step of the surveyed secure compilers. Investigating the

interaction between code optimisation and security has been recently proposed in a call-to-arms

paper but has not been thoroughly carried out [42]. We foresee that studying which optimisations
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violate which security properties will be an interesting research trajectory for secure compiler

development. Finally, compiler full-abstraction often requires compilers to insert checks that do

not deal with security violations. Developing new secure compilation criteria that fine-tune the

checks inserted by the compiler so that they only affect code security is a topic that researchers are

starting to look at now through preliminary work [10, 11, 47, 53, 104].

From the perspective of source languages, we envision that studying the secure compilation

of advanced type systems is necessary, as they are a primary origin of source-level security

enforcement. We provide but two examples of interesting type systems whose secure compilation

require study, though we believe that this concept can be generalised to any type system that

enforces security policies.

Many programming languages provide a form of polymorphism (e.g., Java generics), which lets

programmers both abstract from the details of specific types and achieve information hiding. The

connection between source-level polymorphism and target-level encryption has been vastly stud-

ied [79, 108, 123], to the point where Sumii and Pierce conjectured that (parametric) polymorphism

can be securely compiled using encryption. While this conjecture has been disproved [38], the

mechanisms that allow secure compilation of polymorphism are still unknown. Further exploration

of the lambda-cube (after standard polymorphic programs) is also necessary. In fact, dependently-

typed intermediate languages seem a necessity for compilers as intermediate languages often

need to accommodate the widest array of source-level abstractions [133]. For a compiler using a

dependently-typed language it is necessary to be able to compile those type abstractions securely,

so this research direction needs to be investigated.

From the target language perspective, two main research trajectories can be seen: supporting

concurrency and studying more performant security architectures. In fact, no existing secure

compiler targets concurrent untyped assembly language. As presented, concurrency-related secure

compilation schemes have been studied in a distributed setting but only in a message-passing

based model of concurrency or in a typed multithreaded assembly setting. However, untyped
multithreaded assembly language is a reality inmodernmachines. Supporting such a target language

seems necessary to bring secure compilation to mainstream audiences.

Concerning secure architecture development, recent advances in the field (e.g., PMA, ASLR and

the Pump machine) provided architectures that can support secure compilation, though other inter-

esting ones can be studied. Specifically, capability machines [136, 138] are a security architecture

that embody the capability paradigm of Dennis and Van Horn [35]. The idea revolves around the

concepts of subjects, operations and objects: subjects perform operations on objects. For example,

Alice (a subject) can write (an operation) something to the filesystem (an object). With capabilities,

Alice’s write succeeds only if she is able to present a capability that allows her to at least write to
the filesystem. In this case, we say that Alice has permission to write the filesystem. Were she not

able to present such a capability, the write would fail. With capabilities, only connectivity begets
connectivity. So if a subject cannot create a capability to an object, and if she does not receive a

capability to an object, she cannot perform operations on the object. Capabilities are not forgeable,
all Capability Machines provide a supervisor (to use the terminology of Dennis and Van Horn)

that ensures this. The literature on the subject is vast, but for secure compilation purposes, we are

interested in implementations of this machine. Few capability machine implementations exist: the

M-Machine [28] Capsicum [136] and Cheri [138]. In the M-Machine, capabilities are words whose

first bit is set to 1 (no instruction can set this bit to 1 without calling the supervisor). Capsicum

introduces capabilities at the OS level in a BSD-like operating system. Cheri introduces capabilities

at the hardware level like the M-Machine and adds a capability co-processor to the CPU in order to
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handle capabilities; normal instructions then succeed only if an enabling capability is present in the

co-processor. Preliminary work showed that Cheri is a viable candidate for secure compilation [128].

Finally from the formal methods perspective, these contributions are envisaged. First, fur-

ther study of proof techniques for compiler full abstraction, e.g., integrating under- and over-

approximating embeddings, will be necessary to study secure compilation of languages with

advanced constructs. Second, as mentioned in Section 4.3.2, novel criteria for compiler security,

e.g., property-directed [53], are necessary to reduce the overhead that current definitions incur

into. Moreover, no criteria currently encompasses side channels, which are a serious attack vector

for example for cryptanalisis. Studying the interplay between side channels and secure compilers,

and integrating this in secure compiler definitions will be a challenging research goal.
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A ADDITIONAL PROGRAM EQUIVALENCES FOR EXPRESSING SECURITY
PROPERTIES

This section presents a probabilistic variant of contextual equivalence (Appendix A.1) Then it

formalises alternatives to contextual equivalence, which have been devised since direct proofs

of contextual equivalence are usually intractable. Specifically, this section discusses bisimilarity

(Appendix A.2), trace semantics (Appendix A.3), and logical relations (Appendix A.4).

A.1 Probabilistic Contextual Equivalence
Contextual equivalence is not enough for languages with a notion of randomisation or cryptog-

raphy, as the universal quantification over contexts models a too powerful attacker. If a strong

cryptographic function is used to encrypt data, most contexts will not be able to decrypt that data

and retrieve the contents. So, by considering all contexts, there is one that by definition has the

right key to decrypt the data. That context can observe some behavioural difference that we know

can be done only by breaking the cryptographic function. As the used cryptographic functions

are generally assumed to be unbreakable, this model violates a key assumption of the system.

Additionally, when keys are computable (e.g., they could be bitstrings) the context can just exhaust

the search space and try all keys. However, in practice very large keys are used and these contexts

would run for too long to calculate the right key. As these contexts also violate a key assumption

of the system, often contexts are limited to be polynomial in the size of the key, so they cannot

exhaust the key search space [50, 51].

In order to filter out contexts that violate these key assumptions, probabilistic contextual equiva-

lence can be used. With probabilistic contextual equivalence, two programs are equivalent if they

are equivalent up to a certain probability (i.e., in the majority of contexts) for polynomial contexts.
6

In the example above, contexts that have ways to break the cryptographic functions must not

qualify as the majority of contexts, so they can be safely discarded when considering program

equivalence.

To model the semantics of randomisation, oracles can be made part of the semantics [8]; they

provide infinite streams of random values for the randomisation function to use.

Examples A.1 to A.2 describe the usage of oracles. Example A.3 discusses how guessing (either

random numbers or cryptographic keys) affects the definition of contextual equivalence.

Example A.1 (Obvious equivalences). With an oracle, obvious equivalences must be respected.

For example, a program Pr that returns a random value must be equivalent to itself.

1 public getRandom(){ //Pr
2 return rand.next();
3 }

In this case, for any oracle O , there exists an oracle (the same oracle O) that makes the behaviour

of two copies of Pr coincide.
Pr is also equivalent to the following snippet Pr r , which generates two random numbers and

only returns the second.

1 public getRandom(){ //Prr
2 rand.next();
3 return rand.next();
4 }

6
We state this together with the assumption on polynomial contexts, though in cases when secrets are not computable, this

condition can be dropped [9, 61].
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The oracle that must be used with Pr r is one that has all elements of O interleaved with other

elements.

Example A.2 (Obvious inequivalences). Consider a program that returns two random numbers

and a program that returns the same random number twice.

1 public getRandom(){
2 var x = rand.next();
3 return new Pair(x, rand.next());
4 }

1 public getRandom(){
2 var x = rand.next();
3 return new Pair(x, x);
4 }

For any oracle used with the right-hand side snippet, the oracle that contains the same value

twice will make the left-hand side snippet equivalent to it. However, there is no oracle that will

make the opposite true: given an oracle for the left-hand side snippet, there is no way to build

one that will make the right-hand side one behave the same. In fact, an oracle that provides two

different values will make the left-hand side return a pair with two different values, and this cannot

be done by the right-hand side snippet.

We can thus conclude that if any two components are equivalent, then for any oracle used with

the first one there must exist one for the second such that they exhibit the same behaviour and vice
versa.

Example A.3 (Guessing). Consider two programs that store a random number and then receive

input from the external code via variable guess. If that input matches the random number, one

returns 0 and the other returns 1, otherwise they both return 2.

1 public getRandom(){
2 var x = rand.next();
3 var guess = callback();
4 if (guess == x)
5 return 0;
6 return 2;
7 }

1 public getRandom(){
2 var x = rand.next();
3 var guess = callback();
4 if (guess == x)
5 return 1;
6 return 2;
7 }

If the random function is strong enough, the context has very little chance of telling these

programs apart. As already said however, the contexts considered in the definition of contextual

equivalence are universally quantified. Thus there is also a context that differentiates between the

two programs by guessing the number, so the definition of probabilistic contextual equivalence

needs to incorporate probability concepts.

The probabilistic notion of contextual equivalence states that two programs are equivalent

if, when the context is polynomial, they behave the same to a certain probability. Denote the

probability of a certain event with P(·) and let σ range over the [0,1] interval. We indicate a context

being polynomial given the size s of intended secrets as ⊢ C : poly s .

Definition A.4 (Contextual preorder).

P1 ⊑σ P2 ≜ P(∀C. ⊢ C : poly s, O1, ∃O2. C[P1,O1]⇑ ⇐⇒ C[P2,O2]⇑ ) > σ

Probabilistic contextual equivalence can be defined as following.

Definition A.5 (Probabilistic contextual equivalence [9]). P1≃ctxσP2 ≜ P1 ⊑σ P2 and P2 ⊑σ P1.

A.2 Bisimilarity
Bisimilarity has been frequently employed in the field of process algebra in order to state when two

processes exhibit the same behaviour [113]. It has also been frequently used to prove compilation

schemes for process calculi secure [5–7, 13, 27, 43, 74]. Intuitively, two processes have the same
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behaviour when they perform the same “actions” and become new processes that continue to have

the same behaviour.

The notion of bisimilarity (Definition A.8) relies on the concept of a labelled transition system

(LTS), which is used to provide a model of the process.

Definition A.6 (LTS). A labelled transition system is a triple (S,Λ,→) where S is a set of states, Λ
is a set of labels and→ ⊆ S × Λ × S is a ternary relation of labelled transitions.

A transition between two states S1 and S2 ∈ S on a label λ ∈ Λ is indicated as S1
λ
−−→ S2. Labels

represent what an entity external to S can observe from the states of S , as S performs computations;

labels often concern inputs and outputs, as presented in the following example.

Example A.7 (LTS [113]). Consider the LTS of a vending machine that produces tea or coffee

after receiving coins, after the appropriate request is made. It is formalised as

({SI , SR , ST , SC }, {coin, req-tea, req-coffee, tea, coffee},

{SI
coin
−−−−→ SR , SR

req-tea
−−−−−−→ ST , SR

req-coffee
−−−−−−−−→ SC , ST

tea
−−−→ SI , SC

coffee
−−−−−→ SI })

and it is depicted below.

SI SR

ST

SC

coin
req-tea

req-coffee

tea

coffee

SI models the state of a vending machine waiting for input, coin expresses the user input and SR
models the state in which the machine waits for the type of product to deliver. Based on the two

different inputs from SR , the machine can reach two states: ST and SC , the states where the machine

produces tea and coffee, respectively. Then, both ST and SC transition back to SI , labelled with the

output it provides to the user: tea or coffee.

Often, labels are also equipped with decorations that indicate the direction of the action: ! is

an observable produced from the program, ? is an observable received by it. The aforementioned

transitions can thus be decorated as follows SI
coin?
−−−−−→ SR , SR

req-coffee?
−−−−−−−−−→ SC and ST

tea!
−−−−→ SI .

Definition A.8 (Bisimilarity). Given a LTS (S,Λ,→), a relation R ⊆ S × S is a bisimulation if, for

any pair (S1, S2) ∈ R, for all λ ∈ Λ, the following holds:

(1) for all S ′
1
such that S1

λ
−−→ S ′

1
, there exists S ′

2
such that S2

λ
−−→ S ′

2
and (S ′

1
, S ′

2
) ∈ R;

(2) for all S ′
2
such that S2

λ
−−→ S ′

2
, there exists S ′

1
such that S1

λ
−−→ S ′

1
and (S ′

1
, S ′

2
) ∈ R.

Bisimilarity is the union of all bisimulations.

Two components P and Q are thus bisimilar if there exists a bisimulation relation R such that

P R Q .
A more permissive variant of bisimilarity that is often used for program equivalence is weak

bisimilarity. Its definition is the same as that of bisimilarity except that

λ
==⇒ is used in place of
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λ
−−→. Relation

λ
==⇒ abstracts away from transitions that model internal computations (often called

“silent” transitions and defined as a τ ). Formally

λ
==⇒ is defined as

τ
−−→

∗ λ
−−→

τ
−−→

∗

. Thus, programs

x = 0 ; x += 1 and x = 1 are weakly bisimilar (if x is not observable) even though they perform

a different number of internal steps; while they are not bisimilar according to Definition A.8.

When working with bisimulation in place of contextual equivalence for secure compilation,

labels model what the external code (i.e., the context in contextual equivalence) can observe about

a program. The external code is modelled as a black box that triggers transitions. So, bisimilarity

abstracts from the behaviour of the attacker but it captures the reaction of the component to certain

actions of the attacker. This abstraction is the great advantage of bisimulation over contextual

equivalence. Thus it is crucial, when replacing contextual equivalence with bisimulation, that all

possible attacker behaviour is captured by the labels, so as to have a precise characterisation of

what the attacker can do. Finally, the bisimulation proof technique is more amenable to proofs than

the unstructured induction over all possible reductions that is offered by contextual equivalence.

Example A.9 (Security properties via bisimilarity: memory size). Consider the code snippets of
Figure 3, the following LTSs describe their behaviour in a language with unbounded memory size

(Figure 5). States ext and cb indicate that control is outside the snippets. State S0 indicates the

beginning of the code snippets, states Oi indicate the state where the i-th object is allocated, and

states S indicate the end of the code snippets. States are given a subscript l or r to indicate whether

they describe the behaviour of the left-hand side or of the right-hand side snippet.

extl S0l O1l O2l

· · ·OnlcblSl

kernel τ τ

τ

τcallbackret

kernelret

extr S0r

cbrSr

kernel

callback

ret

kernelret

Fig. 5. LTSs describing weakly bisimilar snippets of Figure 3. Nodes coloured with the same colour are
bisimilar.

To indicate that the code snippets are weakly bisimilar, the following bisimulation relation can

be built:

Rmem = {(extl , extr ), (S0l , S0r ), (O1l , S0r ), (O2l , S0r ), · · · , (Onl , S0r ), (cbl , cbr ), (Sl , Sr )}

Relation Rmem is a weak bisimulation as it satisfies Definition A.8 when relation

λ
==⇒ is used. In

fact, for all pairs in Rmem , the first element can perform a possibly-empty sequence of τ s followed
by an action λ ending up in a state. The second element can also perform a possibly-empty sequence

of τ s followed by the same action λ and end up in a state that is related to the previous one in

Rmem . And vice versa.

A.3 Trace Equivalence
Like bisimilarity, trace equivalence has been used successfully to replace contextual equivalence in

secure compilation work [61, 64, 99, 102].

Given the LTS of a component P , the behaviour of P can be described with sequences of labels

that can be generated according to the LTS. These sequences of labels, denoted with λ, are called
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traces. The trace semantics of a program is the set of of all traces that can be associated with a

component, based on its labelled transition system.

Definition A.10 (Trace semantics). The trace semantics of a component P is indicated as Traces(P ).

Traces(P ) = {λ | ∃P ′.P
λ
==⇒ P ′}.

Two programs are trace equivalent, denoted with P1 T

= P2, if their traces coincide.

Definition A.11 (Trace equivalence). P1 T

= P2 ≜ Traces(P1) = Traces(P2).

The same considerations made for bisimulation apply also here: since labels capture attacker

actions, it is crucial that all that the attackers can observe is captured in the labels. This is captured

by a proof stating that trace equivalence is as precise as contextual equivalence [62, 100].

Trace equivalence also comeswith a somewhat simpler proof technique than the one of contextual

equivalence. Traces are often defined inductively, so they are particularly amenable as a proof

technique as they enable a neat, structural argument for proofs adopting them.

Before seeing an example of trace semantics at work for defining security properties (Exam-

ple A.13), Example A.12 informally presents a trace semantics for a Java-like program. The example

is reminiscent of the work of Jeffrey and Rathke [62]. The interested reader is referred to work on

fully-abstract trace semantics for a more in-depth discussion of the subject [62, 70, 100, 137].

Example A.12 (Trace semantics for a Java-like program). Consider the class of the following snippet
to be the component whose trace semantics we are interested in. The context this component

interacts with is the Log class, which we assume to just implement function addLogEntry(). The
other code does not need to be specified, as contexts are for contextual equivalence; the trace

semantics needs to capture only its power in terms of the actions it can perform.

1 import Log;
2

3 public class Account{
4 private int balance = 0;
5

6 public int deposit( int amount ) {
7 this.balance += amount;
8 return balance;
9 }
10 public void logUsage( String user ) {
11 log.addLogEntry( user );
12 return unit;
13 }
14 }
15 public Account acc;

Listing 7. Example of Java source code.

A trace semantics for such a Java-like language needs to capture how classes interact with each

other, i.e., method calls and returns (assume all fields are private for simplicity). The labels below

indicate when they are generated. We use a convention of decorating actions that are performed

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2018.



Formal Approaches to Secure Compilation 1:41

by the component with a “!”, while ?-decorated actions are performed by the context.

log calling method deposit on line 6 call acc.deposit( n )?

executing line 8 ret n!

log calling method logUsage on line 10 call acc.logUsage( u )?

executing line 11 call log.addLogEntry( u )!

log returning to line 12 ret unit?

executing line 12 ret unit!

A trace will therefore be a concatenation of those labels in a way that the semantics allows, e.g.,:

call acc.deposit( n )? ret n!

call acc.deposit( n )? ret n! call acc.deposit( m )? ret n+m!

call acc.logUsage( u )? log.addLogEntry( u )! ret unit? ret unit!

So call deposit( n )? can be followed by ret n! but not from call addLogEntry( u )!.

Example A.13 (Security properties via traces: integrity). Consider the code snippets of Figure 2 and
a trace semantics describing the behaviour of the code snippets based on labels for calls and returns

as in Example A.12. If the behaviour of those code snippets can be described by (a concatenation

of) the following trace, for any possible value v , then the programs are equivalent:

call proxy(callback())? call callback()! ret v? ret 0!

On the other hand, if there exists a trace that belongs to the trace semantics of a program but

not to the trace semantics of the other, then they are not equivalent. For example, the following

trace can be a valid trace of the left-hand side snippet but not of the right-hand side one.

call proxy(callback())? call callback()! ret v? ret 1!

Consider a language with pointers, which can be used to modify the contents of the stack (e.g., C),

this trace is a valid description of the behaviour of the left-hand side snippet. This trace highlights

a difference in the behaviour of the two snippets. As those snippets modelled integrity concerns,

this trace captures a violation of the integrity property of the secret variable.

A.4 Logical Relations
Logical relations are a proof technique that has been used to prove when programs have nontrivial

properties such as normalisation (of the simply-typed λ-calculus) [126], noninterference [59],

equivalence of modules [19, 87] and compiler correctness [24, 60, 106]. Additionally, it has frequently

been used to prove compiler security [17, 18, 26, 37, 94, 129].

Logical relations can be set up to prove contextual equivalence of components written in the

same language. Once such a logical relation is defined, it must be proved sound (and perhaps also

complete) with respect to contextual equivalence. But logical relations can also be used to formally

express a desired notion of equivalence between components from two different languages—we

refer to these as cross-language logical relations. Note that the peculiar thing about cross-language

logical relation is that we cannot prove them sound with respect to any notion of contextual

equivalence since there is no such notion that spans the two different languages. Below, to illustrate

how logical relations are defined, we present a cross-language logical relation between the source

and (highly idealized) target language of a compiler. Some of the aforementioned papers on secure

compilation use cross-language logical relations, but others use relations between terms of the

same language or between terms of multi-languages; we discuss these details later in the paper.
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Example A.14 (Cross-language logical relations). Consider the simply-typed λ-calculus with
booleans as source language. The types of the language conform to the following grammar τ ::=

Bool | τ → τ , the syntax of values and expressions is omitted for the sake of brevity. Reduction steps

are indicated with ↠, their reflexive, transitive closure is denoted with↠∗; the capture-avoiding
substitution of a value v for variable x in t is denoted as t[v/x].

Consider an untyped λ-calculus with booleans as the target language.

The logical relation that states whether two terms from the two languages are contextually

equivalent is defined below.

VJBoolK def
= {(k, v, v) | (v ≡ true and v ≡ true) or (v ≡ false and v ≡ false)}

VJτ ′ → τ K def
=



(k, v, v)

���������

(v, v) ∈ oftype(τ ′ → τ )

and ∃t, t.v ≡ λx : τ ′. t and v ≡ λx. t

and ∀k ′ =▷ k, (k
′, v′, v′) ∈ VJτ ′K. (k ′, t[v′/x], t[v′/x]) ∈ EJτ K




K Jτ K def
= {(k,CS,CT) | ∀k

′ ≤ k, (k ′,CS[v],CT[v]) ∈ OBS}

EJτ K def
= {(k, t, t) | ∀(k,CS,CT) ∈ K Jτ K, (k,CS[t],CT[t]) ∈ OBS}

GJ∅K def
= {(k, ∅, ∅)}

GJΓ, (x : τ )K def
= {(k,γ [v/x],γ [v/x]) | (k,γ ,γ ) ∈ GJΓK and (k, v, v) ∈ VJτ K}

OBS
def
= {(k, t, t) | (t, t terminate) ∨ (∃t′, t′. t ↠k t′, t ↠k t′)}

This logical relation is indexed by a natural number k that, in essence, represents the number of

remaining steps for which the terms are related—after k steps, there is no guarantee that the terms

are related. This influences the notion of observation (OBS), which says that either the two terms

converge or they are still running after k steps have elapsed. Step-indexed logical relations are

an instance of Kripke logical relations (as noted by Ahmed [15]). Here the world is comprised

solely of the step index, which describes the number of steps still available in the current world.

For languages with more advanced features, such as dynamically allocated mutable memory, the

logical relation is indexed by worlds that keep track of the remaining number of steps as well as

sophisticated relational invariants on the memory locations of the two programs being related.

Two booleans are related when they are the “same” boolean. Two functions are related when

given related argument, they evaluate to related terms. Also, two functions are checked to be in

the right syntactic form by function oftype(τ ′ → τ ). Two contexts are related when supplied

related values, they are observationally-equivalent terms. Two expressions are related when we

can embed them in related contexts and this results in observationally-equivalent terms. Finally,

two substitutions are related when they replace related variables (i.e., with the same name) with

related values.

With this relation, we can define when two open terms are related as follows:

Γ ⊢ t∝ t : τ def
= ∀k, Γ ⊢ t∝k t : τ

Γ ⊢ t∝k t : τ
def
= ∀j ≤ k,∀(j,γ ,γ ) ∈ GJΓK, (j, tγ , tγ ) ∈ EJτ K

B PROOF TECHNIQUES FOR EQUIVALENCE-PRESERVING COMPILATION
Most of the secure compilation results that are discussed in Section 5 establish secure compilation

by proving fully abstract compilation, so we now focus on proof techniques to prove the more

difficult part of compiler full abstraction, namely equivalence preservation. Existing techniques all

rely on the general concept of back-translation of a target context (Appendix B.1). There are two

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2018.



Formal Approaches to Secure Compilation 1:43

broad categories of back-translation techniques: the first is based on partial evaluation of the target

context (Appendix B.2), while the second is based on an embedding of the target context into the

source language (Appendix B.3).

B.1 Back-translation, Informally
As stated in Section 4.3.1, preservation of contextual equivalence is stated as follows:

Preservation = ∀P1, P2 ∈ S, P1 ≃ctx P2 ⇒ JP1KST ≃ctx JP2KST
For the sake of simplicity, this statement is re-stated in contrapositive form, as it turns the universal

quantifiers hidden inside the definition of contextual equivalence into existentials:

Preservation (contrapositive) = ∀P1, P2 ∈ S, JP1KST ;ctx JP2KST ⇒ P1 ;ctx P2

To prove this statement, it is sufficient to consider two source programs whose compiled counter-

parts are different and build a source context that differentiates those source programs.

The following example gives an informal intuition of what it means to generate the differentiating

source-level context.

Example B.1 (Informal context back translation). Consider these two STLC terms:

tl
def
= λx : Bool.false tr

def
= λx : Bool.true

Assume they are compiled to an untyped λ-calculus simply by erasing their types as follows:

JtlKST
def
= λx.false JtrKST

def
= λx.true

The compiled programs are contextually-inequivalent; the following context in fact terminates

when it interacts with JtlKST and it diverges when it interacts with JtrKST:

CT
def
= if ([·] true) then unit else Ω

CT[JtlKST] CT[JtrKST]
→ if (false) then unit else Ω → if (true) then unit else Ω

→ Ω→∗ Ω · · · → unit

In this case we can generate a source-level context that also witnesses the difference in behaviour

between tl and tr as follows:

CS
def
= if ([·] true) then unit else Ω

To prove preservation of contextual equivalence we need to prove that such a back-translated

context CS exists for any CT that can differentiate JtlKST and JtrKST.

B.2 Back-translation by Partial Evaluation
The first technique to back-translate target contexts is partial evaluation. This technique rests on

the idea that only the interaction between the context and the compiled terms are of interest, and it

is precisely those interactions that the back-translated context must capture. Whatever reductions

the target context was doing internally does not matter.

Two ways exist to make sure that these context-internal reductions do not matter: consid-

ering only normal-form contexts (Appendix B.2.1) and relying on target-level trace semantics

(Appendix B.2.2).
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B.2.1 Type-directed back-translation by partial evaluation. Ahmed and Blume [18], and later

Bowman and Ahmed [26] both make use of a type-directed back-translation by partial evaluation

where a key idea is that only subterms of translation type need to be back-translated. The technique

requires a complex well-foundedness argument as the back-translation is not inductively defined.

Back-translation by partial evaluation relies on the fact that in some languages, if a term has

translation type, then any uses of non-translation type in a subterm are inessential and can

therefore be eliminated by partial evaluation. However, this is not a realistic assumption for non-

terminating languages or languages with information hiding. For instance, a diverging program

may do arbitrary computation using non-translation type that cannot be eliminated by partial

evaluation. Furthermore, this technique alone will not work when both languages have state or

existential types since programs of target type can use values of non-translation type in their

closure or as the existential witness. For this reason, back translation by partial evaluation has

only been applied to purely functional, normalizing languages. However, it has the benefit of being

fairly systematic when it is applicable.

B.2.2 Back-translation via Traces. This kind of back-translation can be done when target-level

trace equivalence is used to replace target-level contextual equivalence, and the preservation

statement is expressed as follows:

Preservation (contrapositive) = ∀P1, P2 ∈ S, JP1KST T

=/ JP2KST ⇒ P1 ;ctx P2

Since JP1KST
T

=/ JP2KST we know that the traces describing the behaviour of JP1KST is different from the

traces of JP2KST. So there is a single trace λdiff that is in the trace semantics of JP1KST and not in the

trace semantics of JP2KST. By definition, λdiff ≡ λλ′! and there exist a trace in the traces of JP2KST
that has the form λλ′′! with λ′! , λ′′!. Trace λ is called the common prefix (note that it can be as

small as a single action) that accounts for possibly-equivalent behaviour of JP1KST and JP2KST. Single
actions λ′! and λ′′! are called differentiating actions.

The back-translation (often called “algorithm”in the literature [14, 62, 64, 98, 99, 101, 102]) must

produce a context CS that performs all interactions in the common prefix and then reacts to the

differentiating actions in two different ways. More precisely, the context CS must preform all

?-decorated actions in λ since the !-decorated ones are done by P1 or P2.

B.3 Back-translation by Embedding
The second technique to back-translate target contexts is to embed them into source ones. The kind

of embedding required depends, intuitively, on the gap in expressive power between the source

and target languages of the translation. Back-translation is easiest when the source and target

are syntactically identical and gets harder as the target language contains features not directly

expressible in the source.

B.3.1 Precise Embedding. In the work of Ahmed and Blume [18] and Fournet, Swamy, Chen,

Dagand, Strub, and Livshits [52], the target language is the same as the source. Hence, the back-

translation can be done using boundaries—called “wrappers”—encoded in the same language. These

wrappers are witness to a type isomorphism and consequently the translation is fully abstract. New

et al. [94] characterize this form of back-translation as precise because the embedding of the target

language is into isomorphic types.

B.3.2 Over-approximating Embedding. New et al. [94] prove full abstraction of closure conver-

sion from the simply typed lambda calculus with recursive types to a target language with type

abstraction and a modal type system to track exceptions. These languages are respectively called

STLC + µ and SystemF + E in the explanatory Figure 6. Since they have recursive types in the
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source, they back-translate target contexts CT (denoted as ⟨⟨CT⟩⟩) to a universal type Univ and show

that the boundaries between types τ and Univ are retractions. These boundaries are two functions:

proj:Univ→ τ , which projects from the universal type into normal types, and embed:τ → Univ
which embeds from a normal type into the universal one, such that the following holds:

proj embed⟨⟨CT⟩⟩ ≃ctx ⟨⟨CT⟩⟩

Their back-translation is over-approximating in that it embeds the target language into the source

at types that include many more behaviours (the grey area in Figure 6), but due to the boundaries

the code is only run on “good” values, i.e., those that represent source values.

⟨⟨·⟩⟩ J · K

embed

proj

STLC + µ

SystemF + E

P : τ

JPK:τ+
C[· : τ+]

⟨⟨CT⟩⟩[· : Univ]

⟨⟨CT⟩⟩embed[· : τ ]

Fig. 6. Diagrammatic representation of the compiler (J · K) and of the precise backtranslation (⟨⟨·⟩⟩) of New
et al. [94].

B.3.3 Under-approximating Embedding. Devriese et al. [37] present a translation from the simply

typed lambda calculus with recursive functions to the untyped lambda calculus. To prove that

the translation is fully abstract, they must back-translate the untyped language to a simply typed

language without recursive types, so they cannot construct a universal type like New et al. [94].

However, they can construct arbitrarily large approximations to the universal type, and a family of

increasingly precise approximations to it. They show that since for any particular program and

context observing termination only takes a finite number of steps, they can find a large enough

approximation (based on the number of steps) to show that equivalence is preserved. We say their

back-translation is under-approximating since it embeds the target language at types which include

only a subset of the behaviours of the target.

Such a technique is generally useful when the source types are less expressive than the target

by resorting to additional information present in the formal tools (e.g., steps). For example, when

compiling System F to an untyped lambda calculus, the back-translation type needs to account

for type variables and their instantiation. This turns the universal type into a universal type

operator, which is expressible in System-ω but not in System-F. To overcome these kinds of issues,

under-approximating back-translation can be used.
7

7
Personal communication with Devriese, Patrignani and Piessens, who are devising a fully-abstract compiler from System

F to lambda seal [108].
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Independently from the work of Devriese et al. [37], the idea of using an approximate back-

translation was also mentioned recently by Schmidt-Schauß et al. [115]. In this work, the authors

present a framework for reasoning about fully abstract compilation and related notions using

families of translations, i.e., an approximate back-translation. They apply the idea to show that a

simply-typed lambda calculus without fix but with stuck terms can be embedded into a simply-

typed lambda calculus with fix. Although not very detailed, their proof seems simpler than that of

Devriese et al. [37]. Partly this is because the proof addresses a simpler problem, but the idea of

approximate back-translation also seems simpler to use for a language embedding. This suggests

that proofs based on under-approximate back-translation can be simplified by factoring the proof

into two separate passes:

(1) embedding STLC into STLC
µ
(i.e., with recursive types) and using an under-approximate

embedding;

(2) compiling STLC
µ
with recursive types into the untyped lambda calculus using an over-

approximating embedding.

To provide further clarification of this proof technique, we provide a picture from the work of

Devriese et al. [37].

t1 ≃ctx t2

⟨⟨CT⟩⟩n
[
t1
]
⇓_ ⇒ ⟨⟨CT⟩⟩n

[
t2
]
⇓_

(1)

(2)

(3)

⟨⟨CT⟩⟩n ≲_ CT
t2 ≲_ Jt2K

⟨⟨CT⟩⟩n ≳n CT
t1 ≳_ Jt1K

CT

[
Jt1K

]
⇓n

?

⇒ CT

[
Jt2K

]
⇓_

Jt1K
?

≃ctx Jt2K

a
p
p
r
o
x
.
c
o
m
p
i
l
e
r
s
e
c
u
r
i
t
y

This picture proves the hard part of compiler full abstraction by dividing it in 3 sub steps. The

approximation relation is indicated with ≲ and ≳ to express that a term (or context) t terminates

whenever t does (t ≳ t) and vice versa (t ≲ t). The approximation is equipped with a subscript

indicating how many steps it is known to hold for.

The proof states that given a target context CT, we can construct its back-translation ⟨⟨CT⟩⟩n
that approximates CT for n steps. This, together with the knowledge that t ≳ JtK, lets us deduce
implication (1). Implication (2) follows directly from the source terms being contextually equivalent.

The second condition on the back translated context approximation ⟨⟨CT⟩⟩n is that it is conservative,
to deduce implication (3). Conservativeness means that the source-level context may diverge in

situations where the original did not, but not vice versa, as expressed by ⟨⟨CT⟩⟩n ≲_ CT. This implies

that if ⟨⟨CT⟩⟩n[t] terminates in any number of steps, then so must CT[JtK].
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