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Most programs compiled to WebAssembly (Wasm) today are written in unsafe languages like C and C++.
Unfortunately, memory-unsafe C code remains unsafe when compiled to Wasm—and attackers can exploit
buffer overflows and use-after-frees in Wasm almost as easily as they can on native platforms. Memory-
Safe WebAssembly (MSWasm) proposes to extend Wasm with language-level memory-safety abstractions to
precisely address this problem. In this paper, we build on the original MSWasm position paper to realize this
vision. We give a precise and formal semantics of MSWasm, and prove that well-typed MSWasm programs
are, by construction, robustly memory safe. To this end, we develop a novel, language-independent memory-
safety property based on colored memory locations and pointers. This property also lets us reason about the
security guarantees of a formal C-to-MSWasm compiler—and prove that it always produces memory-safe
programs (and preserves the semantics of safe programs). We use these formal results to then guide several
implementations: Two compilers of MSWasm to native code, and a C-to-MSWasm compiler (that extends
Clang). Our MSWasm compilers support different enforcement mechanisms, allowing developers to make
security-performance trade-offs according to their needs. Our evaluation shows that on the PolyBenchC suite,
the overhead of enforcing memory safety in software ranges from 22% (enforcing spatial safety alone) to 198%
(enforcing full memory safety), and 51.7% % when using hardware memory capabilities for spatial safety and
pointer integrity.

More importantly, MSWasm’s design makes it easy to swap between enforcement mechanisms; as fast
(especially hardware-based) enforcement techniques become available, MSWasmwill be able to take advantage
of these advances almost for free.
In the following, we use syntax highlighting accessible to both colourblind and black & white readers [Patrignani

2020]. Specifically, we use a blue, sans-serif font for C and a red, bold font for MSWasm.

1 INTRODUCTION
WebAssembly (Wasm) is a new bytecode designed to run native applications—e.g., applications
written in C/C++ and Rust—at native speeds, everywhere—from the Web, to edge clouds, and IoT
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platforms. Unlike most industrial bytecode and compiler intermediate representations, Wasm was
designed with safety in mind: Wasm programs run in an isolated sandbox by construction. On the
Web, this means that Wasm programs cannot read or corrupt the browser’s memory [Haas et al.
2017a]. On edge clouds, where Wasm programs written by different clients run in a single process,
this means that one client cannot interfere with another [McMullen 2020].

Within the sandbox, however,Wasmoffers little protection. Programswritten in unsafe languages—
and two thirds of existing Wasm programs are compiled from C/C++ [Hilbig et al. 2021]—remain
unsafe when compiled to Wasm [Lehmann et al. 2020]. Indeed, buffer overflows and use-after-free
vulnerabilities are as easy to exploit in Wasm as they are natively; sometimes even easier (e.g.,
because Wasm lacks abstractions like read-only memory). Worse, attackers can use such exploits
to confuse the code hosting Wasm into perfoming unsafe actions—to effectively bypass the Wasm
sandbox. [Lehmann et al. 2020], for example, show how attackers can turn a buffer overflow vul-
nerability in the libpng image processing library (executing in a Wasm sandbox) into a cross-site
scripting (XSS) attack.
To prevent such attacks, C/C++ compilers would have to insert memory-safety checks before

compiling to Wasm—e.g., to ensure that pointers are valid, within bounds, and point to memory
that has not been freed [Nagarakatte et al. 2009, 2010; Necula et al. 2005]. Industrial compilers like
Emscripten and Clang do not. Also, they should not. Retrofitting programs to enforce memory safety
gives up on robustness, i.e., preserving memory safety when linking a (retrofitted) memory-safe
module with a potentially memory-unsafe module. It gives up on performance: efficient memory-
safety enforcement techniques rely on operating system abstractions (e.g., virtual memory [Dang
et al. 2017]), abuse platform-specific details (e.g., encoding bounds information in the (unused)
upper bits of an address [Akritidis et al. 2009]), and take advantage of hardware extensions (e.g.,
Arm’s pointer authentication and memory tagging extensions [Arm 2019; Liljestrand et al. 2019]).
Finally, it also makes it harder to prove that memory safety is preserved end-to-end.

WithMemory-Safe WebAssembly, [Disselkoen et al. 2019] propose to bridge this gap by extending
Wasm with language-level memory-safety abstractions. In particular, MSWasm extends Wasm with
segments, i.e., linear regions of memory that can only be accessed using handles. Handles, like
CHERI capabilities [Watson et al. 2015], are unforgeable, well-typed pointers—they encapsulate
information that make it possible for MSWasm compilers to ensure that each memory access is valid
and within the segment bounds. Alas, the MSWasm position paper only outlines this design—they
do not give a precise semantics for MSWasm, nor implement or evaluate MSWasm as a memory-safe
intermediate representation.

This paper builds on this work to realize the vision of MSWasm. We do this via five contributions:

1. Semantics and Memory Safety for MSWasm (Section 3). Our first contribution is a formal
specification of MSWasm as an extension of the Wasm language, type system, and operational
semantics. Our semantics give precise meaning to the previous informal design [Disselkoen et al.
2019]. Moreover, these semantics allow us to prove that all well-typed MSWasm programs are
robustly memory safe; i.e., MSWasm programs are memory safe when linked against arbitrary code.

2. Color-based Memory-Safety Monitor (Section 4). We develop a novel, abstract memory-
safety monitor based on colored memory locations and pointers, which we use to show that
MSWasm is memory safe. Colors abstract away specific mechanisms that MSWasm backends can
employ to enforce memory safety. Additionally, they enable reasoning about spatial as well as
temporal memory safety, both at the granularity of individual memory objects and within structured
objects as well. Furthermore, since our memory-safety monitor is language-independent, we can
reason about memory-safety across compilation and establish the soundness of our compiler-based
memory-safety enforcement in our next contribution.
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3. Sound Compilation from C to MSWasm (Section 5). Like Wasm, MSWasm is intended to be
used as a compilation target from higher-level languages. Hence, our third contribution is a formal
C-to-MSWasm compiler, which guarantees memory-safe execution of unsafe code. In particular, we
formalize a compiler from a subset of C to MSWasm and prove that the compiler soundly enforces
memory-safety. Intuitively, this result ensures that memory-safe C programs when compiled to
MSWasm remain safe and preserve their semantics, while memory-unsafe C programs trap at the
first memory violation (and are thus safe too).
4. Implementations of MSWasm (Section 6). Our next contribution is the implementation
of three MSWasm-related compilers. First, we implement an ahead-of-time (AOT) MSWasm-to-
machine code compiler by extending the rWasm [Bosamiya et al. 2022] compiler with 1900 lines of
code (LOC). Our extension of rWasm supports multiple options for enforcing memory safety, with
tradeoffs between performance and differing levels of memory safety (spatial and temporal safety,
and handle integrity). Our second compiler is a just-in-time (JIT) MSWasm-to-JVM compiler (1200
LOC), which uses the GraalVM Truffle framework [Oracle 2021b]. Finally, our third compiler is
an LLVM-to-MSWasm compiler (1600 LOC) created as an extension of the CHERI Clang compiler
toolchain [CTSRD-CHERI 2022].
5. Evaluation of MSWasm (Section 7). Our final contribution is an empirical evaluation of
MSWasm.We benchmarkMSWasmon PolyBenchC, the de-factoWasmbenchmarking suite [Pouchet
2011]. We find that, on (geomean) average, MSWasm when enforced in software using our AOT
compiler imposes an overhead of 197.5%, which is comparable with prior work on enforcing
memory safety for C [Nagarakatte et al. 2010]. MSWasm, however, makes it easy to change the
underlying enforcement mechanism (e.g., to boost performance), without changing the application.
To this end, we find that enforcing just spatial and temporal safety imposes a 52.2% overhead, and
enforcing spatial safety alone using a technique similar to Baggy Bounds [Akritidis et al. 2009],
is even cheaper—21.4%. Our JIT compiler, which enforces spatial and temporal safety, but not
handle integrity, has an overhead of 42.3%. While these overheads are relatively large on today’s
hardware, upcoming hardware features explicitly designed for memory-safety enforcement can
reduce these overheads (e.g., Arm’s PAC can be used to reduce pointer integrity enforcement to
under 20% [Liljestrand et al. 2019], while Arm’s CHERI [Grisenthwaite 2019] or Intel’s CCC [LeMay
et al. 2021] can also reduce the cost of enforcing temporal and spatial safety). MSWasm will be
able to take advantage of these features as soon they become available, as illustrated by the ease of
swapping memory-safety enforcement techniques within our AOT compiler.
Open Source & Technical Report. Our technical report, implementations, benchmarks, and data
sets are available as supplementary material and will be made open source.

2 BACKGROUND ANDMOTIVATION
We now give a brief introduction to Wasm (Section 2.1), its attacker model (Section 2.2), and the
implications of memory unsafety within the Wasm sandbox (Section 2.3). Then we give a brief
introduction to MSWasm and to the open challenges we address in this work (Section 2.4).

2.1 WebAssembly
Wasm is a low-level bytecode, designed as a safe compilation target for higher-level languages like
C/C++ and Rust [Haas et al. 2017b]. Wasm bytecode is executed in a sandboxed environment by a
stack-based virtual machine. Prior to execution, the virtual machine type-checks the bytecode to
ensure that each instruction finds the appropriate operands on the stack. Wasm’s type system is
extremely simple; the language has four primitive types—32- and 64-bit integers and floats (i32 and
i64, and f32 and f64 respectively)—and only structured control flow constructs (i.e., no gotos) which
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simplify type checking. The Wasm heap (or linear memory), however, is an untyped contiguous
linear array of bytes. Instructions 𝝉 .load and 𝝉 .store allow values of the four primitive types to be
read from and written to the memory at arbitrary integer offsets. At runtime, Wasm ensures that
these accesses are in bounds (and traps when they are not).
This simple design makes whole classes of attacks impossible by design. For example, the

type-system ensures that well-typed bytecode cannot hijack the virtual machine’s control flow
via stack-smashing attacks [One 1996]. The coarse-grained bounds-checks on memory accesses,
together with structured control flow, confineWasm to a sandbox [Tan 2017;Wahbe et al. 1993]—and
thus prevent Wasm from harming its host environment.
This simple design has a trade-off: We necessarily lose information when compiling programs

written in high-level languages to Wasm. Clang, for example, compiles complex source-level values
(e.g., structs and arrays) into “bags of bytes” in the untyped linear memory and compiles pointers to
Wasm 32-bit integers, offsets in the linear memory where values are layed out. This, unfortunately,
means that misusing C/C++ pointers is as simple and severe in Wasm as it is for native platforms.

2.2 Threat Model
In this work, we consider a Wasm-level attacker who attempts to exploit a memory vulnerability
present in a C program compiled to Wasm. We consider vulnerabilities that can be triggered by
spatial memory errors (e.g., buffer overflows), temporal memory errors (e.g., use-after-free and
double-free vulnerabilities), and pointer integrity violations (e.g., corrupting function pointers to
bend control flow). We assume the vulnerable program is linked with arbitrary code written by
the attacker, which can interact with the program in any way allowed by Wasm semantics. To
exploit a vulnerability, the attacker code can supply malicious inputs to the program and abuse
values (including pointers) returned by or passed to the program. We leave memory unsafety of
C++ programs and type confusion vulnerabilities [Haller et al. 2016] for future work.

2.3 Sandboxing Without Memory Safety
Memory unsafe C programs, when compiled to Wasm, largely remain unsafe: They can run un-
interrupted as long as their reads and writes stay within the bounds of the entire linear memory.
Unfortunately, Wasm also lacks most mitigations we rely on today to deal with memory unsafety
(e.g., memory protection bits and ASLR), so a program compiled to run within Wasm’s sandbox
may be more vulnerable than if it were running on bare metal [Lehmann et al. 2020].

1 char ∗trim_token( char ∗token ){
2 char ∗trimmed = malloc( 1024 ∗sizeof(char) );
3 int i = 0, j = 0;
4 while (token[i++] == ' ');
5 char next = token[--i];
6 while (next ≠ '\0') {
7 trimmed[j++] = next; // Possible buffer overflow
8 next = token[++i];
9 }
10 trimmed[i] = '\0';
11 return trimmed;
12 }

Listing 1. Vulnerable code adapted from libpng 1.6.37

To understand how source-level memory vulnerabilities persist across compilation, consider
the C code snippet in Listing 1 from libpng 1.6.37. Function trim_token takes a pointer to a
null-terminated string as input and returns a pointer to a dynamically-allocated copy of the string,
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trimmed of the leading whitespace characters. The first loop (Line 4) simply scans the string token
and skips all the whitespace characters, while the second loop (Line 6–Line 9) copies the rest of the
string into trimmed one character at the time, until it finds the null terminator. The vulnerability is
on Line 7: the length of the string token after trimming may exceed the size allocated for buffer
trimmed. To exploit this vulnerability, an attacker only needs to call this function on a sufficiently
long string (longer than 1024 characters after trimming). This will cause the function to write past
the bounds of trimmed, thus corrupting the memory of the program with the payload supplied by
the attacker. This vulnerability remains in the code obtained by compiling function trim_token
with existing Wasm compilers (e.g., Emscripten and Clang). In particular, Line 7 gets translated
into the Wasm instructions in Listing 2.

1 get $trimmed
2 get $j
3 i32.add
4 get $next
5 i32.store
6 ... ;; increment $j

Listing 2. "Compilation
of Line 7 into Wasm."

The first three Wasm instructions compute the address (a 32-bit inte-
ger) where the next character gets copied, by adding index $j to address
$trimmed. Then, instruction get $next pushes the value of the next
character on the stack and i32.store writes it to the address computed
before. As long as this address is within the linear memory region, the
store instruction succeeds—even if the address does not belong to the
buffer allocated for $trimmed.

Although an attacker could not use this memory-safety vulnerability
to escape Wasm’s sandbox, they could use it to corrupt and steal data
(e.g., private keys) sensitive to theWasm program itself. Wasm programs
on the Web already handle sensitive data, and as Wasm’s adoption expands beyond the Web,
addressing memory safety within the sandbox is crucial.

2.4 The MSWasm Proposal
Memory-Safe WebAssembly (MSWasm) addresses these challenges by extending Wasm with ab-
stractions for enforcing memory safety [Disselkoen et al. 2019]. Specifically, MSWasm introduces a
new memory region called segment memory. The segment memory consists of individual segments,
which are linearly addressable, bounded regions of memory representing dynamic memory alloca-
tions. Unlike Wasm’s linear memory, the segment memory cannot be accessed at arbitrary offsets
through standard load and store instructions. Instead, MSWasm provides new types, values, and
instructions to regulate access to segments and enforce per-allocation memory safety. Segments can
only be accessed through handles, unforgeable memory capabilities that model pointers bounded
to a particular allocation of the segment memory. MSWasm adopts this low-level memory model
since an object-based model (like that of the JVM) would be an inefficient (due to garbage collection
overhead) and overly restrictive (due to the constraints of an object-based type-system) compilation
target for C code deployed to Wasm.
Handles are tuples: ⟨base, offset, bound, isCorrupted, id⟩, where base represents the beginning

of the segment in segment memory, offset is the handle’s offset within the segment, i.e., within
the bound, that the handle points to. Thus, a handle points to the address given by base + offset.
MSWasm guarantees handle integrity using the isCorrupted flag. Intuitively, attempts to forge
handles (e.g., by casting an integer, or altering the bitstring representation of an existing handle
in memory) result in a corrupted handle. MSWasm traps only when an out-of-bounds or corrupt
handle is used, not when it is created. This improves both performance, by eliminating checks on
every pointer-arithmetic operation, and compatibility, since many C idioms create benign out-of-
bound pointers [Memarian et al. 2019a, 2016; Ruef et al. 2019]. Finally, MSWasm associates each
segment allocation with a unique identifier id, which is used to enforce temporal memory safety.
MSWasm provides new instructions to create and manipulate handles, and to access segments

safely through them. Instructions 𝝉 .segload and 𝝉 .segstore are analogous to 𝝉 .load and 𝝉 .store,
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but operate on handles and trap if the handle is corrupted or points outside the segment bounds,
or if the segment has been freed. Instruction segalloc allocates a segment of the desired size in a
free region of segment memory and returns a handle to it. Instruction segfree frees the segment
associated with a valid handle, thus making that region of segment memory available for new
allocations. Lastly, instruction handle.add is for pointer arithmetic and modifies the handle offset,
without changing the base or bound.

1 i32.const 1024
2 segalloc
3 set $trimmed
4 ...
5 get $trimmed
6 get $j
7 handle.add
8 get $next
9 i32.segment_store
10 ...

Listing 3. "Compila-
tion of Listing 1 into
Wasm."

Eliminating unsafety by compiling C to MSWasm.With MSWasm we
can eliminate potential memory vulnerabilities automatically, via compi-
lation. For example, a C to MSWasm compiler would emit the instructions
in Listing 3 for the code snippet from Listing 1. This code allocates a new
1024-byte segment and stores the handle for it in variable $trimmed. Then,
the handle.add instruction increments the offset of $trimmed with index
$j and instruction i32.segment_store writes $next in the segment. Since
MSWasm instructions enforce memory safety, this code is safe to execute
even with malicious inputs. In particular, if the offset of $trimmed is incre-
mented past the bound of the handle, the store instruction simply traps,
thus preventing the buffer overflow.
Enforcing Intra-Object Memory Safety. Through the abstractions de-
scribed above, MSWasm enforces inter-object memory safety, i.e., at the
granularity of individual allocations. Unfortunately, this alone is insufficient to prevent memory-
safety violations within composite data types (e.g., structs), in which a pointer to a field overflows
(or overruns) an adjacent field.

1 struct User {char name[32], int id };
2 struct User ∗my_user = malloc(sizeof(struct User));
3 char ∗my_name = my_user→name;
4 ...

Listing 4. Intra-object memory safety vulnerability.

Consider the code snippet in Listing 4, which defines a struct object containing a fixed-length
string name and an integer user id. When compiled to MSWasm, this code allocates a single segment
for the User structure; thus the handle corresponding to my_name and derived from my_user via
pointer arithmetic can also access field id without trapping. Therefore, an attacker could exploit a
memory vulnerability in the code that manipulates my_name to corrupt the user id and impersonate
another user.

Hence, to enforce intra-object memory safety, MSWasm provides an additional instruction called
slice. Instruction slice shrinks the portion of the segment that a handle can access by growing its
base and reducing its bound field by a given offset. By emitting a slice instruction with appropriate
offsets for expression my_user->name, a compiler can generate a sliced handle that includes only
the name field. As a result, if the attacker later tries to overflow my_name, the safety checks of the
sliced handle will detect a violation and trap the execution, thus preventing the program from
corrupting the user id.
Themissing pieces. The original MSWasm position paper [Disselkoen et al. 2019] only outlines the
basic abstractions we describe above. The position paper does not give a formal (or even informal)
semantics for the proposed language extensions. They do not describe compilation techniques—how
one would compile C code to MSWasm or how MSWasm would be compiled to native code—nor
an implementation (and thus evaluation) of MSWasm. In this paper we address these limitations
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Modules M ::= {funcs Φ∗, imports 𝝆∗, heap nH, segment nS }
Fun. Defs Φ ::= {var 𝝉∗, body i∗} : 𝝆 Instructions Types 𝝆 ::= 𝝉∗ → 𝝉∗

Value Types 𝝉 ::= i32 | i64 | f32 | f64 | handle

Instructions i ::= nop | trap | 𝝉 .const c | 𝝉 .⊗ | get n | set n | 𝝉 .load | 𝝉 .store | branch i∗ i∗ | call n

| return | 𝝉 .segload | 𝝉 .segstore | slice | segalloc | handle.add | segfree

Fig. 1. Syntax of MSWasm with extensions to Wasm highlighted.

and, for the first time, provide an end-to-end, robust, memory-safe C-to-MSWasm compiler that is
rooted in formal methods.

3 THE MSWASM LANGUAGE
This section develops a formal model of the design of MSWasm described above. The model includes
syntax, typing (Section 3.1), and operational semantics for MSWasm (Section 3.2) and it serves as a
specification for different low-level mechanisms (bounds checks, segment identifiers, integrity tags,
etc.) needed to enforce memory safety in MSWasm. We present the properties of MSWasm in the
next section, after formally defining memory safety.
Due to space constraints, we present a selection of the formalization, and elide proofs and

auxiliary lemmas. The interested reader can find these omissions in the supplementary material.

3.1 MSWasm Syntax
The syntax of MSWasm is defined in Figure 1. MSWasm programs are modules M, which specify
a list of function definitions Φ∗, the type of imported functions 𝝆∗, and the size of the linear and
segment memory (nH and nS ∈ N).1 Syntax {var 𝝉∗, body i∗} : 𝝆 defines a function with local
variables of types 𝝉∗, body i∗, and function type 𝝆. Instructions i manage the operand stack and are
mostly standard. Variables are referred to through numeric indices n, which are statically validated
during type-checking. For example, instructions get n and set n retrieve and update the value
of the n-th local variable, respectively. Function calls are similar, i.e., instruction call n calls the
n-th function (either defined or imported) in the scope of the module. We describe MSWasm’s
instructions on segments and handles below.

Typing. The type system of MSWasm is a straightforward extension of Wasm’s, and it similarly
guarantees type safety (i.e., well-typed modules satisfy progress and preservation). Instructions
are typed by the judgment 𝚪 ⊢ i : 𝝉∗1 → 𝝉∗2, where 𝝉

∗
1 and 𝝉∗2 are the types of the values that i pops

and pushes on the stack, respectively, and the typing context 𝚪 tracks the type of the variables and
functions in scope. Compared toWasm, the only restriction imposed by the type system ofMSWasm
is that it prevents programs from forging handles by reading raw bytes from the unmanaged linear
memory, i.e., 𝚪 ⊢ 𝝉 .load : [ 𝒊32] → [𝝉 ] iff 𝝉 ≠ handle.

1We use e∗ to denote a list of e elements, and en for a list of length n. We write [e0, e1, · · · ] for finite lists, [ ] for the empty
list, e : e∗ to add e in front of 𝑒∗, and e1

∗ ++ e2
∗ to append 𝑒2

∗ to 𝑒1
∗. Notation e∗ [i] looks up the i-th element of 𝑒∗ and

e∗ [i ↦→ v ] replaces the i-th element of e∗ with v.
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Store 𝚺 ::= (H, T ,A) Heaps H ::= b∗ Bytes b ∈ {0..28-1}

Constants c Segments T ::= (b, t)∗ Allocators A

Local Frames F ::= (𝜽 , i∗, v∗) Locals 𝜽 ::= (n ↦→ v)∗ Segment Tags t ::= � | �

Values v ::= c | h Handles h ::= ⟨nbase, noffset, nbound, bvalid, nid⟩
Memory Events 𝜶 ::= 𝝐 | read𝝉 (h) | write𝝉 (h) | salloc(h) | sfree(h) | trap

Fig. 2. Wasm and MSWasm runtime structures.

(Stack-Top)

Φ∗ ⊢ ⟨𝚺, (𝜽 , i, v∗)⟩ 𝜶−−→→ ⟨𝚺′, (𝜽 ′, i′∗, v′∗)⟩

Φ∗ ⊢ ⟨𝚺, (𝜽 , i : i∗, v∗ ++ vb
∗)⟩ 𝜶−−→→ ⟨𝚺, (𝜽 , i′∗ ++ i∗, v′∗ ++ vb

∗)⟩
(Get)

𝜽 [n] = v

Φ∗ ⊢ ⟨𝚺, (𝜽 , get n, [])⟩ −→→ ⟨𝚺, (𝜽 , [], [v])⟩
(If-T)

n ≠ 0
Φ∗ ⊢ ⟨𝚺, (𝜽 , branch i1∗ i2∗ , [n])⟩ −→→ ⟨𝚺, (𝜽 , i1∗, [])⟩

(Load)

0 ≤ n n + |𝝉 | < |H| b |𝝉 | = [ Σ.H[n + j] | j ∈ {0..|𝝉 | − 1} ] v = 𝝉 .unpack(b |𝝉 | )
Φ∗ ⊢ ⟨𝚺, (𝜽 ,𝝉 .load, [n])⟩ −→→ ⟨𝚺, (𝜽 , [], [v])⟩

Fig. 3. Semantics of Wasm (excerpts).

3.2 MSWasm Operational Semantics
To reason about the memory-safety guarantees of MSWasm, we define a small-step labeled op-
erational semantics, which generates events for memory-relevant operations such as segment
allocations and accesses.

3.2.1 Semantics of Wasm. Figure 2 defines the runtime structures used in the semantics judgment.
A local configuration ⟨𝚺, F⟩ consists of the store 𝚺 and the stack frame F of the function currently
executing. In Wasm, the store 𝚺 contains only the unmanaged linear memory H, which is a list of
bytes b∗ of fixed length. The local stack frame F maintains the environment 𝜽 for variable bindings
(mapping from variable indices to values), a list of instructions i∗ to be executed, and the operand
stack v∗ for the values produced (and consumed) by those instructions. Values include constants c
and integers n.

The semantics judgment Φ∗ ⊢ ⟨𝚺, F⟩ 𝜶−−→→ ⟨𝚺′, F′⟩ indicates that under function definitions Φ∗,
local configuration ⟨𝚺, F⟩ executes a single instruction and steps to ⟨𝚺′, F′⟩, generating event 𝜶
(explained below). The semantics features also a separate judgment for function calls and returns,
which is standard and omitted.

Figure 3 presents a selection of rules that MSWasm inherits from Wasm. Auxiliary rule (Stack-
Top) extracts the first instruction and its operands from the list of instructions and the stack,
respectively, and executes the instruction using the rules for individual instructions. Rule (Get)
executes instruction get n, which looks up the value of variable n in the environment 𝜽 , i.e.,
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𝜽 [n] = v, and pushes v on the stack. Instruction branch i1∗ i2∗ pops the integer condition n from
the stack and returns instructions i1∗ if n is non-zero via rule (If-T).2 Rule (Load) loads a value of
type 𝝉 from address n in linear memory. Since the linear memory consists of plain bytes, the rule
reads |𝝉 | bytes at address n into byte string b |𝝉 | and converts them into a value of type 𝝉 , i.e., v =
𝝉 .unpack(b |𝝉 | ), which is then pushed on the stack. In the rule, premises 0 ≤ n and n + |𝝉 | < |H|
ensure that the load instruction does not read outside the bounds of the linear memory, but do not
enforce memory safety, as explained above.

3.2.2 Semantics of MSWasm. MSWasm extends the runtime structures of Wasm with a managed
segment memory, handle values, and a memory allocator (see Figure 2). The segment memory T is
a fixed-length list (b, t)∗ of tagged bytes, where each tag t indicates whether the corresponding
byte is part of a numeric value (t = �) or a handle (t = �). These tags are used to detect forged or
corrupted handles stored in segment memory and thus ensure handle integrity.
Handles ⟨nbase, noffset, nbound, bvalid, nid⟩ contain the base address nbase of the memory region

they span, length nbound, offset noffset from the base, integrity flag bvalid which indicates whether
the handle is authentic (bvalid = true) or corrupted (bvalid = false), and segment identifier nid. Finally,
MSWasm instructions generate memory events 𝛼 , which include the silent event 𝝐 , reading and
writing values of type 𝝉 through a handle h (i.e., read𝝉 (h) and write𝝉 (h)), segment allocations
salloc(h), segment free sfree(h), and trap which is raised in response to a memory violation.
Memory Allocator. The MSWasm runtime system is responsible for providing a memory allocator
to serve memory allocations of compiled programs. In our model, we represent the state of the
memory allocator and its semantics explicitly, as this simplifies reasoning about memory safety.
The allocator state A keeps track of free and used regions of segment memory and their identifiers,
i.e., A.free and A.allocated, respectively. The allocator serves allocation requests via reductions

of the form ⟨T,A⟩
salloc(a,n,nid )
↩−−−−−−−−−−→ ⟨T′,A′⟩, which allocates and initializes a free segment of n bytes,

which starts at address a in segment memory and can be identified by fresh identifier nid. Dually,

reductions of the form ⟨T,A⟩
sfree(a,nid )

↩−−−−−−−−−→ ⟨T′,A′⟩ free the segment identified by nid and allocated
at address a, or traps, if no such segment is currently allocated at that address. We omit further
details about the allocator state and semantics—the memory-safety guarantees of MSWasm do not
depend on the concrete allocation strategy.
MSWasm Rules. Figure 4 gives some important rules for the new instructions of MSWasm.
Rule (H-Load) loads a non-handle value (𝝉 ≠ handle) from segment memory through a valid handle
⟨n1, o, n2, true, nid⟩ . Rule (H-Load) reads bytes b∗ from the address pointed to by the handle, i.e.,
n = n1 + o, and converts them into a value of type 𝝉 , i.e., v2 = 𝝉 .unpack(b∗).3 The rule enforces
memory safety by checking that (1) the handle is not corrupted, (2) the load does not read bytes
outside the bounds of the segment, i.e., 0 ≤ o and o + |𝝉 | < n2, and (3) the segment is still allocated,
i.e., nid ∈ A.allocated. Rule (H-Load-Handle) is similar, but for loading values of type handle;
therefore it includes additional checks (highlighted in gray), to enforce handle integrity. First, the
rule checks that all the bytes read from memory are tagged as handle bytes, i.e., bc =

∧
t∈t∗ (t = �),

and then combines this flag with the flag b′c obtained from the raw bytes of the segment; i.e., it
returns handle ⟨n′

1, a
′, n′

2, bc ∧ b′c, nid⟩ . The combined flag invalidates handles obtained from bytes
tagged as data, thus preventing programs from forging handles by altering their byte representation

2Wasm does not provide instructions for unstructured control-flow, common on native architectures (e.g., JMP on x86). Wasm
code can define and jump to typed labeled blocks. Since these features do not affect the memory safety guarantees of
MSWasm, we omit them from our model.
3Total function 𝝉 .unpack converts |𝝉 | bytes (the number of bytes needed to represent a value of type 𝝉 ) into a value of type
𝝉 . The inverse function 𝝉 .pack converts values to their byte representation.
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(H-Load)

𝝉 ≠ handle v1 = ⟨n1, o, n2, true, nid⟩ 0 ≤ o (b∗, _) = [ 𝚺.T[n + j] | j ∈ {0..|𝝉 | − 1} ]
o + |𝝉 | < n2 n = n1 + o nid ∈ 𝚺.A.allocated v2 = 𝝉 .unpack(b∗)

Φ∗ ⊢ ⟨𝚺, (𝜽 ,𝝉 .segload, [v1])⟩
read𝝉 (v1 )−−−−−−−−→→ ⟨𝚺, (𝜽 , [], [v2])⟩

(H-Load-Handle)

𝝉 = handle v1 = ⟨n1, o, n2, true, nid⟩ 0 ≤ o (b∗, t∗) = [ 𝚺.T[n + j] | j ∈ {0..|𝝉 | − 1} ]
o + |𝝉 | < n2 n = n1 + o nid ∈ 𝚺.A.allocated n % |handle| = 0

bc =
∧

t∈t∗ (t = �) 𝝉 .unpack(b∗) = ⟨n′
1, a

′, n′
2, b

′
c, n′

id⟩ v2 = ⟨n′
1, a

′, n′
2, bc ∧b′c , n′

id⟩

Φ∗ ⊢ ⟨𝚺, (𝜽 ,𝝉 .segload, [v1])⟩
read𝝉 (v1 )−−−−−−−−→→ ⟨𝚺, (𝜽 , [], [v2])⟩

(H-Store)

𝝉 ≠ handle v1 = ⟨n1, o, n2, true, nid⟩ o ≥ 0 o + |𝝉 | < n2 nid ∈ 𝚺.A.allocated
b∗ = 𝝉 .pack(v2) t = � a = (n1 + o) 𝚺

′ .T = 𝚺.T[a + j ↦→ (bj, t) | j ∈ {0..|𝝉 | − 1}]

Φ∗ ⊢ ⟨𝚺, 𝜽 ,𝝉 .segstore, [v2, v1]⟩
write𝝉 (v1,v2)
−−−−−−−−−−−→→ ⟨𝚺′, 𝜽 , [], []⟩

(H-Store-Handle)

𝝉 = handle v1 = ⟨n1, o, n2, true, nid⟩ o ≥ 0 o + |𝝉 | < n2

nid ∈ 𝚺.A.allocated b∗ = 𝝉 .pack(v2) t = �
a = n1 + o a%|handle| = 0 𝚺

′ .T = 𝚺.T[a + j ↦→ (bj, t) | j ∈ {0..|𝝉 | − 1}]

Φ∗ ⊢ ⟨𝚺, 𝜽 ,𝝉 .segstore, [v2, v1]⟩
write𝝉 (v1,v2)
−−−−−−−−−−−→→ ⟨𝚺′, 𝜽 , [], []⟩

(H-Alloc)

𝚺 = (H,T,A) ⟨T,A⟩
salloc(a,n,nid )
↩−−−−−−−−−−→ ⟨T′,A′⟩ v = ⟨a, 0, n, true, nid⟩ 𝚺

′ = (H,T′,A′)

Φ∗ ⊢ ⟨𝚺, (𝜽 , segalloc, [n])⟩
salloc(v)

−−−−−−−−→→ ⟨𝚺′, (𝜽 , [], [v])⟩
(H-Free)

𝚺 = (H,T,A) h = ⟨a, 0, _, true, nid⟩ ⟨T,A⟩
sfree(a,nid )

↩−−−−−−−−−→ ⟨T′,A′⟩ 𝚺
′ = (H,T′,A′)

Φ∗ ⊢ ⟨𝚺, 𝜽 , segfree, [h]⟩
sfree(h)

−−−−−−−−→→ ⟨𝚺′, 𝜽 , [], []⟩
(Handle-Add)

v = ⟨n1, o, n2, b, nid⟩ v′ = ⟨n1, o + n, n2, b, nid⟩
Φ∗ ⊢ ⟨𝚺, (𝜽 , handle.add, [n, v])⟩ −→→ ⟨𝚺, (𝜽 , [], [v′])⟩

(Slice)

v = ⟨n1, o, n2, b, nid⟩ 0 ≤ o1 < n2 0 ≤ o2 v′ = ⟨n1 + o1, o, n2 − o2, b, nid⟩
Φ∗ ⊢ ⟨𝚺, (𝜽 , slice, [v, o2, o1])⟩ −→→ ⟨𝚺, (𝜽 , [], [v′])⟩

Fig. 4. Semantics of MSWasm (excerpts). The premises that ensure handle integrity are highlighted.

in memory. Furthermore, to enforce handle integrity, the rule allows loading handle values only
from |handle|-aligned memory addresses, i.e., (n1 + o)%|handle| = 0. The alignment requirement
is needed to avoid crafting fake handles. In fact, if one were to store two handles next to each
other and then load from an address within the first one, the load would succeed and load bytes
that all have the capability tag. However, the loaded value would be a fake capability, since the
loaded bytes would be part of the first capability, and part of the second. Loading and storing at
aligned addresses prevents this issue. The rules for 𝝉 .segstore are analogous—they include similar
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bounds checks and alignment restrictions for handles—and additionally set the tag of the bytes that
they write in memory according to 𝝉 . For example, Rule (H-Store) applies to values whose type
are not handle, therefore it tags the bytes of the value written to memory as data (�). In contrast,
Rule (H-Store-Handle) writes a handle to memory and so it tags its bytes accordingly (i.e., �).

Rule (H-Alloc) invokes the allocator to allocate and initialize a new segment of n bytes at address
a in segment memory, and returns a handle to it. Rule (H-Free) invokes the allocator to free the
segment bound to the given valid handle. Rule (Handle-Add) increments the offset of a handle
v, without changing the other fields. Notice that this rule allows programs to create handles that
point out of bounds; out-of-bounds handles only cause a trap when they are used to access memory.
Rule (Slice) creates a sliced handle ⟨n1 + o1, o, n2 − o2, b, nid⟩ , where the base is increased by offset
o1 and the bound is reduced by offset o2. Premises 0 ≤ o1 < n2 and 0 ≤ o2 ensure that the handle
obtained after slicing can only access a subset of the segment accessible from the original handle.

Whenever a𝝉 .segload, a𝝉 .segstore, a segfree, or a slice do notmatch their premise, the semantics
traps, emitting a trap action and halting the execution immediately, with no values on the operand
stack (omitted for brevity).

4 ABSTRACT MEMORY-SAFETY MONITOR
This section presents an abstract notion of memory safety that is based on colored memory locations
(Section 4.1). Colors soundly abstract away many implementation details, which in turn let us
formalize memory safety compactly as a trace property checked by a corresponding monitor
(Section 4.2). We use this monitor to establish the spatial and temporal memory-safety guarantees
of MSWasm (Section 4.3). Since our monitor is language-independent, we will reuse it to prove our
C-to-MSWasm secure compiler enforces memory safety (Section 5).

4.1 Color-based Memory Safety
Our notion of memory safety associates pointers and memory locations with colors (which represent
pointer provenance [Memarian et al. 2019b]), shades, and allocation tags. Intuitively, each memory
allocation generates a pointer annotated with a unique color (and shades as described below) and
assigns the same color to each location in the allocated region of memory. Then, we consider a
memory access spatially safe if the color of the pointer corresponds to the color of the memory
location it points to. To account for temporal safety, memory locations are tagged as free or allocated
and we enforce that accessed locations are tagged as allocated.
Colors are suitable to reason about memory safety at the granularity of individual memory

objects. In particular, this simple model is sufficient for low-level languages that do not natively
support composite data types (e.g., Wasm and MSWasm). However, colors alone cannot capture
intra-object memory violations (e.g., the vulnerability in Listing 4). Intuitively, this is because the
simple model assigns the same color to all the fields of a struct object. To reason about intra-object
safety, we thus extend colors with shades and use a different shade to decorate the memory locations
of each field in a struct. As a result, a pointer to a struct field cannot be used to access another field
of the same struct, as their shades do not match.
As explained above, our definition of memory safety is intentionally minimal and language-

agnostic: it does not specify other operations on colored pointers, e.g., pointer arithmetic, and how
they propagate colors. This lets us reuse this definition of memory safety for different languages
and reason about enforcing memory-safety via compilation in Section 5.

4.2 Memory-Safety Monitor
We formalize our notion of memory safety by constructing a safety monitor [Schneider 2000], i.e., a
state machine that checks whether a trace satisfies memory safety. Intuitively, the monitor consumes
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(MS-Read)

𝑇 (𝑎) = 𝐴(𝑐, 𝑠)

𝛼∗ ⊢ 𝑇 read(𝑎 (𝑐,𝑠 ) )
𝑇

(MS-Write)

𝑇 (𝑎) = 𝐴(𝑐, 𝑠)

𝛼∗ ⊢ 𝑇 write(𝑎 (𝑐,𝑠 ) )
𝑇

(MS-Alloc)

fresh (𝑐) ∀𝑗 ∈ {0..𝑛 − 1}.𝑇 (𝑎 + 𝑗) = 𝐹 (_, _) 𝑇 ′ = 𝑇 [𝑎 + 𝑖 ↦→ 𝐴(𝑐, 𝜙 (𝑖)) | 𝑖 ∈ {0..𝑛 − 1}]

𝛼∗ ⊢ 𝑇
alloc(𝑛,𝑎𝑐 ,𝜙 )

𝑇 ′

(MS-Free)

sfree (𝑎𝑐 ) ∉ 𝛼2
∗ 𝑇 ′ = 𝑇 [𝑖 ↦→ 𝐹 (𝑐, 𝑠𝑖 ) | 𝑖 ↦→ 𝐴(𝑐, 𝑠𝑖 ) ∈ 𝑇 ]

𝛼1
∗ · alloc(𝑛, 𝑎𝑐 , 𝜙) · 𝛼2∗ ⊢ 𝑇

sfree(𝑎𝑐 )
𝑇 ′

Fig. 5. Trace-based definition of memory safety.

a trace of memory events and gets stuck when it encounters a memory violation. We assume an
infinite set of colors C, shades S, and define a colored shadow memory T ∈ N⇀ {𝐴(𝑐, 𝑠), 𝐹 (𝑐, 𝑠)},
i.e., a finite partial map from addresses a ∈ N to tagged colors c ∈ C and shades s ∈ S, where tags
𝐴 and 𝐹 denote whether a memory location is allocated or free, respectively. Then, we define an
abstract trace model of memory events 𝛼 , which include read and write operations with colored
pointers, i.e., read(a(c,s) ) and write(a(c,s) ), memory allocations, i.e., alloc(n, ac, 𝜙) denoting a
n-sized c-colored allocation starting at address a, in which sub-regions are shaded according to
function 𝜙 : {0, . . . , 𝑛 − 1} → S, and free operations, i.e., sfree (𝑎𝑐 ) which frees the 𝑐-colored
memory region allocated at address 𝑎. Lastly, we define the transition system of the monitor over
shadow memories and event history 𝛼∗ through the judgment 𝛼∗ ⊢ 𝑇 𝛼

𝑇 ′ (Fig. 5).
Rules (MS-Read) and (MS-Write) consume events read(a(c,s) ) and write(a(c,s) ), respectively,

provided that the color and the shade are equal to those stored at location 𝑎 in shadow memory
and that location 𝑎 is allocated, i.e., T (a) = A(c, s). If the colors or the shades do not match, or the
memory location is free, the state machine simply gets stuck, thus detecting a memory violation.
To consume event alloc(n, ac, 𝜙), rule (MS-Alloc) allocates n contiguous, currently free locations
in shadow memory, starting at address a, and assigns fresh color c and the shade given by 𝜙 to
them. In response to event sfree (𝑎𝑐 ), the monitor frees the c-colored region of memory previously
allocated at address a through rule (MS-Free). First, the rule checks that a matching allocation
event is present in the history, i.e., 𝛼1∗ · alloc(𝑛, 𝑎𝑐 , 𝜙) · 𝛼2∗ for some size 𝑛 and shading function
𝜙 , and that region has not already been freed, i.e., sfree (𝑎𝑐 ) ∉ 𝛼2

∗, and then sets the tag of the
memory locations colored 𝑐 as free.
We say a trace is memory safe, written MS (𝛼∗), if and only if the state machine does not get

stuck while processing the trace starting from the empty shadow memory ∅ and empty history 𝜖 .

In the definition below, we write
𝛼∗

for the reflexive transitive closure of 𝛼 , which accumulates
single events into a trace and records the event history.

Definition 1 (Memory Safety). MS (𝛼∗) def
= ∃T . 𝜖 ⊢ ∅

𝛼∗

𝑇

4.3 Memory Safety of MSWasm.
In order to establish memory safety for MSWasm, we first need to map the trace model of MSWasm
to the abstract trace model of Section 4.1. The main difference between the two is that the abstract
model identifies safe memory accesses using colors and shades, while MSWasm relies on bounds
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(Trace-Read)

h = ⟨nb, no, _, _, nid⟩ 𝜹 (nb, nid) = 𝑏 (𝑐,𝑠 ) 𝑎 = 𝑏 + no 𝑛 = |𝝉 |
read𝝉 (h) =𝜹 read(𝑎 (𝑐,𝑠 ) ) · · · read((𝑎 + 𝑛 − 1) (𝑐,𝑠 ) )

(Trace-Write)

h = ⟨nb, no, _, _, nid⟩ 𝜹 (nb, nid) = 𝑏 (𝑐,𝑠 ) 𝑎 = 𝑏 + no 𝑛 = |𝝉 |
write𝝉 (h) =𝜹 write(𝑎 (𝑐,𝑠 ) ) · · · write((𝑎 + 𝑛 − 1) (𝑐,𝑠 ) )

(Trace-SAlloc)

h = ⟨nb, 0, no, _, nid⟩ 𝑛 = no ∀𝑖 ∈ {0..𝑛 − 1}. 𝜹 (nb + 𝑖, nid) = (𝑎 + 𝑖) (𝑐,𝜙 (𝑖 ) )

salloc(h) =𝜹 alloc(𝑛, 𝑎𝑐 , 𝜙)
(Tr-Sfree)

h = ⟨nb, _, n, _, nid⟩ 𝜹 (nb, nid) = 𝑎 (𝑐,_)

sfree(h, nid) =𝜹 sfree (𝑎𝑐 )

(Trace-Trap)

trap =𝜹 𝜖

Fig. 6. Relation between MSWasm and abstract events (excerpts).

checks and segment identifiers. Furthermore, individual read𝝉 (h) and write𝝉 (h) events correspond
to multiple memory accesses in the abstract trace model, as these operations read and write byte
sequences in MSWasm. We reconcile these differences between the two trace models with the
relation 𝜶 =𝜹 𝛼∗ whose most relevant rules are defined in Fig. 6. The relation is parametrized by
a partial bijection 𝜹 : N × N ⇀ N × C × S, which maps pairs (a, nid), consisting of an allocated
segment memory address a and a segment identifier nid, into corresponding shadow memory
addresses a(c,s) , decorated with colors and shades. Intuitively, we can construct a suitable bijection
𝜹 from the MSWasm allocator, which has information about what is allocated in segment memory.
Rules (Trace-Read) and (Trace-Write) relate single MSWasm read𝝉 (h) and write𝝉 (h) events

to a sequence of |𝝉 | contiguous abstract read and write events, respectively. The rules convert
the handle base address and the segment identifier into the corresponding colored base address,
i.e., 𝜹 (nb, nid) = 𝑏 (𝑐,𝑠 ) , which is then incremented with the offset of the handle to obtain the first
abstract location accessed, i.e., 𝑎 = 𝑏 +no, similar to MSWasm semantics. Since these abstract events
originate from the same handle, the rule labels their address with the same color c and shade s
obtained from the base address of the handle to reflect their provenance. If we computed the colors
for these addresses using the bijection 𝜹 , then they would automatically match the color stored in
the shadow memory and memory safety would hold trivially. Instead, these addresses are tagged
with the provenance color, and therefore proving memory safety (i.e., stepping using the rules of
Figure 5) requires showing that this color matches the color found in shadow memory, which in
turn requires reasoning about the integrity of the handle and the bounds checks performed by
MSWasm. A final subtlety of these rules is that they seem to ignore the integrity flag of the handle.
This is because in MSWasm, only authentic handles can generate read and write events—reading
and writing memory via corrupted handles results in a trap event.
Rule (Trace-SAlloc) relates the allocation of a no-byte segment in MSWasm to a corresponding

abstract allocation of the same size, i.e., event alloc(𝑛, 𝑎𝑐 , 𝜙) where no = n. In the rule, premise
∀𝑖 ∈ {0, . . . , 𝑛 − 1}. 𝜹 (a + 𝑖) = (nb + 𝑖, nid) (𝑐,𝜙 (𝑖 ) ) ensure that (i) all the abstract addresses share the
same color c, and (ii) the bijection 𝜹 and the shading function 𝜙 agree on the shades used for the
segment. In general, function 𝜙 can be a constant function, when we reason about memory safety
for native MSWasm programs, e.g., to prove that MSWasm is memory safe in Theorem 1 below.
Intuitively, MSWasm does not provide an explicit representation for structured data, therefore it is
sufficient to assign the same shade to all locations of a segment to prove memory safety. When we
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use MSWasm as a compilation target however, segments can store also structured objects (e.g., a
struct) in addition to flat objects (e.g., an array). In this scenario, we instantiate 𝜙 according to the
source type of the object, which let us show that compiled C/C++ programs achieve intra-object
memory safety later (Theorem 2).

To relate free events, rule (Tr-Sfree) requires the bijection 𝜹 to match the base nb and identifier
nid of the segment pointed to by the handle to the colored address 𝑎𝑐 freed by the monitor, i.e.,
𝜹 (nb, nid) = 𝑎 (𝑐,_) . Because identifiers and colors are never reused, freed segments and regions can
be reused for other allocations, while keeping dangling handles and colored pointers related by
the bijection. For example, if a segment is later allocated at address nb, it will be associated with a
unique identifier n′

id ≠ nid, which can be related to some shadow address 𝑎′ and fresh color 𝑐′ ≠ 𝑐

through an extended bijection 𝜹 ′ ⊇ 𝜹 .4
Lastly, rule (Trace-Trap) relates event trap in MSWasm to the empty trace 𝜖 , since trap simply

stops the program and thus cannot cause a memory safety violation.
We can now state memory safety for MSWasm traces in terms of memory safety of a 𝜹-related

abstract trace for the state machine defined above.

Definition 2 (Memory Safety for MSWasm Traces). MS(𝜶 ∗) def
= ∃𝛼∗, 𝜹 .𝜶 ∗ =𝜹 𝛼∗ and MS (𝛼∗)

We define memory safety for MSWasm modules if the trace generated during execution is
memory safe. In the following, we write M _𝜶 ∗ for the trace generated by module M with the
semantics of Section 3.2.

Definition 3 (Memory Safety for MSWasm Modules). ⊢ MS(M) def
= M _𝜶 ∗ and MS(𝜶 ∗)

A module M achieves robust memory safety if, given any valid attacker C (denoted as M ⊢ C :
attacker, in the sense of Section 2.2), linking M with C produces a memory safe module. In the
following, we write M ◦ C for the module obtained by linking M with C, i.e., the module obtained
by instantiating the functions imported by M with those of C.

Definition 4 (Robust Memory Safety for MSWasm Modules). ⊢ RMS (M) def
= ∀C s.t. M ⊢ C :

attacker. ⊢ MS(M ◦ C)
The main result for MSWasm is that any well-typed module (⊢ M : wt) is memory-safe, robustly.

Theorem 1 (Robust Memory Safety for MSWasm). If ⊢ M : wt then ⊢ RMS (M)
Proof (Sketch). Intuitively, the type system of MSWasm ensures that well-typed modules can access
segment memory only through handle values and safe instructions. Programs that accesses memory
via invalid handles trap and so trivially respect memory safety (Rule (Trace-Trap)). When accessing
segments via valid handles, MSWasm performs memory safety checks using their metadata, so the
rest of the proof requires showing an invariant about handle integrity. Intuitively, this invariant
guarantees that valid handles (whether proper values, or stored in segment memory), correspond to
allocated segments in memory. Then, using this invariant, we can show that programs that access
segment memory without trapping, pass the memory safety checks, and thus are memory safe. 2

In the next section, we leverage the memory-safety abstractions of MSWasm to develop a formal
C compiler that provably enforces memory safety.

5 MEMORY SAFETY THROUGH COMPILATION
This section shows how a C compiler targeting MSWasm can enforce memory safety. Thus, we
formalize a simplified version of C (Section 5.1), as a memory-unsafe source language for our com-
piler, and the compiler itself (Section 5.2). We then prove that the compiler enforces memory safety
4In technical terms the bijection grows monotonically, which provides a suitable inductive principle for our formal results.
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ProgramsM ::= I∗,D∗, F∗, nhs Imports I ::= 𝜏 g(x : 𝜏) Structs D ::= s ↦→ (f : 𝜏)∗

Values v ::= n | n(n,n,w,nid ) Functions F ::= 𝜏 g(x : 𝜏) { var (y : 𝜏)∗, e}
Word Types w ::= 𝜏 | struct s | array 𝜏 Expr. Types 𝜏 ::= int | ptr w

Expr. e ::= v | x | e; e | e ⊕ e | x := e | x := call g (e) | ∗e | e[e]
| ∗e := e | e[e] := e | if e then e else e | &e → f

| malloc(𝜏, e) | malloc(w) | free(e)
Stores Σ ::= ⟨H,A⟩ Heaps H ::= [] | v : H Local Env. 𝜃 ::= (x ↦→ v)∗ Allocators A

Events 𝛼 ::= 𝜖 | alloc(v) | free(v) | read𝜏 (v) | write𝜏 (v)

Fig. 7. C syntax and runtime structures (excerpts).

(Section 5.3), i.e., memory-safe programs compiled to MSWasm execute unchanged (Theorem 2),
while memory-unsafe programs abort at the first memory violation (Theorem 3).

5.1 The Source Language C
Figure 7 presents the syntax of our source language, a subset of C, inspired by previous work [Ruef
et al. 2019]. Source programs M specify the type of imported functions I∗, struct definitions D∗,
function definitions F∗, and the heap size nhs. Struct definitions map struct names s to a list of
field names f and their types 𝜏 . Types are mutually defined by expression types 𝜏 , i.e., integers
(int) and pointers (ptr w), and word types w, which, in addition to 𝜏 , include also multi-word
values, i.e., structs (struct s) and arrays (ptr array 𝜏). Note that arrays are always typed as pointers.
Syntax 𝜏 g(x : 𝜏) { var (y : 𝜏)∗, e} defines function g, its argument and return type, and declares
local variables (y : 𝜏)∗ in scope of the body e. Expressions are standard and include reading and
writing memory via pointers (i.e., ∗e and ∗e := e) and accessing struct fields (i.e., &e → f). An array
𝑒1 at index 𝑒2 is read and written via e1 [e2] and e1 [e2] := e3.

Expression malloc(𝜏, e) allocates an array containing e elements of type 𝜏 , while malloc(w)
allocates a buffer to store a single element of type w ≠ array 𝜏 . Values include integers n and anno-
tated pointers, i.e., n(n1,n2,w,nid ) , where n is the address pointed to by the pointer, and (n1, n2,w, nid)
indicates that the pointer refers to a buffer allocated at address n1, containing n2 elements of
type w, and identified by nid. These annotations are inspired by previous work on pointer prove-
nance [Memarian et al. 2019a] and are only needed to reason about memory safety of source
programs, i.e., the source semantics does not enforce memory safety and ignores them.
Typing. The type system for the source language is mostly standard and defined by judgment
F∗, Γ ⊢ e : 𝜏 , which indicates that expression e has type 𝜏 under functions F∗ and typing context Γ
(which binds variables to types). The type system allows typing integers as pointers and restricts
function type signatures to expression types for simplicity.
Semantics. We define a small-step contextual semantics for C with the following judgment,
M ⊢ ⟨Σ, 𝜃, e⟩ 𝛼−−→→ ⟨Σ′, 𝜃 ′, e′⟩, in which local configuration ⟨Σ, 𝜃, e⟩ steps and produces event 𝛼 ,
under program definitionM. Local configurations contain the storeΣ, the local variable environment
𝜃 mapping named variables to values, and an expression e to be evaluated. The store Σ contains the
heap H, a list of values, and the allocator state A. The heap abstracts away low-level details about
the memory layout and the byte representation of values (e.g., we store structs and arrays simply as
a flattened sequence of single-word values). Similar to MSWasm, events 𝛼 record memory relevant
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(Ptr-Arith)

M ⊢ ⟨Σ, 𝜃, a(b,ℓ,w,nid ) ⊕ n⟩ −→→ ⟨Σ, 𝜃, (a + n) (b,ℓ,w,nid )⟩
(Write-Ptr)

Σ = ⟨H,A⟩ H′ = H[a ↦→ v] Σ′ = ⟨H′,A⟩ ⊢ v : 𝜏

M ⊢ ⟨Σ, 𝜃, ∗a(b,ℓ,w,nid ) := v⟩
write𝜏 (a(b,ℓ,w,nid ) )−−−−−−−−−−−−−−→→ ⟨Σ′, 𝜃, 0⟩

(Write-Int)

Σ = ⟨H,A⟩ H′ = H[a ↦→ v] Σ′ = ⟨H′,A⟩ ⊢ v : 𝜏

M ⊢ ⟨Σ, 𝜃, ∗a := v⟩
write𝜏 (a)−−−−−−−−→→ ⟨Σ′, 𝜃, 0⟩

(Malloc-Single)

Σ = ⟨H,A⟩
alloc(a(a,1,w,nid ) )
↩−−−−−−−−−−−→ ⟨H′,A′⟩ = Σ′ v = a(a,1,w,nid )

M ⊢ ⟨Σ, 𝜃,malloc(w)⟩
alloc(v)
−−−−−−−→→ ⟨Σ′, 𝜃, v⟩

(Malloc-Array)

Σ = ⟨H,A⟩
alloc(a(a,n,𝜏,nid ) )
↩−−−−−−−−−−−→ ⟨H′,A′⟩ = Σ′ v = a(a,n,𝜏,nid )

M ⊢ ⟨Σ, 𝜃,malloc(𝜏, n)⟩
alloc(v)
−−−−−−−→→ ⟨Σ′, 𝜃, v⟩

Fig. 8. Semantics of C (excerpts).

operations, including silent events 𝜖 , allocating and releasing memory, i.e., alloc(v) and free(v),
and reading and writing values of type 𝜏 with a pointer v, i.e., read𝜏 (v) and write𝜏 (v).

Figure 8 presents some of the semantics rules of the source language. Rule (Ptr-Arith) performs
pointer arithmetic by incrementing the address of the pointer, without changing the metadata.
Rules (Write-Ptr) and (Write-Int) write a value v in the heap through a pointer and a raw integer
address, respectively. As explained above, these rules do not check that the write operation is safe,
but only record the pointer and the type 𝜏 of the value that gets stored in the generated event, i.e.,
write𝜏 (a(b,ℓ,w,nid ) ) and write𝜏 (a). Rules (Malloc-Single) and (Malloc-Array) allocate a buffer for a
single object of type w and a n-elements array, respectively, and return a pointer value annotated
with appropriate metadata. Similar to the MSWasm semantics, the source language invokes the
allocator to serve allocation and free requests (⟨H,A⟩ 𝛼

↩−→ ⟨H′,A′⟩). In contrast to the safe allocator
of MSWasm however, the source allocator does not trap upon an invalid free request, i.e., a free of
an unallocated memory region, but silently drops the request.5

The source language uses a separate semantic judgment for function calls and returns (omitted),
and a top-level judgment M_𝛼∗, which collects the trace generated by program M. We define
memory safety for source traces using the general abstract monitor from Section 4.1:

Definition 5 (Memory-Safety for C). MS(𝛼∗) def
= ∃𝛼∗, 𝛿 . 𝛼∗ =𝛿 𝛼∗ and MS (𝛼∗)

This definition is analogous to Definition 2 for MSWasm: it relies on a bijection 𝛿 to map source
addresses into corresponding colored abstract addresses, and a relation 𝛼∗ =𝛿 𝛼∗ to connect source
and abstract traces through the bijection. The trace relation is defined similarly to the relation given
in Figure 6 for MSWasm and additionally constructs appropriate shading functions for alloc(v)
5Invalid free requests cause undefined behavior in C and usually result in the corruption of memory objects or the allocator
state. Since we represent the allocator state explicitly and separately from the program memory, free requests cannot cause
such specific behaviors in our model.
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(C-Ptr-Arith)

JP, Γ ⊢ e1 : array 𝜏Kexp = i∗1 JP, Γ ⊢ e2 : intKexp = i∗2 n = sz (𝜏)
JP, Γ ⊢ e1 ⊕ e2 : array 𝜏Kexp = i∗1; i

∗
2; i32.const n; i32.×; handle.add

(C-BinOp)

JP, Γ ⊢ e1 : wKexp = i∗1 JP, Γ ⊢ e2 : wKexp = i∗2 J𝜏K = 𝝉

JP, Γ ⊢ e1 ⊕ e2 : 𝜏Kexp = i∗1; i
∗
2;𝝉 .⊗

(C-Malloc-Array)

JP, Γ ⊢ e : intKexp = i∗1 n = sz (𝜏)
JΓ ⊢ malloc(𝜏, e) : ptr (array 𝜏)Kexp = i1∗; i32.const n; i32.⊗; segalloc

(C-Malloc-Single)

n = sz (w)
JP, Γ ⊢ malloc(w) : ptr wKexp = i32.const n; segalloc

(C-Deref)

JP, Γ ⊢ e : ptr 𝜏Kexp = i∗ J𝜏K = 𝝉

JP, Γ ⊢ ∗e : 𝜏Kexp = i∗ ++ [𝝉 .segload]
(C-Struct-field)

JP, Γ ⊢ e : ptr (struct s)Kexp = i∗ (o1, o2) = offset (s, f)
JP, Γ ⊢ &e → f : ptr 𝜏Kexp = i∗ ++ [i32.const o1, i32.const o2, slice]

Fig. 9. Compiler from C to MSWasm (excerpts).

events according to the type of the allocated object (e.g., an array or a struct). Accesses via raw
addresses n are excluded from the relation, i.e., write𝜏 (a) ≠𝛿 𝛼∗ and read𝜏 (a) ≠𝛿 𝛼∗ for any abstract
trace 𝛼∗. Omitting them from the relation captures the fact that memory accesses with forged
pointers violate memory safety, as the provenance of these pointers is undefined.

5.2 The Compiler
We define the compiler J·K from C to MSWasm inductively on the type derivation of C modules,
functions and expressions (Figure 9). To prevent untrusted code from violating memory safety,
our compiler translates pointers to handles and only uses MSWasm segment memory. Thus, we
translate source types 𝜏 into MSWasm types 𝝉 as JintK = i32 and Jptr wK = handle. The compiler
relies on source types to emit MSWasm instructions with appropriate byte sizes (calculated with
function sz (·) : 𝜏 → n) and offsets for expressions that involve pointer arithmetic, struct accesses
and memory allocations. For example, a binary operation (⊕) whose first operand is an array
(array 𝜏 ) needs to be compiled in a handle.add, as in Rule (C-Ptr-Arith). On the other hand, a binary
operation on naturals needs to be compiled in the related MSWasm binary operation, as in Rule (C-
BinOp). Another example of the way source types guide the compilation is for the compilation
of expression malloc(𝜏, e). Here, if the resulting type is a pointer to an array (ptr (array 𝜏)), the
compiler must first emit instructions to compute the size of a segment large enough for an array
containing e elements of type 𝜏 , and then instruction segalloc to invoke the allocator and generate
the corresponding handle. Therefore, rule (C-Malloc-Array) recursively compiles the array length e,
i.e., JP, Γ ⊢ e : intKexp = i∗, which then gets multiplied by |𝜏 |, i.e., the size in bytes of a value of type 𝜏 ,
via instruction i32.⊗, and finally passed to segalloc. On the other hand, if the return type is a pointer
to any other type (ptr w), the compiler needs to calculate its size (n) and allocate enough memory
(Rule (C-Malloc-Single)) Since expression ∗e reads a pointer to a value of type 𝜏 , rule (C-Deref)
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emits instruction to first evaluate the corresponding handle, i.e., JP, Γ ⊢ e : ptr 𝜏Kexp = i∗, followed
by instruction 𝝉 .segload, whose compiled type J𝜏K = 𝝉 ensures that the generated code reads
the right number of bytes and interprets them at the corresponding target type. Lastly, rule (C-
Struct-field) translates a struct field access &e → f by slicing the handle obtained from pointer e,
thus enforcing intra-object safety in the generated code. To this end, the rule emits instructions
[i32.const o1, i32.const o2, slice], where offsets o1 and o2 are obtained from function offset (s, f),
which statically computes the offsets necessary to select field f in the byte representation of struct
s.

5.3 Properties of the Compiler
We establish two properties for our compiler. The first (Theorem 2) shows that the compiler is
functionally correct and preserves memory safety for memory-safe source programs. The second
(Theorem 3) shows that memory-unsafe programs compiled to MSWasm abort at the first memory
violation. Together, these results show that our compiler enforces memory-safety (Corollary 1).
Cross-Language Equivalence Relation. Since our notion of memory safety is defined over traces,
and the source and target languages have different trace models, the formal results of the compiler
rely on a cross-language equivalence relation to show functional correctness and memory-safety
preservation [Leroy 2009]. Figure 10 (top) defines this relation for pointer values up to a partial
bijection 𝛿 : N × N⇀ N × N, which maps addresses and identifiers from source to target. Rule (Val-
Rel-Ptr) relates an annotated pointer a(b,ℓ,w,nid ) to a valid handle ⟨b, o, ℓ, true, nid⟩ as long as their
base address and identifier are matched by the bijection, i.e., 𝛿 (b, nid) = b, nid, and the length and
offset fields match, taking into account the byte-size representation of w, i.e., ℓ × |w| = ℓ and
(a − b) × |w| = o. In contrast, Rule (Val-Rel-Int) relates integer pointers to arbitrary invalid handles.
The relation between source and target events 𝛼 =𝛿 𝛼 , relates the same single events (Figure 10,

bottom). When relating reads, writes, allocates, and frees, we insist that source pointers and target
handles are related (according to the cross-language value relation) and the handles are valid (these
rules have the validity bit set to true). Additionally, for reading and writing, they values being read
or written must be of related types, i.e., J𝜏K = 𝝉 .
For memory-safe, well-typed source programs (⊢ M : wt), Theorem 2 states that the compiler

produces equivalent memory-safe target programs; i.e., the compiled program emits a memory-safe
trace that is related to the source trace.

Theorem 2 (Memory-Safety Preservation).
If ⊢ M : wt and M_𝛼∗ and MS(𝛼∗) then ∃𝛿,𝜶 ∗ . JMK_𝜶 ∗ and 𝛼∗ =𝛿 𝜶 ∗ and MS(𝜶 ∗)

In contrast, Theorem 3 states that memory-unsafe programs compiled to MSWasm abort at the
first memory violation.

Theorem 3 (Memory Violations Trap).
If ⊢ M : wt and M_𝛼∗ ++ [𝛼] ++ 𝛼 ′∗ and MS(𝛼∗) and ¬MS(𝛼∗ ++ [𝛼])

then ∃𝛿,𝜶 ∗. 𝛼∗ =𝛿 𝜶 ∗ and JMK_𝜶 ∗ ++ [trap]
Together these theorems characterize the scope of our compiler-based memory-safety enforcement:

Corollary 1 (Memory-Safety Enforcement). If JMK_𝜶 ∗ then MS(𝜶 ∗)
Figure 11 shows the essence of the proof technique for Theorem 2, in the diagram, full arrows

represent hypotheses and dashed arrows represent conclusions.
In the theorem statement, judgements of the form M _𝛼∗ unfold to the reflexive-transitive

closure of a single semantics step (i.e., the rules presented in Figure 4 for MSWasm and in Figure 8
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(Val-Rel-Ptr)

𝛿 (b, nid) = b, nid ℓ × |w| = ℓ (a − b) × |w| = o

a(b,ℓ,w,nid ) ∼𝛿 ⟨b, o, ℓ, true, nid⟩

(Val-Rel-Int)

n ∼𝛿 ⟨b, o, ℓ, false, nid⟩

(Tr-Rel- Read-Ptr)

J𝜏K = 𝜏 a(b,ℓ,w,nid ) ∼𝛿 ⟨b, o, ℓ, true, nid⟩

read𝜏 (a(b,ℓ,w,nid ) ) =𝛿 read𝝉 (⟨b, o, ℓ, true, nid⟩)
(Tr-Rel-Write-Ptr)

J𝜏K = 𝜏 a(b,ℓ,w,nid ) ∼𝛿 ⟨b, o, ℓ, true, nid⟩

write𝜏 (a(b,ℓ,w,nid ) ) =𝛿 write𝝉 (⟨b, o, ℓ, true⟩)
(Tr-Rel-Allocate)

(a(b,ℓ,w,nid ) ) ∼𝛿 ⟨b, o, ℓ, true, nid⟩
salloc(a(b,ℓ,w,nid ) ) =𝛿 salloc(⟨b, o, ℓ, true, nid⟩)

(Tr-Rel-Free)

(a(b,ℓ,w,nid ) ) ∼𝛿 ⟨b, o, ℓ, true, nid⟩
sfree(a(b,ℓ,w,nid ) ) =𝛿 free(⟨b, o, ℓ, true, nid⟩)

Fig. 10. Cross-language equivalence relation: values (top) and events (bottom).
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Fig. 11. Proof diagram for Theorem 2: functional correctness (left) and memory-safety preservation (right).

for C). The proof then proceeds unsurprisingly by induction over the reflexive-transitive reductions
that generate the source trace, the figure shows the single-step case. We use metavariable Ω to
indicate program states, which are the tuples presented in the semantics rules of each language.
We first describe the most interesting case of the functional correctness part of Theorem 2, i.e.,

the left of Figure 11. There, we need to show how one single source step (Ω
𝛼−−→→ Ω′) that triggers

a change in the source allocator (A
𝛼
↩−→ A′)6, causes a series of ‘related’ target steps (𝛀′ 𝜶−−→→∗

𝛀
′)

that change the target allocator accordingly (A
𝜶
↩−→ A′). Essentially, target steps are related when

they generate actions that are related (as per Figure 10), and they take related states (Ω ∼𝛿 𝛀) into
still-related states (Ω′ ∼𝛿 𝛀

′). We do not present the formalisation of the state relation, intuitively it

6For ease of reading, we massage the allocator reduction judgement ⟨H,A⟩ 𝛼
↩−→ ⟨H′,A′ ⟩ to only contain the allocator.
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just lifts the value relation of Figure 10 to all elements of a program state. Proving that the allocators
step using related actions ensures that the source and target allocators are in related, consistent
states. This is key to the memory safety preservation part of the theorem, i.e., the right of Figure 11.
To prove memory safety preservation for Theorem 2, we start from the functional correctness

square between allocators (i.e., the base of the prism on the right in Figure 11). Then, we assume
that the C step is memory-safe, this is represented by the blue side of the prism. Technically, this
relies on another omitted piece of formalisation that relates source allocator states A and shadow
memories T , a relation that holds when the addresses tracked in A and T are the same up to a
bijection 𝛿 . The source memory safety assumption tells that the states of the initial C allocator
and of the initial shadow memory are related (A =𝛿 T ), that they take a related step (𝛼 =𝛿 ′ 𝛼), and
that leads to related final states (A′ =𝛿 ′ T ′). The goal of the memory safety part of the proof is
depicted as the corresponding red side of the prism: there is a relation between the states of the
initial MSWasm allocator and of the initial shadow memory (A =𝜹 T ), the states take a related step
(𝜶 =𝜹 ′ 𝛼) and that leads to related final states (A′ =𝜹 ′ T ′). To construct the relations in the red
square, we need to derive the dashed edges of the vertical triangles according to the correct relation
with the correct bijection. This relation we obtain by combining the corresponding source-to-target
relations (i.e., A =𝛿 A) and the source-to-monitor relation (i.e, A =𝛿 T ), and compose their bijections
to relate abstract and target locations. That is, we obtain A =𝜹 T , where 𝜹 (relating MSWasm and
abstract addresses) is the composition of 𝛿 (relating MSWasm and C addresses) with 𝛿 (relating
C and abstract addresses). Importantly, the triangle of relations guarantees that the C notion of
memory safety is preserved exactly in MSWasm. Since in C we instantiate our abstract notion of
memory safety to account for intra-object safety, we get the same fine-grained memory safety
notion preserved in MSWasm.
The proof of Theorem 3 is analogous. There, we use the same intuition presented above to

simulate all actions of the memory-safe trace 𝜶 ∗ starting from their memory-safe counterparts in
𝛼∗. Then, at some point, starting from related states, C performs a memory-unsafe action 𝛼 and
MSWasm emits a trap . This proof is by case analysis over C memory safety violations, which we
identify by the related abstract monitor getting stuck. In the proof, we relate these violations to a
failing memory safety check in MSWasm, which causes the compiled program to trap, as expected.

6 IMPLEMENTING MSWASM
In this section we describe our prototype MSWasm compilation framework (Figure 12). We im-
plement two compilers of MSWasm following the language semantics of Section 3. Our first
compiler is an ahead-of-time (AOT) compiler from Wasm to executable machine code (Section 6.1);
it demonstrates MSWasm’s flexibility in employing different enforcement techniques, including
both software-based enforcement and hardware-accelerated enforcement. Our second compiler is a
compiler fromWasm to Java bytecode (Section 6.2); it demonstrates MSWasm’s compatiblility with
just-in-time (JIT) compilation. We also implement a compiler from C to MSWasm (Section 6.3),
following the formal compiler model of Section 5. We describe these prototypes next.

Our prototype implementation of MSWasm extends the bytecode of Wasm with instructions to
manipulate the segment memory as well as handles. In doing so, it takes a few shortcuts in the name
of expediency—most notably, it replaces the existing Wasm opcodes for 𝝉 .load and 𝝉 .store with
𝝉 .segload and 𝝉 .segstore. A production MSWasm implementation would support both segment-
based and linear-memory-based operations simultaneously, by using two-byte opcode sequences
for 𝝉 .segload and 𝝉 .segstore.

6.1 Ahead of Time Compilation of MSWasm

, Vol. 1, No. 1, Article . Publication date: November 2022.



981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

MSWasm 21

C source
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Fig. 12. End-to-end compilation pipeline. We first compile
C to MSWasm (via LLVM), and then compile MSWasm
to machine code using either our modified rWasm AOT
compiler (which supports different notions of safety) or
our modified GraalWasm JIT compiler.

To compile MSWasm bytecode to ma-
chine code, we build on the rWasm
compiler [Bosamiya et al. 2022]. rWasm
is a provably-safe sandboxing compiler
from Wasm to Rust, and thus to high-
performance machine code.7 We ex-
tended rWasm to support MSWasm as fol-
lows. We modified rWasm’s frontend to
parse MSWasm instructions and propa-
gate them through to later phases. We up-
dated rWasm’s stack analysis to account
for MSWasm’s new types and instructions
(e.g., 𝝉 .segload and 𝝉 .segstore, which take
a handle as argument). Finally, we up-
dated rWasm’s backend—the code genera-
tor, specifically—to implement MSWasm’s
instructions and segment memory.

One of the benefits of MSWasm is that it
gives Wasm compilers and runtimes flexi-
bility in how to best enforce memory safety. This is especially important today: memory-safety
hardware support is only starting to see deployment and applications have different security-
performance requirements—we cannot realistically expect everyone to pay the cost of software-
based memory safety. When hardware becomes available, MSWasm programs can take advantage
of hardware acceleration almost trivially: in our AOT compiler, for example, we only need to tweak
the codegen stage. We demonstrate this flexibility by prototyping two different software techniques,
and one hardware-accelerated technique that have different safety and performance characteristics.
Segments as Vectors. Our default technique for memory-safety enforcement closely matches
Section 3.2.1, and enforces spatial safety, temporal safety, and handle integrity (rWasm𝑆𝑇𝐻 in
Section 7). We implement the segment memory as a vector (Vec) of segments. Each segment is
a pair composed of a Vec of bytes (giving us spatial safety) and a Vec of tags, which is used to
enforce handle integrity. Handles themselves are implemented using an enum (i.e., a tagged union).
To enforce temporal safety we clear free segments from memory and use sentinel value to prevent
the reuse of segment indexes. A slight variation of this technique (rWasm𝑆𝑇 in Section 7) gives up
on handle integrity (we remove the Vec of tags and related checks) for performance.
Segments with Baggy Bounds.Our second technique is inspired by Baggy Bounds checking [Akri-
tidis et al. 2009], which is a technique that performs fast checks at each handle-modifying operation
and elides checks at loads and stores, enabled by expanding buffers to the next power of two at
the point of allocation. This technique gives up on handle integrity and temporal safety, since
accesses are not checked, but is considerably faster (rWasm𝑆 in Section 7). To implement this
technique, our compiler uses a single growable Vec of bytes, within which a binary buddy allocator
allocates implicit segment boundaries. We implement the handles as 64-bit values storing an offset
in memory and the log of the segment size (rounded up to nearest power of two at allocation). We
emit bounds checks for each operation that might modify handles, ensuring that handles remain
within the (baggy) bounds of their corresponding segment. Specifically, when handles stray a short

7In modifying rWasm, we were careful to ensure that we preserve its previously-established sandboxing/isolation guarantees.
These guarantees, together with the internal memory-safety guarantees from MSWasm, increases the level of protection for
native code generated by rWasm.
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distance outside their segment, we mark them as such (and they can safely return back), but we
trap when they (try to) stray too far.
Hardware acceleration using CHERI. Our third technique is to implement segment memory
using CHERI capabilities [Watson et al. 2015]. Each handle is represented as a CHERI capability:
a 128-bit register that consists of a capability base, offset, size, and permissions. Each capability
also contains a tag bit that tracks the integrity of the capability—that the capability has not been
expanded, has not been corrupted in memory, etc. By implementing handles using capabilities,
we can enforce handle and spatial safety without software checks. This is because CHERI bounds
checks memory accesses (spatial safety) and checks the validity of the tag bit (handle integrity) in
hardware. Temporal safety for CHERI code is still a work in progress [Filardo et al. 2020; Xia et al.
2019], and consequently, our MSWasm-on-CHERI prototype does not yet support it.

To implementMSWasm using CHERI, we add a new rWasm backend that emits a subset of CHERI-
compatible C code which implements handles as capabilities. Since CHERI capabilities andMSWasm
handles are conceptually very similar, this compilation step is straightforward: segalloc(size) be-
comes calloc(size, 1), segfree(handle) becomes free(handle), handle.add becomes stan-
dard pointer addition, etc. We then compile this CHERI-C code to CHERI-Aarch64 using the already
mature CHERI LLVM [CTSRD-CHERI 2022] compilation pipeline.
Implementation Effort. Our modifications to rWasm, for both software-only memory enforce-
ment techniques, comprise roughly 1900 lines of additional code. The implementation of these
two techniques comprise approximately 500 lines of code each in rWasm’s codegen, and share
the rest of rWasm’s codebase. The hardware-accelerated technique also uses our modified rWasm
frontend, but could not share much of rWasm’s codegen with the other backends (which target
Rust), instead requiring code to support a new target language—CHERI-C (even for the regular
non-MSWasm-specific components of Wasm); our modifications for this backend comprise ap-
proximately 3000 lines of code. The relative ease of these modifications, both for software- and
hardware-based techniques illustrates how MSWasm provides a fertile ground for experimenting
with new techniques for providing performant memory safety.

6.2 Just in Time Compilation of MSWasm
Our second prototype is a just-in-time compiler of MSWasm built on top of GraalWasm [Prokopec
2019]. GraalWasm is a Wasm frontend for GraalVM [Oracle 2021a], a JVM-based JIT compiler
capable of compiling a wide range of languages through the Truffle framework [Oracle 2021b]. We
extend GraalWasm to support MSWasm. Our modifications mirror those we made to rWasm: We
modified the GraalWasm frontend to parse MSWasm and the backend—the GraalWasm interpreter
in this case—to support MSWasm’s instructions and segment memory model. We were able to
reuse the GraalVM JIT compiler unmodified, as it automatically optimizes the AST generated by
Truffle from the interpreter.
Segments as Objects. Unlike our rWasm implementation, we only consider one enforcement
technique. We pick a middle ground between safety and performance: We enforce spatial and
temporal safety, but not handle integrity (Graal𝑆𝑇 in Section 7). Our implementation of memory
segments in GraalWasm is similar to our first rWasm technique (but does not track handle-integrity
tags). We implement the segment memory as a Java object, SegmentMemory, which tracks a list of
segments. SegmentMemory is backed by Java’s Unsafe memory manager, an internal framework
that facilitates manual memory management. Unlike objects created on the Java heap, memory
allocated through Unsafe is not garbage-collected and is accessed directly by pointer addresses.
Using Java Unsafe, SegmentMemory manually allocates a new chunk of memory for each new
segment, which lets us avoid the overhead of Java objects in exchange for explicitly tracking
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the allocated memory. A segment is represented by a Segment object, which contains an address
within the Unsafememory, the (inclusive) upper bound of the segment in memory, and a randomly
generated key. To ensure temporal safety, free segments are removed from the list of segments in
SegmentMemory, leaving no way to reference them.
Implementation Effort.We added roughly 1200 lines of code to GraalWasm. Our prototype is
relatively simple and not yet tuned to take full advantage of GraalVM’s optimizations. We leave
this to future work.

6.3 Compiling C to MSWasm
MSWasm, like Wasm, is intended to be a compilation target from higher level languages. We
implement a compiler fromC toMSWasm by extending the CHERI fork of Clang and LLVM [CTSRD-
CHERI 2022]. CHERI modified LLVM to support fat pointers, which share many characteristics
with MSWasm handles, and is thus a good starting point for MSWasm.

CHERI represents fat pointers at the LLVM IR level as 64- to 512-bit pointers in a special,
distinguished “address space”; pointers in this address space are lowered to CHERI capabilities
in the appropriate LLVM backends. CHERI today only targets MIPS and RISC-V (with CHERI
hardware extensions) backends; other backends, including the Wasm backend, are incompatible
with CHERI’s fat pointers. We modified the Wasm backend to emit MSWasm bytecode, lowering
64-bit fat-pointer abstractions to MSWasm abstractions. Since most of the implementation details
follow from Section 5, we focus on details not captured by our formal model.
Global and Static Data. Our C-to-MSWasm compiler only emits handle-based load and store
operations, resulting in MSWasm programs which do not use the linear memory at all. This provides
additional safety guarantees (and implementation expediency) at the expense of some flexibility
(e.g., we do not support integer-to-pointer casts, except for a few special cases like constant 0). One
consequence of this is that even global variables and static data need to be accessed via handles,
and thus placed in the segment memory.8 Our compiler emits instructions to allocate a segment for
each LLVM global variable and store the corresponding handle in a Wasm global variable. When
the target program needs a pointer to the global array, it simply retrieves the handle from the
appropriate Wasm global variable.

Some global variables in C are themselves pointers, initialized via initialization expressions, and
need to be pointing to valid, initialized memory at the beginning of the program. Our compiler
generates the necessary information in the output .wasm file to instruct MSWasm compilers and
runtimes (e.g., rWasm and GraalWasm) to initialize certain segments at module initialization time.
C Stack. We compile part of the C stack to the segment memory. Specifically, stack variables
whose address-of are taken and stack-allocated arrays cannot be placed on the (simple and safe)
Wasm stack. Compilers from C to ordinary Wasm place these variables in the linear memory; our
compiler places them in the segment memory.9 We allocate a single large segment to represent
stack memory for all of the variables which must be allocated in the segment memory; this means
we have a single stack pointer, which we store in a dedicated Wasm global variable of type handle.
Compared to using a separate segment for each stack allocation, our single-segment implementation

8More precisely, global variables which the program never takes the address of, do not need this treatment, as we can
compile them into Wasm globals; but global variables which the program does take the address of, such as global arrays,
are accessed via pointers and thus must be located in the segment memory.
9Stack variables which the program never takes the address of can be compiled to Wasm local variables, and data such as
return addresses are never placed in the linear memory at all; Wasm implementations place them on a safe stack which is
inaccessible to Wasm load and store instructions. The only stack variables which need to be placed in the linear memory, or
for us the segment memory, are those we need pointers to.
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is simpler (and faster) but trades-off some safety, e.g., we cannot prevent a stack buffer overflow
from corrupting another stack-allocated buffer.
Standard library.Wasm programs which depend on libc need a Wasm-compatible implementa-
tion of libc. We modifiedWASI [WebAssembly [n.d.]] to be compatible with MSWasm to the extent
necessary for our benchmarks. Most importantly, we fully recompiled the WASI libc using our
MSWasm compiler, in order to generate libc bytecode compatible with MSWasm. In our MSWasm
version of the WASI libc, the implementations of malloc and free are completely replaced by
trivial implementations consisting of the segalloc and segfree MSWasm instructions.
Implementation Effort. Our CHERI LLVM additions (in particular to its Wasm backend) and
the WASI libc, amounted to approximately 1600 lines of code. While our compiler can target
any MSWasm backend, compiling general, real-world applications would likely require additional
changes to WASI libc. We leave this to future work.

7 PERFORMANCE EVALUATION
In this section we describe our performance evaluation of the MSWasm compiler. We use the
PolyBenchC benchmarking suite [Pouchet 2011] since PolyBenchC has become the de-facto suite
used by almost all Wasm compilers (although limitations to PolyBenchC are noted by [Jangda et al.
2019]). We compare the performance of MSWasm to the performance of the same benchmarks
compiled to normal Wasm, on each of our implementations.
Machine setup.We compile all benchmarks from C to Wasm using Clang, and from C to MSWasm
using our modified CHERI Clang compiler; in both cases we set the optimization level to -O3. We
run all our software-based enforcement benchmarks on a single core on a Linux-based system with
an Intel Xeon 8160, and our hardware-accelerated enforcement benchmarks on the ARM Morello
platform [ARM 2022].
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Fig. 13. Performance of our implementations of MSWasm compared to normal Wasm, normalized against
native (non-Wasm) execution on benchmarks from PolyBenchC

Results. Figure 13 summarizes our measurements (see Appendix A for a detailed breakdown),
normalized against the execution time of native (non-Wasm) execution. In this figure, rWasmWasm
and GraalWasm refer to execution of normal Wasm. We distinguish the different MSWasm compilers
according to their enforcement techniques: rWasm𝑆𝑇𝐻 enforces spatial safety, temporal safety, and
handle integrity; rWasm𝑆𝑇 and Graal𝑆𝑇 only enforce spatial and temporal safety; and, rWasm𝑆 only
enforces spatial safety (in the style of baggy bounds).
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As expected, and in line with prior work [Nagarakatte et al. 2009, 2010], each safety enforcement
techniques comes with a performance cost—handle integrity being the most expensive. For the
AOT compiler, we observe that enforcing spatial safety alone rWasm𝑆 has a geomean overhead of
21.4% over rWasmWasm; additionally enforcing temporal safety (rWasm𝑆𝑇 ) results in an overhead
of 52.2% over rWasmWasm; and, finally, further enforcing handle integrity (rWasm𝑆𝑇𝐻 ) increases
the end-to-end overhead to 197.5%. For the JIT compiler, enforcing spatial and temporal safety
results in an overhead comparable to that of the AOT compiler: Graal𝑆𝑇 imposes a 42.3% geomean
overhead. The JIT approach is much slower than the AOT approach though—the overheads of
rWasmWasm and GraalWasm over native (non-Wasm) execution are 71.8% and 3230.0% respectively.
We also note that with increasing iterations of the GraalVM JIT, GraalWasm’s performance improves
more rapidly than Graal𝑆𝑇 ’s, which suggests that our implementation still has potential to make
better use of GraalVM’s optimizer.

Our hardware-accelerated approach, which enforces spatial safety and handle integrity (but not
temporal safety), runs on an entirely distinct architecture and platform. Thus, a direct comparison
against the same native code baseline used for the other techniques would not be particularly
instructive. Instead, we evaluate our MSWasm-CHERI backend, against baseline native CHERI code
(pure capability mode) on the Morello platform, and find an overhead of 51.7%.

Since normal Wasm and MSWasm have different bytecode formats, our evaluation of MSWasm
performance necessarily includes slowdowns caused by inefficiencies in our compilation from
C to MSWasm. But because MSWasm decouples memory safety enforcement from the genera-
tion of MSWasm bytecode, both parts of this pipeline (C-to-MSWasm compilation, and MSWasm
to machine code) can be independently optimized, with MSWasm performance benefiting from
improvements on both sides.

8 RELATEDWORK

Comparison with [Disselkoen et al. 2019]. Their work introduces MSWasm and provides
an informal design; however it only conjectures the memory-safety guarantees. In contrast, our
current work specifies the design of MSWasm using formal semantics, which makes it possible to
establish precise memory-safety guarantees, and to provide a specification for a variety of MSWasm
implementations. Furthermore, we provide the first implementation and evaluation of MSWasm as
well as a C-to-MSWasm compiler.

Memory safety for C-like languages. Despite a tremendous amount of work on memory-safety
protection mechanisms [Szekeres et al. 2013], researchers still struggle to agree on a common
definition formemory safety [Hicks 2014]. Azevedo de [Azevedo de Amorim et al. 2018] characterize
memory safety as a 2-hypersafety property, similar to non-interference. Their definition belongs to
a richer class of security properties, which are harder to enforce and to preserve robustly through
compilation [Abate et al. 2019].
Many compiler-based instrumentations have been proposed to enforce memory safety in C

programs via software-based checks attached to pointer and memory operations [Akritidis et al.
2009; Austin et al. 1994; Jim et al. 2002; Nagarakatte et al. 2009; Necula et al. 2005; Patil and Fischer
1997; Ruef et al. 2019; Xu et al. 2004]. Some of these solutions are also supported by formal memory-
safety guarantees [Nagarakatte et al. 2009, 2010; Ruef et al. 2019]. These formal results however, are
not robust, i.e., they do not guarantee memory safety when linking with arbitrary adversarial code.
Moreover, these formalizations do not actually include the instrumentation pass of the compiler,
but prove memory safety via type safety of an instrumented C-like language, where pointers are
annotated with bounds metadata. Unlike MSWasm, these languages adopt a high-level memory
model, which implicitly provides pointer integrity.

, Vol. 1, No. 1, Article . Publication date: November 2022.



1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

26
Alexandra E. Michael∗, Anitha Gollamudi∗, Jay Bosamiya, Evan Johnson, Aidan Denlinger, Craig

Disselkoen, Conrad Watt, Bryan Parno, Marco Patrignani, Marco Vassena, and Deian Stefan

Our color-based memory-safety monitor and similarly our notion of authentic pointers and
handles are inspired by previous work on pointer provenance in C [Memarian et al. 2019a]. Some of
the C semantics proposed in that work track pointer provenance also through integer and pointer
casts, which we do not consider in this work, also given that MSWasm has no native notion of casts.
Our definition of memory-safety is also related to the micro-policies [d. Amorim et al. 2015]. The
main difference is that they use (finite number of) color tags to enforce memory safety whereas
we use (possibly infinite) colors to develop a general language-independent definition of memory
safety.

Efficient memory-safety implementations. Unlike compiler-based instrumentations, compiling
to MSWasm does not commit to a particular concrete strategy for enforcing memory safety:
Different implementations of MSWasm can use different enforcement approaches. In particular,
MSWasm enables backends compilers and runtimes to leverage efficient software- and hardware-
based mechanisms, independently proposed to enforce pointer integrity [Liljestrand et al. 2019],
spatial [Akritidis et al. 2009; Arm 2019; Kroes et al. 2018], and temporal [Lee et al. 2015; Parkinson
et al. 2017] safety, to create new practical memory-safety enforcement schemes. BecauseMSWasm is
platform-agnostic, we expect that implementations will be able to opportunistically take advantage
of hardware memory protection mechanisms on individual platforms [Arm 2019; Devietti et al.
2008; Kwon et al. 2013; Oleksenko et al. 2018] (current and proposed) to efficiently implement
handles.

Software isolation via Wasm.Wasm abstractions provide an efficient software-isolation mecha-
nism, which has been applied in many different domains. For example, using Wasm, the RLBox
framework [Narayan et al. 2020] retrofits isolation into the Firefox browser; Sledge [Gadepalli
et al. 2020] enables lightweight serverless-first computing on the Edge; and eWASM [Peach et al.
2020] demonstrates practical software fault isolation for resource-constrained embedded platforms.
These use cases already rely on both the performance and the sandboxing safety of Wasm, and
stand to benefit from MSWasm’s focus on memory safety.

[Bosamiya et al. 2022] use formal methods and non-traditional techniques respectively to provide
provable isolation between the Wasm module, running as a native library, and the host process
executing it. Their focus is on provable module–host isolation, and module-internal memory safety
is explicitly left out of scope. As shown by [Lehmann et al. 2020], Wasm lacks many common
defenses (e.g., stack canaries, guard pages, ASLR) against classic memory safety vulnerabilities,
such as buffer overflows.
[Jangda et al. 2019] perform a large-scale performance evaluation of browser Wasm runtimes,

comparing to native code. Our evaluation of MSWasm’s performance (Section 7) shows that adding
memory-safety protections does not fundamentally changeWasm’s performance story. In particular,
adding spatial and temporal safety imposes less overhead onWasm than the overheadWasm already
incurs vs native code.

9 CONCLUSION
This paper realised the MSWasm proposal to extend Wasm with language-level memory-safety
abstractions, giving it a formal semantics, proving that its programs are all memory safe and
implementing the MSWasm language runtime. Like Wasm, MSWasm is intended to be used as
a compilation target, so this paper formalised a C-to-MSWasm compiler, proved that it enforces
memory safety, and implemented variations of said compiler with different tradeoffs between
speed and security. Our PolyBenchC-based evaluation shows that MSWasm introduces an overhead
ranging from 22% (enforcing spatial safety alone) to 198% (enforcing full memory safety). Our
software-based implementations only serve to highlight that enforcing memory safety for Wasm
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is possible and, moreover, that MSWasm makes it easy to change the underlying enforcement
mechanism without modifying application code. This means MSWasm engines will be able to take
advantage of clever memory safety enforcement techniques today and hardware extensions in the
near future, progressively (and transparently) improving the safety of the applications they run.
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A DETAILED EVALUATION BREAKDOWN OF OUR IMPLEMENTATIONS OF MSWASM

Fig. 14. A detailed per-program breakdown of the performance of our implementations of MSWasm compared to normal Wasm, normalized against native
(non-Wasm) execution on benchmarks from PolyBenchC. Rather than relying on less accurate external measurements using time(1), we use PolyBenchC’s
own internal execution time reporting (i.e., -DPOLYBENCH_TIME).
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