
21

On the Semantic Expressiveness of Recursive Types

MARCO PATRIGNANI, Stanford University, USA and CISPA Helmholtz Center for Information Security,

Germany

ERIC MARK MARTIN, Stanford University, USA

DOMINIQUE DEVRIESE, Vrije Universiteit Brussel, Belgium

Recursive types extend the simply-typed lambda calculus (STLC) with the additional expressive power to

enable diverging computation and to encode recursive data-types (e.g., lists). Two formulations of recursive

types exist: iso-recursive and equi-recursive. The relative advantages of iso- and equi-recursion are well-

studied when it comes to their impact on type-inference. However, the relative semantic expressiveness of the

two formulations remains unclear so far.

This paper studies the semantic expressiveness of STLC with iso- and equi-recursive types, proving that

these formulations are equally expressive. In fact, we prove that they are both as expressive as STLC with

only term-level recursion. We phrase these equi-expressiveness results in terms of full abstraction of three

canonical compilers between these three languages (STLC with iso-, with equi-recursive types and with

term-level recursion). Our choice of languages allows us to study expressiveness when interacting over both

a simply-typed and a recursively-typed interface. The three proofs all rely on a typed version of a proof

technique called approximate backtranslation.

Together, our results show that there is no difference in semantic expressiveness between STLCs with iso-

and equi-recursive types. In this paper, we focus on a simply-typed setting but we believe our results scale to

more powerful type systems like System F.

Additional KeyWords and Phrases: Fully-abstract compilation, Lambda Calculus, Recursive types, Iso-recursive

types, Coinductive Equi-recursive types, Backtranslation

To more clearly present notions, this paper uses syntax highlighting accessible to both colourblind and black &
white readers [Patrignani 2020]. For a better experience, please print or view this in colour.1

1 INTRODUCTION
Recursive types were first proposed by Morris [1968] as a way to recover divergence from the

untyped lambda calculus in a simply-typed lambda calculus. They also enable the definition of

recursive data-types such as lists, trees, and Lisp S-expressions in typed languages.

Morris’ original formulation was equi-recursive: a type µα . τ was regarded as an infinite type and

considered equal to its unfolding τ
[
µα . τ/α

]
. Subsequent formulations (e.g., Abadi and Fiore [1996])

1
Specifically, we use a blue, sans-serif font for STLC with the fix operator, a red, bold font for STLC with iso-recursive
types, and pink, italics font for STLC with coinductive equi-recursive types. Elements common to all languages are typeset

in a black, italic font (to avoid repetition).

Authors’ addresses: Marco Patrignani, Computer Science, Stanford University, USA , CISPAHelmholtz Center for Information

Security, Saarbrücken, Germany, mp@cs.stanford.edu; Eric Mark Martin, Computer Science, Stanford University, USA,

ericmarkmartin@cs.stanford.edu; Dominique Devriese, Computer Science, Vrije Universiteit Brussel, Brussels, Belgium,

dominique.devriese@vub.be;

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2021 Copyright held by the owner/author(s).

2475-1421/2021/1-ART21

https://doi.org/10.1145/3434302

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 21. Publication date: January 2021.

https://doi.org/10.1145/3434302

21:2 Marco Patrignani, Eric Mark Martin, and Dominique Devriese

use different type equality relations. In this paper we will work with λ
µ
E : a standard simply-typed

lambda calculus with coinductive equi-recursive types [e.g., Cai et al. 2016].

Years after Morris’ formulation of recursive types, a different one appeared [e.g., Gordon et al.

1979; Harper and Mitchell 1993], where the two types are not considered equal, but isomorphic:
values can be converted from µα .τ to τ

[
µα .τ/α

]
and back using explicit fold and unfold annota-

tions in terms. These annotations are used to guide typechecking, but they also have a significance

at runtime: an explicit reduction step is needed to cancel them out: unfoldµα .τ (foldµα .τ v) ↪→ v.
In this paper, we work with a standard iso-recursive calculus λ

µ
I .

The relation between these two formulations has been studied by Abadi and Fiore [1996] and

Urzyczyn [1995] (the latter focusing on positive recursive types). Specifically, they show that any

term typable in one formulation can also be typed in the other, possibly by adding extra unfold
or fold annotations. Additionally, Abadi and Fiore prove that for types considered equal in the

equi-recursive system, there exist coercion functions in the iso-recursive formulation that are

mutually inverse in the (axiomatised) program logic. The isomorphism properties are proved in a

logic for the iso-recursive language (which is only conjectured to be sound), and the authors do not

even consider an operational semantics.

The relative semantic expressiveness of the two formulations, however, has remained yet unex-

plored. In principle, executions that are converging in the equi-recursive language may become

diverging in the iso-recursive setting because of the extra fold-unfold reductions. Because of this, it

is unclear whether the two formulations of recursive types produce equally expressive languages.

To study language expressiveness meaningfully, it is important to phrase the question properly. If

we just consider programs that receive a natural number and return a boolean, then both languages

will allow expressing the same set of algorithms, simply by their Turing completeness.

The question of expressiveness is more interesting if we consider programs that interact over a

richer interface. Consider, for example, a term t from the simply-typed lambda calculus embedded

into either calculus λ
µ
I or λ

µ
E . A much more interesting question is whether there are ways in

which λ
µ
E contexts (i.e., larger programs) can interact with t that contexts in λ

µ
I cannot. The use of

contexts in different languages interacting with a common term as a way of measuring language

expressiveness has a long history [Felleisen 1991; Mitchell 1993], mostly in the study of process

calculi [Parrow 2008]. In this setting, equal expressiveness of programming languages is sometimes

argued for by proving the existence of a fully-abstract compiler from one language to the other

[Gorla and Nestmann 2016]. Such a compiler translates contextually-equivalent terms in a source

language (indicated as Lsrc) to contextually-equivalent terms in a target language (indicated as

Ltrg) [Abadi 1998; Patrignani et al. 2019]. That is, if contexts cannot distinguish two terms in Lsrc ,
they will also not be able to distinguish them after the compilation to Ltrg .

Concretely, in this paper, we study the expressive power of λ
µ
I and λ

µ
E when interacting over two

kinds of interfaces. The first is characterized by simply-typed lambda calculus types which do not

mention recursive types themselves. We consider implementations of this interface in λfx (a simply

typed lambda calculus with term-level recursion in the form of a primitive fixpoint operator), and

embed them canonically into both λ
µ
I and λ

µ
E . We show that if two λfx terms cannot be distinguished

by λfx contexts, then the same is true for both λ
µ
I and λ

µ
E contexts. Additionally, we consider STLC

types that contain recursive types themselves as interfaces. We take implementations of them in

λ
µ
I and a canonical compiler into λ

µ
E . We show that this compiler is also fully abstract. These three

fully-abstract compilation results establish the equi-expressiveness of λ
µ
I , λ

µ
E , and λfx contexts,

interacting over simply-typed interfaces with and without recursive types.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 21. Publication date: January 2021.

On the Semantic Expressiveness of Recursive Types 21:3

Let us now argue why the choice of fully-abstract compilation as a measure of the relative

expressiveness of programming languages is the right one in our setting. After all, several re-

searchers have pointed out that the mere existence of a fully-abstract compilation is not in itself

meaningful and only compilers that are sufficiently well-behaved should be considered [Gorla and

Nestmann 2016; Parrow 2008]. The reason for this is that one can build a degenerate fully-abstract

compiler that shows both languages having an equal amount (cardinality of) equivalence classes

for terms. This would indicate that the languages are equally-expressive, but unfortunately this is

also trivial to satisfy [Parrow 2008]. These degenerate examples, as such, clarify the necessity for

well-behavedness of the compiler. However, we have not found a clear argument explaining why

well-behaved fully-abstract compilation implies equi-expressiveness of languages, so here it is.

In our opinion (and we believe this point has not yet been made in the literature), the issue is

that fully-abstract compilation results measure language expressiveness not by verifying that they

can express the same terms, but that they can express the same contexts. Defining when a context in

Lsrc is the same as a context in Ltrg is hard, and therefore fully-abstract compilation simply requires

that Ltrg contexts can express the interaction of Lsrc contexts with any term that is shared between

both languages. The role of the compiler, the translation from Lsrc to Ltrg , is simply to obtain this

common term against which expressiveness of contexts in both languages can be measured.

In other words, expressiveness of a programming language is only meaningful with respect to

a certain interface and the role of the compiler is to map Lsrc implementations of this interface

to Ltrg implementations. In a sense, the Lsrc implementation of the interface should be seen as

an expressiveness challenge for Lsrc contexts and the compiler translates it to the corresponding

challenge in Ltrg . As such, the compiler should be seen as part of the definition of equi-expressiveness

and the well-behavedness requirement is there to make sure the Lsrc challenge is translated to

“the same” challenge in Ltrg . Fortunately, in this work we only rely on canonical compilers that

provide the most intuitive translation for a term in our source languages into “the same” term in

our target ones. Thus, we believe that in our setting using fully-abstract compilation is the right

tool to measure the relative expressiveness of programming languages.

Proving full abstraction for a compiler is notoriously hard, particularly the preservation direction,

i.e., showing that equivalent source terms get compiled to equivalent target terms. Informally, it

requires showing that any behaviour (e.g., termination) of target program contexts can be replicated

by source program contexts. Demonstrating such a claim is particularly complicated in our setting

since λ
µ
E contexts have coinductive (and thus infinite) type equality derivations. To be able to prove

fully-abstract compilation, we adopt the approximate backtranslation proof technique of Devriese

et al. [2017]. This technique relies on two key components: a cross-language approximation relation

between source and target terms (and source and target program contexts) and a backtranslation

function from target to source program contexts. Intuitively, the approximation relation is used

to tell when a source and a target term (or program context) equi-terminate; we use step-indexed

logical relations to define this and rely on the step as the measure for the approximation. The

backtranslation is a function that takes a target program context and produces a source program

context that approximates the target one. This is particularly appropriate for backtranslating λ
µ
E

program contexts, since we show that it is sufficient to approximate their coinductive derivations

instead of replicating them precisely.

We construct three backtranslations: from λ
µ
I and λ

µ
E contexts respectively into λfx ones and

from λ
µ
E contexts into λ

µ
I ones. We do so by defining a family of types for backtranslated terms

that is not just indexed by the approximation level but also by the target type of the backtranslated

term. To the best of our knowledge, this is a novel approach, since all existing work relies on a

single type for backtranslated terms [Devriese et al. 2017; New et al. 2016]. For proving correctness

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 21. Publication date: January 2021.

21:4 Marco Patrignani, Eric Mark Martin, and Dominique Devriese

of these backtranslations, we define a (step-)indexed logical relation to express when compiled and

backtranslated terms approximate each other. While the logical relation is largely the same for the

different compilers and backtranslations, differences in the language semantics impose that we

treat backtranslated λ
µ
I terms differently from λ

µ
E .

To summarize, the key contribution of this paper is the proof that iso- and equi-recursive typing

are equally expressive. This result is achieved via the following contributions (depicted in Figure 1).

• adapting the approximate backtranslation proof technique to operate on families of back-

translation types that are type-indexed on target types and compilers that do not rely on

dynamic typechecks to attain fully-abstract compilation;

• proving that the compiler from λfx to λ
µ
I is fully abstract with an approximate backtranslation;

• proving that the compiler from λfx to λ
µ
E is fully abstract with an approximate backtranslation;

• proving that the compiler from λ
µ
I to λ

µ
E is fully abstract with an approximate backtranslation.

Note that technically, we can derive the compiler and backtranslation between λfx and λ
µ
E by

composing the compilers and backtranslations through λ
µ
I . We present this result directly because

it offers insights on proofs of fully-abstract compilation for languages with coinductive notions.

λfx

λ
µ
I λ

µ
E

J·K
λ
µ
I

λµE

⟨⟨·⟩⟩
λµE
λ
µ
I

J ·K
λ
fx

λ
µ
I

⟨⟨
·⟩⟩
λ
µ
I

λ
fx

J·K λ fx

λ µ
E

⟨⟨·⟩⟩ λ µ
Eλ fx

Fig. 1. Our contributions, visually. Full ar-
rows indicate canonical embeddings J·K
while dotted ones are (approximate) back-
translations ⟨⟨·⟩⟩. Translations’ superscripts
indicate input languages while their sub-
scripts indicate output languages.

The remainder of this paper is organised as follows.

We first formalise the languages we use (λfx, λ
µ
I and λ

µ
E)

as well as the cross-language logical relations which ex-

press when two terms in those languages are semantically

equivalent (Section 2). Next, we present fully-abstract

compilation and describe our approximate backtransla-

tion proof technique in detail (Section 3). Then we define

the three compilers (from λfx to λ
µ
I , from λfx to λ

µ
E and

from λ
µ
I to λ

µ
E) and prove that they are fully abstract

using three approximate backtranslations (Section 4). Fi-

nally, we discuss related work (Section 5) and conclude

(Section 6).

For space constraints we omit some formalisation, aux-

iliary lemmas and proofs. The interested reader can find

these results in the companion technical report [Patrig-

nani et al. 2020].

2 LANGUAGES AND CROSS-LANGUAGE
LOGICAL RELATIONS
This section presents the simply-typed lambda calculus (λ) and its extensions with a typed fixpoint

operator (λfx), with iso-recursive types (λ
µ
I) and with coinductive equi-recursive types (λ

µ
E). We

first define the syntax (Section 2.1), then the static semantics (Section 2.2) and then the operational

semantics of these languages (Section 2.3). Finally, this section presents the cross-language logical

relations used to reason about the expressiveness of terms in different languages (Section 2.4). Note

that these logical relations are partial, the key addition needed to attain fully-abstract compilation

is presented in Section 3.3 only after said addition is justified.

2.1 Syntax
All languages include standard terms (t) and values (v) from the simply-typed lambda calculus:

lambda abstractions, applications, pairs, projections, tagged unions, case destructors, booleans,

branching, unit and sequencing. Additionally, λfx has a fix operator providing general recursion,
while λ

µ
I has fold and unfold annotations; λ

µ
E requires no additional syntactic construct. Regarding

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 21. Publication date: January 2021.

On the Semantic Expressiveness of Recursive Types 21:5

types, both λ
µ
I and λ

µ
E add recursive types according to the same syntax. In λ

µ
I and λ

µ
E , recursive

types are syntactically constrained to be contractive. Note however that for simplicity of presentation

we will indicate a type as τ and simply report the contractiveness constraints when meaningful.

A recursive type µα . τ is contractive if, the use of the recursion variable α in τ occurs under a

type constructor such as→ or × [MacQueen et al. 1984]. Non-contractive types (e.g.,µα . α) are not
inhabited by any value, so it is reasonable to elide them (Lemma 1). Moreover, they do not have an

infinite unfolding and (without restrictions on the type equality relation) can be proven equivalent

to any other type [Im et al. 2013], which is undesirable.

Lemma 1 (Uninhabited non-contractive types). if τ is non-contractive then ∄v.∅ ⊢ v : τ

All languages have evaluation contexts (E), which indicate where the next reduction will happen,

and program contexts (C), which are larger programs to link terms with.

v ::= unit | true | false | λx : τ . t | ⟨v, v⟩ | inl v | inr v | foldµα .τ v Γ ::= ∅ | Γ, x : τ

τ ,σ ::= Unit | Bool | τ s → τ s | τ s × τ s | τ s ⊎ τ s | µα .τ | µα . τ τ s ::= α | α | τ

t ::= unit | true | false | λx : τ . t | x | t t | t.1 | t.2 | ⟨t, t⟩ | case t of inl x1 7→ t | inr x2 7→ t

| inl t | inr t | if t then t else t | t; t | fixτ→τ t | foldµα .τ t | unfoldµα .τ t
E ::= [·] | E t | v E | E.1 | E.2 | ⟨E, t⟩ | ⟨v,E⟩ | case E of inl x1 7→ t1 | inr x2 7→ t2
| inl E | inr E | E; t | if E then t else t | fixτ→τ E | foldµα .τ E | unfoldµα .τ E

C ::= [·] | λx : τ .C | C t | t C | C.1 | C.2 | ⟨C, t⟩ | ⟨t,C⟩ | case C of inl x1 7→ t | inr x2 7→ t

| case t of inl x1 7→ C | inr x2 7→ t | case t of inl x1 7→ t | inr x2 7→ C | inl C | inr C | C; t | t;C

| if C then t else t | if t then C else t | if t then t else C | fixτ→τ C | foldµα .τ C | unfoldµα .τ C

2.2 Static Semantics
This section presents the (fairly standard) static semantics of our languages, we delay discussing

alternative formulations of equi-recursive types to Section 5. The static semantics for terms follows

the canonical judgement Γ ⊢ t : τ , which attributes type τ to term t under environment Γ and

occasionally relies on function ftv (τ), which returns the free type variables of τ . The only difference
in the typing rules regards fold/unfold terms (Rules λ

µ
I -Type-fold and λ

µ
I -Type-unfold) and the

introduction of the type equality (⊜ in Rule λ
µ
E -Type-eq).

Γ ⊢ t : τ

(Type-var)
x : τ ∈ Γ

Γ ⊢ x : τ

(Type-unit)

Γ ⊢ unit : Unit

(Type-true)

Γ ⊢ true : Bool

(Type-false)

Γ ⊢ false : Bool

(Type-p1)
Γ ⊢ t : τ × τ ′

Γ ⊢ t.1 : τ

(Type-p2)
Γ ⊢ t : τ ′ × τ
Γ ⊢ t.2 : τ

(Type-case)
Γ ⊢ t : τ ′ ⊎ τ ′′

Γ, x1 : τ ′ ⊢ t ′ : τ Γ, x2 : τ ′′ ⊢ t ′′ : τ

Γ ⊢ case t of inl x1 7→ t ′ | inr x2 7→ t ′′ : τ

(Type-if)
Γ ⊢ t : Bool

Γ ⊢ t ′ : τ Γ ⊢ t ′′ : τ
Γ ⊢ if t then t ′ else t ′′ : τ

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 21. Publication date: January 2021.

21:6 Marco Patrignani, Eric Mark Martin, and Dominique Devriese

(Type-seq)
Γ ⊢ t : Unit
Γ ⊢ t ′ : τ
Γ ⊢ t; t ′ : τ

(Type-lam)
Γ, x : τ ⊢ t : τ ′

ftv (τ) = ∅

Γ ⊢ λx : τ . t : τ → τ ′

(Type-app)
Γ ⊢ t : τ ′ → τ
Γ ⊢ t ′ : τ ′

Γ ⊢ t t ′ : τ

(Type-pair)
Γ ⊢ t : τ
Γ ⊢ t ′ : τ ′

Γ ⊢
〈
t, t ′

〉
: τ × τ ′

(Type-inl)
Γ ⊢ t : τ

Γ ⊢ inl t : τ ⊎ τ ′

(Type-inr)
Γ ⊢ t : τ ′

Γ ⊢ inr t : τ ⊎ τ ′

(λfx-Type-fix)
Γ ⊢ t : (τ1 → τ2) → τ1 → τ2

Γ ⊢ fixτ1→τ2 t : τ1 → τ2
(λµ

I -Type-fold)
Γ ⊢ t : τ

[
µα .τ/α

]
Γ ⊢ foldµα .τ t : µα .τ

(λµ
I -Type-unfold)
Γ ⊢ t : µα .τ

Γ ⊢ unfoldµα .τ t : τ
[
µα .τ/α

] (λµE -Type-eq)
Γ ⊢ t : µα . τ µα . τ ⊜ σ

Γ ⊢ t : σ

Program contexts have an important role in fully-abstract compilation. They follow the usual

typing judgement (C ⊢ Γ,τ → Γ′,τ ′), i.e., program context C is well typed with a hole of type τ
that use free variables in Γ, and overall C returns a term of type τ ′ and uses variables in Γ′. These
typing rules are unsurprising, so we omit them for space constraints.

We use the same coinductive type equality relation of Cai et al. [2016], with a cosmetic difference

only. Two types are equal if they are the same base type ι or variable (Rules ⊜-prim and ⊜-var). If
the types are composed of two types, the connectors must be the same and each sub-type must be

equivalent (Rule ⊜-bin). If the left type starts with a µ (or if that does not but the right one does),

then we unfold the type for checking the equality (Rules ⊜-µl and ⊜-µr). Note that these last two
rules are defined in an asymmetric fashion to make equality derivation deterministic. Finally, we

make explicit the rules for reflexivity, symmetry and transitivity (Rules ⊜-refl to ⊜-trans) whose
derivations we have proved from the other rules.

τ ⊜ τ ′

(⊜-prim)
ι = Unit ∨ ι = Bool

ι ⊜ ι

(⊜-var)

α ⊜ α

(⊜-bin)
⋆ ∈ {→,×,⊎} τ1 ⊜ σ1 τ2 ⊜ σ2

τ1 ⋆ τ2 ⊜ σ1 ⋆ σ2

(⊜-µl)
τ
[
µα . τ/α

]
⊜ σ

τ contractive in α

µα . τ ⊜ σ

(⊜-µr)
lmc (τ) = 0 τ ⊜ σ

[
µα . σ/α

]
σ contractive in α

τ ⊜ µα . σ

(⊜-refl)

τ ⊜ τ

(⊜-symm)
σ ⊜ τ

τ ⊜ σ

(⊜-trans)

τ ⊜ σ σ ⊜ τ ′

τ ⊜ τ ′

lmc (τ)
def
=



lmc (τ ′) + 1 τ = µα . τ ′

0 otherwise

To prove results about this equality relation, we will

often induct on the “leading-mu-count” (lmc) measure.

Intuitively, that measure counts the amount of µs that a
λ
µ
E type has before a different connector is found. This

is almost the same as the number of times a type can be

unfolded before it is no longer recursive at the top level (e.g. lmc (Unit) = 0, lmc (µα . α ⊎ Unit) =
1). Non-contractive types such as µα . α , however, create problems here, for they always unfold

into another top level recursive type. This motivates our restriction to contractive types only:

a contractive type τ can be unfolded exactly lmc (τ) times. This restriction is harmless, since

non-contractive recursive types are not inhabited by any value (Lemma 2).

Lemma 2 (No value has a non-contractive type). if τ is non-contractive then ∄v.∅ ⊢ v : τ .

2.3 Dynamic Semantics

t ↪→ t ′ and t ↪→p t ′

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 21. Publication date: January 2021.

On the Semantic Expressiveness of Recursive Types 21:7

(Eval-ctx)
t ↪→p t ′

E [t] ↪→ E [t ′]

(Eval-beta)

(λx : τ . t) v ↪→p t[v/x]

(Eval-pi)
i ∈ 1..2

⟨v1, v2⟩ .i ↪→p vi

(Eval-seq)

unit; t ↪→p t

(Eval-inl)

case inl v of
������

inl x1 7→t

inr x2 7→t ′
↪→p t[v/x1]

(Eval-inr)

case inr v of
������

inl x1 7→t

inr x2 7→t ′
↪→p t ′[v/x2]

(Eval-if)
v = true ∨ false

if v then ttrue else tfalse ↪→p tv

(λfx-Eval-fix)

fixτ→τ (λx : τ . t) ↪→p t [fixτ→τ λx : τ . t/x]

(λµ
I -Eval-fold)

unfoldµα .τ (foldµα .τ v) ↪→p v

All our languages are given a contextual, call-by-value, operational semantics. We highlight primi-

tive reductions as ↪→p and non-primitive ones as ↪→. We indicate the capture-avoiding substitution

of variable (or type variable) x in t with value (or type) v as t[v/x]. Note that since λµE has no

peculiar syntactic construct, it also has no specific reduction rule.

2.4 Logical Relations Between Our Languages
As mentioned in Section 1, we need cross-language relations that indicate when related source and

target terms approximate each other. Intuitively, one such relation is needed by each one of the

compilers we define later. Thus, we need to define three logical relations: A one between λfx and
λ
µ
I , which we dub LRfxµI; B one between λfx and λ

µ
E , which we dub LRfxµE; C one between λ

µ
I and

λ
µ
E , which we dub LRµIµE . They are all indexed by (a step and then by) the source type, so logical

relations (A) and (B) look the same. For brevity we present only one of them. Additionally, given

that λ
µ
I has the same types of λfx plus recursive types, we only show that case for logical relation

(C). Ours are Kripke, step-indexed logical relations that are based on those of Devriese et al. [2017];

Hur and Dreyer [2011]. The step-indexing is not inherently needed for relations (A) and (B), which

could be defined just by induction on λfx types (since they do not include recursive types). However,
all of our relations are step-indexed anyway because the steps also determine for how many steps

one term should approximate the other.

Before presenting the details, note that the relations we show here are not complete. Specifically

they only talk about the terms needed to conclude reflection of fully-abstract compilation but not

preservation (admittedly, the most interesting part). Completing the logical relations relies on

technical insights regarding the backtranslations, so we do this later in Section 3.3. The goal of this

section is to provide an understanding of what it means for two terms to approximate each other.

W def
= n ∈ N lev (n) = n ▷(0) = 0 ▷(n + 1) = n

W ⊒W ′ = lev (W) ≤ lev (W ′) W =▷ W
′ = lev (W) < lev (W ′)

O (W)≲
def
=

{
(t, t) ��� if lev (W) > n and t ↪→n v then ∃k. t ↪→k v

}

O (W)≳
def
=

{
(t, t) ��� if lev (W) > n and t ↪→n v then ∃k. t ↪→k v

}

O (W)≈
def
= O (W)≲ ∩ O (W)≳

Fig. 2. Worlds, observations and related technicalities. These are typeset
for the relation between λfx and λ

µ
I but the other ones do not change.

All three relations rely on

the same notion of very simple

KripkeworldsW (Fig. 2).Worlds

consist of just a step-indexk that
is accessed via function lev (W).
The ▷ modality and future world

relation ⊒ express that future

worlds allow programs to take

fewer reduction steps. We define

two different observation rela-

tions, one for each direction of

the approximations we are in-

terested in: O (W)≲ and O (W)≳

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 21. Publication date: January 2021.

21:8 Marco Patrignani, Eric Mark Martin, and Dominique Devriese

while O (W)≈ indicates the intersection of those approximations. Both these relation use notation

t ↪→n v, which indicates that term t reduces to value v in n steps or less. The former defines that a

source term approximates a target term if termination of the first in lev (W) steps or less implies

termination of the second (in any number of steps). The latter requires the reverse. All of our

logical relations will be defined in terms of either O (W)≲ or O (W)≳ . For definitions and lemmas

or theorems that apply for both instantiations, we use the symbol ▽ as a metavariable that can be

instantiated to either ≲ or ≳.
Note that our logical relations (Figure 3) are not indexed by source types, but by pseudo-types

τ̂ . Pseudo-types contain all the constructs of source types, plus an additional type which we

indicate for now as EmulT . This type is not a source type; it is needed because of the approximate

backtranslation, so we defer explaining its details until Section 3.3. Function repEmulfI (·) converts
a pseudo-type to an actual source type by replacing all occurrences of EmulT with a concrete source

type.
2
We will sometimes silently use a normal source type where a pseudo-type is expected; this

makes sense since the syntax for the latter is a superset of the former. Function fxToIs (·) converts
a source pseudo-type into its target-level correspondent; this is needed because unlike the previous

work of Devriese et al. [2017], all of our target languages are typed. The formal details of both these

functions are deferred until EmulT is defined (Section 3.3). Finally, function oftypefI (·) checks
that terms have the correct form according to the rules of syntactic typing (Section 2.2). Function

oftypeIE (·) does the analogous syntactic typecheck but for terms of λ
µ
I and λ

µ
E .

The value relationV Jτ̂ K▽ is defined inductively on source pseudo-types and it is quite standard.

Unit and Bool values are related in any world so long as they are the same value. Function values

are related if they are well-typed, if both are lambdas, and if substituting related values in the

bodies yields related terms in any strictly-future world. Pair values are related if both are pairs

and each projection is related in strictly-future worlds and sum values are related if they have

the same tag (inl or inr) and the tagged values are related in strictly-future worlds. Finally, the

value relation for recursive types used by LRµIµE is not defined on strictly-future worlds because in

an equi-recursive language, values of recursive type can be inspected without consuming a step.

However, this does not compromise well-foundedness of the relation because our recursive types

µα . τ are contractive, so the recursion variable α in τ must occur under a type constructor such as

→ and the relation for these constructors recurses only at strictly-future worlds.

The value, evaluation context and term relations are defined by mutual recursion, using a

technique called biorthogonality (see, e.g., [Benton and Hur 2009]). Evaluation contexts K Jτ̂ K▽ are
related in a world if plugging in related values in any future world yields terms that are related

according to the observation relation of the world. Similarly, terms are related E Jτ̂ K▽ if plugging
the terms in related evaluation contexts yields terms related according to the observation relation

of the world. Relation G
q
Γ̂
y
▽
relates substitutions; this simply requires that substitutions for all

variables in the context are for related values.

We indicate open terms to be logically related according to the three relations as follows:

LRfxµI : Γ̂ ⊢ t ▽n t : τ̂ LRfxµE : Γ̂ ⊢ t ▽n t : τ̂ LRµIµE : Γ̂ ⊢ t ▽n t : τ̂

An open source term is related up to n steps at pseudo-type τ̂ in pseudo-context Γ̂ to a target open

term if both are well-typed and closing both terms with substitutions related in Γ̂ produces terms

related at τ̂ in any world that has at least n steps. If terms are related for any number of steps, we

simply omit the n index and write Γ̂ ⊢ t▽ t : τ̂ . Since we have to also relate program contexts across

2
As a convention, superscripts of these auxiliary functions indicate the initials of the two languages involved.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 21. Publication date: January 2021.

On the Semantic Expressiveness of Recursive Types 21:9

τ̂ ::= Unit | Bool | τ̂ → τ̂ | τ̂ × τ̂ | τ̂ ⊎ τ̂ | EmulT (to be defined in Section 3.3)

oftypefI (τ̂)
def
=

{
(v, v) �� v ∈ oftype (τ̂) and v ∈ oftype (fxToIs (τ̂))

}
oftype (τ̂)

def
=

{
v ��� ∅ ⊢ v : repEmul

fI (τ̂)
}

oftype (τ) def= {v | ∅ ⊢ v : τ }

repEmulfI (·) : τ̂ → τ (see Section 3.3) fxToIs (·) : τ̂ → τ (see Section 3.3)

▷ R
def
= {(W , v, v) | if lev (W) > 0 then (▷(W), v, v) ∈ R}

V JUnitK▽
def
= {(W , v, v) | v = unit and v = unit}

V JBoolK▽
def
= {(W , v, v) | (v = true and v = true) or (v = false and v = false)}

V
q
τ̂ → τ̂ ′

y
▽

def
=




(W , v, v)

�������������

(v, v) ∈ oftypefI
(
τ̂ → τ̂ ′

)
and

∃t, t. v = λx : repEmulfI (τ̂). t, v = λx : fxToIs (τ̂). t and

∀W ′, v′, v′. ifW ′=▷ W and (W ′, v′, v′) ∈ V Jτ̂ K▽ then

(W ′, t
[
v′/x

]
, t

[
v′/x

]
) ∈ E

q
τ̂ ′

y
▽




V
q
τ̂ × τ̂ ′

y
▽

def
=




(W , v, v)

���������

(v, v) ∈ oftypefI
(
τ̂ × τ̂ ′

)
and

∃v1, v2, v1, v2. v = ⟨v1, v2⟩, v = ⟨v1, v2⟩ and

(W , v1, v1) ∈ ▷V Jτ̂ K▽ and (W , v2, v2) ∈ ▷V
q
τ̂ ′

y
▽




V
q
τ̂ ⊎ τ̂ ′

y
▽

def
=




(W , v, v)

���������

(v, v) ∈ oftypefI
(
τ̂ ⊎ τ̂ ′

)
and either

∃v′, v′. (W , v′, v′) ∈ ▷V Jτ̂ K▽ and v = inl v′, v = inl v′ or

∃v′, v′. (W , v′, v′) ∈ ▷V
q
τ̂ ′

y
▽ and v = inr v′, v = inr v′




V JEmulTK▽
def
= to be defined in Section 3.3

K Jτ̂ K▽
def
=

{
(W ,E,E) ��� ∀W

′, v, v. ifW ′ ⊒W and (W ′, v, v) ∈ V Jτ̂ K▽ then (E [v],E [v]) ∈ O (W ′)▽
}

E Jτ̂ K▽
def
=

{
(W , t, t) ��� ∀E,E. if (W ,E,E) ∈ K Jτ̂ K▽ then (E [t],E [t]) ∈ O (W)▽

}

G J∅K▽
def
= {(W ,∅,∅)}

G
q
Γ̂, x : τ̂

y
▽

def
=

{
(W ,γ [v/x],γ[v/x]) ��� (W ,γ ,γ) ∈ G

q
Γ̂
y
▽ and (W , v, v) ∈ V Jτ̂ K▽

}

V J ˆµα . τK▽
def
=



(W , v, v)

�������

(v, v) ∈ oftypeIE (ˆµα .τ) and

∃v′. (W , v′, v) ∈ V
r

ˆτ
[
µα . τ/α

]z
▽
and v = foldµα .τ v′




Fig. 3. Part of the cross-language logical relation we rely on (classical bits) and its auxiliary functions.

languages, we define what it means for them to be related as follows:

LRfxµI : ⊢ C ▽C : Γ̂, τ̂ → Γ̂′, τ̂ ′ LRfxµE : ⊢ C ▽C : Γ̂, τ̂ → Γ̂′, τ̂ ′ LRµIµE : ⊢ C ▽C : Γ̂, τ̂ → Γ̂′, τ̂ ′

Program contexts are related if they are well-typed and if plugging terms related at the pseudo-type

of the hole (τ̂) in each of them produces terms related at the pseudo-type of the result (τ̂ ′).3

All our logical relations are constructed so that for related terms, termination of one term implies

termination of the other according to the direction of the approximation (≲ or ≳) (Lemma 3). We

define termination of a term t as reduction to a value in some steps: t⇓ def
= ∃n,v . t ↪→ n v.

3
The interested reader will find the formalisation of these definitions in the technical report [Patrignani et al. 2020].

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 21. Publication date: January 2021.

21:10 Marco Patrignani, Eric Mark Martin, and Dominique Devriese

Lemma 3 (Adeqacy for ≈).

if ∅ ⊢ t ≲n t : τ and t ↪→m v with n ≥ m then t⇓ if ∅ ⊢ t ≳n t : τ and t ,→m v with n ≥ m then t⇓

3 FULLY-ABSTRACT COMPILATION AND APPROXIMATE BACKTRANSLATIONS
This section provides an overview of fully-abstract compilation and of the approximate backtrans-

lation proof technique that we use (Section 3.1). The approximate backtranslation requires defining

the backtranslation type, i.e., the type that represents backtranslated values (Section 3.2). This type

provides the insights needed to complete the definitions of our logical relations and to understand

how to reason about backtranslated terms cross-languages (Section 3.3).

3.1 A Primer on Fully-Abstract Compilation and Approximate Backtranslations
A compiler is fully abstract if it preserves and reflects contextual equivalence between source

and target language [Abadi 1998]. Many compiler passes have been proven to satisfy this cri-

terion [Ahmed and Blume 2008, 2011; Devriese et al. 2017; Fournet et al. 2013; New et al. 2016;

Patrignani et al. 2015; Skorstengaard et al. 2019; Van Strydonck et al. 2019], we refer the interested

reader to the survey of Patrignani et al. [2019].

Two programs are contextually equivalent if they produce the same behaviour no matter the

larger program (i.e., program context) they interact with [Plotkin 1977]. As commonly done, we

define “producing the same behaviour” as equi-termination (one terminates iff the other does). We

use a complete formulation of contextual equivalence for typed programs, which enforces that

contexts are well-typed and their types match that of the terms considered.

Definition 1 (Contextual Equivalence).
Γ ⊢ t1 ≃ctx t2 : τ

def
= Γ ⊢ t1 : τ and Γ ⊢ t2 : τ and ∀C.C : Γ,τ → ∅,τ ′.C[t1]⇓ ⇐⇒ C[t2]⇓

Quantifying over all contexts in Definition 1 ensures that contextually-equivalent terms do not

just equi-terminate, but that any value the context can obtain from them is indistinguishable.

For a compiler J·K from language Lsrc to Ltrg , we define full abstraction as follows:

Definition 2 (Fully-abstract compilation).
⊢ J·K : FA def

= ∀t1, t2 ∈ Lsrc .∅ ⊢ t1 ≃ctx t2 : τ ⇐⇒ ∅ ⊢ Jt1K ≃ctx Jt2K : Jτ K

For simplicity, we instantiate Definition 2 for closed terms only (i.e., well-typed under empty

environments). Opening the environment to a non-empty set of term variables is straightforward

and therefore omitted [Devriese et al. 2017].

t1
?

≃ctx t2
C [t1] ⇓ ?

======⇒ C [t2] ⇓

(1)

(2)

(3)

C ≈ JCK
t2 ≈ Jt2K

C ≈ JCK
t1 ≈ Jt1K

JCK
[
Jt1K

]
⇓ ====⇒ JCK

[
Jt2K

]
⇓

Jt1K ≃ctx Jt2K

r
e
fl
e
c
t
i
o
n
d
i
r
e
c
t
i
o
n

t1 ≃ctx t2

⟨⟨C⟩⟩n [t1] ⇓_ ======⇒ ⟨⟨C⟩⟩n [t2] ⇓_

(1)

(2)

(3)

⟨⟨C⟩⟩n ≲_ C
t2 ≲_ Jt2K

⟨⟨C⟩⟩n ≳n C
t1 ≳_ Jt1K

C
[
Jt1K

]
⇓n

?

======⇒ C
[
Jt2K

]
⇓
_

Jt1K
?

≃ctx Jt2K

p
r
e
s
e
r
v
a
t
i
o
n
d
i
r
e
c
t
i
o
n

Fig. 4. Diagram breakdown of the reflection (left) and preservation (right) proofs of fully-abstract compilation.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 21. Publication date: January 2021.

On the Semantic Expressiveness of Recursive Types 21:11

3.1.1 Proving Fully-Abstract Compilation: Reflection (or, the Easy Part). The reflection part of fully-

abstract compilation requires that the compiler produces equivalent target programs only if their

source counterparts were equivalent. Contrapositively, inequivalent source programs must be

compiled to inequivalent target program. This proof can often be derived as a corollary of standard

compiler correctness (i.e., refinement) [Patrignani et al. 2019].

As mentioned, we prove the reflection direction by relying on the cross-language logical relations.

Our logical relations are compiler-agnostic—they simply state when terms approximate each others

(recall that ≈ is the intersection of both approximations ≲ and ≳). However, we use them to show

that any term (and program context) is related to its compilation. With this fact, by relying on the

adequacy of logical relations (Lemma 3), we know that related terms equi-terminate. Thus, we can

apply the reasoning depicted in Figure 4 (left) to conclude this part of fully-abstract compilation.

3.1.2 Proving Fully-Abstract Compilation: Preservation (or, the Hard Part). Fully-abstract compilation

proofs are notorious and their complexity resides in the preservation direction. That is, starting

from contextually-equivalent programs in the source, prove that their compiled counterparts are

contextually-equivalent in the target. For our three fully-abstract compilation results we rely on

the approximate backtranslation proof technique [Devriese et al. 2017], depicted in Figure 4 (right).

We rely on both directions of the cross-language approximation relating terms for this proof.

Recall that t ≳n t is used to know that if t terminates in n steps in the target, then t also terminates

(in arbitrary steps) in the source. The converse, t ≲n t is used to know that if t terminates in n steps

in the source, then t also terminates (again in arbitrary steps) in the target. We start with source

term t approximating (in both directions) its compilation JtK. Then, to prove target contextual

equivalence (the ?-decorated equivalence), we start by assuming that a target context C linked

with Jt1K terminates in some steps (⇓n). Eventually, we need to show that the same target context

linked with Jt2K also terminates in any steps (⇓
_
). This is the ?-decorated implication, the reverse

direction holds by symmetry. To progress, we construct a backtranslation ⟨⟨·⟩⟩n, i.e., a function

that takes a target context C and returns a source context that approximates C in both directions.

With the backtranslation and this direction of the approximation ≳n, we prove implication (1): the

backtranslated context ⟨⟨C⟩⟩n linked with t1 terminates in the source. At this point, the assumption

of source contextual equivalence yields implication (2): the same backtranslated context ⟨⟨C⟩⟩n
linked with t2 also terminates. Now we rely on the another direction of the approximation between

the target context and its backtranslation (as well as between source terms and their compilation):

≲_. This other approximation lets us conclude implication (3): the original target context C linked

with Jt2K terminates in the target. This is what we prove for a compiler to be fully abstract.

3.2 A Family of Backtranslation Types
Backtranslated contexts must be valid source contexts, i.e., they need to be well typed in the source.

However, λfx does not have recursive types, so what is the source-level correspondent of µα .τ?
We adapt the same intuition of previous work [Devriese et al. 2016, 2017] in our setting too: it is

not necessary to precisely embed target types into the source language in order to backtranslate

terms. In fact, we need to reason for up to n steps, which means that we can approximate target

types n-levels deep. Thus, concretely, we do not need recursive types in λfx. Given a target recursive

type, we unfold it n times and backtranslate its unfolding to model the n target reductions required.

According to this strategy, the backtranslation of a term of type τ should have type unfold τ n
times. During this unfolding, however, things can go wrong. Specifically, we do not know at runtime

the level of unfolding we are dealing with, i.e., we cannot inspect n at runtime. Thus, we need a

way to model failure (as a sort of catchable exception), or, having reached more than n unfoldings,

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 21. Publication date: January 2021.

21:12 Marco Patrignani, Eric Mark Martin, and Dominique Devriese

because in that case we need to diverge.
4
Thus at each level of unfolding, we backtranslate τ into

“τ ⊎ Unit” (we will make this formal below), where the right Unit models failure.

BtTfI0;τ
def
= Unit

BtTfIn+1;τ
def
=




Unit ⊎ Unit if τ = Unit
Bool ⊎ Unit if τ = Bool
(BtTfIn;τ → BtTfIn;τ ′) ⊎ Unit if τ = τ → τ ′

(BtTfIn;τ × BtT
fI
n;τ ′) ⊎ Unit if τ = τ × τ ′

(BtTfIn;τ ⊎ BtTfIn;τ ′) ⊎ Unit if τ = τ ⊎ τ ′

BtTfI
n;τ ′[µα .τ ′/α]

⊎ Unit if τ = µα .τ ′

BtTfEn+1;τ
def
=




omitted cases are as above

BtTfE
n+1;τ ′[µα .τ ′/α]

if τ = µα . τ ′

BtTIEn;τ
def
= as BtTfEn;τ

Fig. 5. The type of backtranslated terms (excerpts).

We make these intuitions concrete and

formalise the type for λ
µ
I values backtrans-

lated into λfx as BtTfIn;τ in Figure 5 (for

Backtranslation Type; the superscript in-
dicates the languages involved, the sub-

scripts are effectively parameters of this

type). Type BtTfIn;τ is defined inductively

on n and it backtranslates the structure of

τ in the source type it creates. At no steps

(n=0), the backtranslation is not needed

any more because intuitively we already

performed the n steps, so the only type is

Unit. Otherwise, the backtranslated type

maintains the same structure of the target

type. In the case for µα .τ , the backtrans-
lated type is the unfolding of µα .τ , but at
a decremented index (n). Intuitively, this
is to match the reduction step that will

happen in the target for eliminating unfoldµα .τ foldµα .τ annotations.

The type of λ
µ
E terms backtranslated in λfx (BtTfEn;τ , still in Figure 5) has an important difference.

The case for µα . τ does not lose a step in the index and simply performs the unfolding of the

recursive type without an additional ⊎Unit. This difference matches the fact that in λ
µ
E there is no

additional reduction rule in the semantics. Additionally, this difference affects the helper functions

needed to deal with values of backtranslation type, as we discuss later.

Intuitively, the fact that the backtranslation of a recursive type is its n-level deep unfolding

is possible because µα . τ is contractive in α . This is sufficient because we need to only repli-

cate n steps in order to differentiate terms, so a n-level deep unfolding of the type suffices in

order to reach the differentiation. For example, let us take the type of list of booleans in λ
µ
E :

µα .Unit ⊎ (Bool × α) (which we dub ListB) and its first unfolding Unit ⊎ (Bool × ListB) (which we

dub List1B). The backtranslation (for n = 3) for this type is BtTfE3;ListB = BtTfE3;Unit⊎(Bool×ListB) = · · · =

((Unit ⊎ Unit) ⊎ (((Bool ⊎ Unit) × BtTfE1;ListB) ⊎ Unit)) ⊎ Unit.5 Formally, the measure that ensures

that this type is well founded is the precision n together with lmc (µα . τ) i.e., the number of leading

µs in type τ , for reasons analogous to those discussed in Section 2.2.

The type of λ
µ
E terms backtranslated in λ

µ
I (BtTIE

n;τ) is the same as the one just presented (BtTfEn;τ).
Intuitively, this is because the n-level deep unfolding of τ in the backtranslation type does not rely

on recursive types in λ
µ
I .

3.2.1 Working with the Backtranslation Type. In order to work with values of backtranslated type,

we need a way to create and destruct them. Additionally, we need a way to increase and decrease

the approximation level (the n index), for reasons we explain below. This is what we present

now mainly for terms of type BtTfIn;τ , though we report the most interesting cases for the other

4
Recall that one of the two terms (Jt1K and Jt2K) is guaranteed to terminate within n steps, so if that does not happen, the

other term needs to diverge. This ensures that contextually-equivalent terms remain equivalent, i.e., they equi-terminate.

5
Where the first Unit ⊎ Unit is the result of BtTfE2;Unit and the Bool ⊎ Unit is the result of BtTfE1;Bool .

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 21. Publication date: January 2021.

On the Semantic Expressiveness of Recursive Types 21:13

backtranslation types too. Recall that the definitions of the other two backtranslation types are the

same, so these helpers are also the same and we report only one.

Given a target value v of type τ , in order to create a source term of type BtTfIn;τ it suffices to

create inl v (informally). However, in order to use a source term of type BtTfIn;τ at the expected type

τ , we need to destroy it according to τ : this is done by the family of source functions casefIn;τ .

casefIn;τ = λx : BtT
fI
n+1;τ . case x of inl x1 7→ x1 | inr x2 7→ omegaBtTfIn;τ

Intuitively, all these functions strip the value of type BtTfIn+1;τ they take in input of the inl tag and

return the underlying value. Thus, at arrow type, the returned value has type (BtTfIn;τ → BtTfIn;τ ′)

while at recursive type it has type BtTfI
n;τ[µα .τ /α]

. In case the wrong value is passed in (i.e., it is an

inr), these functions diverge via term omegaBtTfIn;τ , which is easily encodable in λfx.

Recall that the BtTfEn;τ for τ = µα . τ is different: it is just BtTfE
n;τ [µα .τ /α]

so the type is unfolded

and the index is the same. The destructor used for this backtranslation type (casefEn;µα .τ) is therefore

different than the one above. Specifically, we do not need to destruct a backtranslated type indexed

with τ because that never arises (i.e., the type is unfolded). Consider type BtTfE3;ListB from before:

at index 3 the backtranslation does not handle values of that type but of type BtTfE
3;List1B

. That is, it

handles values whose top-level connector is the ⊎ of ListB. Finally, the destructor used for BtTIE
n;µα .τ

(caseIEn;µα .τ) is analogous to this last one (casefEn;µα .τ).

casefEn;τ = λx : BtT
fE
n+1;τ . case x of inl x1 7→ x1 | inr x2 7→ omegaBtTfEn;τ τ , µα . τ

The second piece of formalism that we need is functions to increase or decrease the approximation

level of backtranslated terms. We exemplify their necessity with an example from Devriese et al.

[2016]. Consider λ
µ
I term λx : τ . inr x, intuitively its backtranslation (for a sufficiently-large n)

is: inl λx : BtTfIn−1;τ . inl inr x If we try to typecheck this, though, we see that x has type BtTfIn−1;τ
while it is expected to have type BtTfIn−2;τ , i.e., its index should be lower. This concern is about

well-typedness, not precision of the backtranslation. Since x is inside an inr , inspecting it for any

number of steps requires at least an additional step, to ‘case’ x out of the inr . In other words, for

the inr to be a precise approximation up to n − 1 steps, x needs to only be precise up to n − 2 steps.
Thus, it is safe to throw away one level of precision and downgrade x from type BtTfIn−1;τ to BtTfIn−2;τ .

However, downgrading is not sufficient. Consider how we can downgrade a value of type

BtTfIn+1;τ→τ ′
to one of type BtTfIn;τ→τ ′

. We need to convert a function of type BtTfIn;τ → BtTfIn;τ ′ into

one of type BtTfIn+1;τ → BtTfIn+1;τ ′ . To do this, we need to upgrade the argument value of type

BtTfIn;τ into one of type BtTfIn+1;τ . Fortunately, this does not mean we need to magically improve

the approximation precision of the value concerned. Type BtTfIn;τ has an “error box” (· · · ⊎ Unit) at
every level so we can simply construct the value such that it simply does not use the additional

level of precision in BtTfIn;τ .
Finally, another reason we need to upgrade and downgrade a value is that type BtTfIn;τ must be

sufficiently large to contain approximations of target values up to less than n steps. In fact, for a

term to be well-typed the accuracy of the approximation can be less than n. In these cases (i.e, for

m < n), values of type BtTfIn;τ will be downgraded to type BtTfIm;τ . Dually, there will be cases where

some values need to be upgraded.

Functions upgradefI· and downgradefI· perform what we just discussed; their types and for-

malisation is presented in Figure 6 (partially for space constraints). The cases for Unit and Bool
are optimised based on the fact that BtTfIn;Unit = BtTfIm;Unit (resp. BtT

fI
n;Bool = BtTfIm;Bool) so long as

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 21. Publication date: January 2021.

21:14 Marco Patrignani, Eric Mark Martin, and Dominique Devriese

upgradefIn;τ : BtTfIn;τ → BtTfIn+1;τ and downgradefIn;τ : BtTfIn+1;τ → BtTfIn;τ

upgradefI0;τ = λx : BtTfI0;τ . unk

upgradefIn+1;Unit = λx : Unit ⊎ Unit. x

upgradefIn+1;τ×τ ′ = λx : BtTfIn+1;τ×τ ′ .

case x of

���������

inl x1 7→inl
〈 upgradefIn;τ x1.1,

upgradefIn;τ ′ x1.2

〉
inr x2 7→inr x2

upgradefIn+1;τ→τ ′ = λx : BtTfIn+1;τ→τ ′ .

case x of

���������

inl x1 7→inl
λz : BtTfIn+1;τ . upgrade

fI
n;τ ′

(x1 (downgradefIn;τ z))

inr x2 7→inr x2

upgradefIn+1;dµα .τ ′ = λx : BtTfIn+1;µα .τ ′ .

case x of

������

inl x1 7→inl (upgradefIn;τ ′[µα .τ ′/α]
x1)

inr x2 7→inr x2

unk = inr unit

downgradefI0;τ = λx : BtTfI0;τ . unit

downgradefIn+1;Unit = λx : Unit ⊎ Unit. x

downgradefIn+1;τ→τ ′ = λx : BtTfIn+2;τ→τ ′ .

case x of

���������

inl x1 7→inl
λz : BtTfIn;τ . downgrade

fI
n;τ ′

(x1 (upgradefIn;τ z))

inr x2 7→inr x2

downgradefIn+1;µα .τ ′ = λx : BtTfIn+2;µα .τ ′ .

case x of

������

inl x1 7→inl (downgradefIn;τ ′[µα .τ ′/α]
x1)

inr x2 7→inr x2

upgradefEn+1;µα .τ = upgradefEn+1;τ [µα .τ /α] downgradefEn+1;µα .τ = downgradefEn+1;τ [µα .τ /α]

upgradefEn;τ = as above downgradefEn;τ = as above

upgradeIEn;τ = as upgradefEn;τ downgradeIEn;τ = as downgradefEn;τ

Fig. 6. Definition of the upgrade and downgrade functions (excerpts).

n,m > 0. As mentioned, downgrade ‘forgets’ information about the approximation, effectively

dropping 1 level of precision in the backtranslation. Dually, upgrade adds 1 level of informa-

tion in the approximation. Adding this information is, however, not precise, because those addi-

tional levels are unknown (unk). Effectively, while downgradefIn;τ (upgradefIn;τ t) reduces to t, term
upgradefIn;τ (downgradefIn;τ t) does not reduce to t because information was lost (Example 1).

Example 1 (Upgrading after downgrading forgets information). Consider the following term:

downgradefI0;Bool inl true, which reduces to unit. If we apply upgradefI0;Bool to it, we do not obtain

back inl true but unk, which is inr unit. That is because downgrade forgets the shape of the value
it received (inl true) and upgrade cannot possibly recover that information. �

Finally, we need to define these functions for the other backtranslations that rely on the other

backtranslation types BtTfE and BtTIE
. As mentioned, the main difference between these last two

backtranslation types and BtTfI is the case for target recursive types. Recall that these last two
backtranslation types for recursive types perform the unfolding of the type without decrementing

the index. This affects these functions too: upgrading or downgrading a term at a recursive type is

like upgrading or downgrading at the unfolding of that type but at the same index.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 21. Publication date: January 2021.

On the Semantic Expressiveness of Recursive Types 21:15

in-dnfIn;τ and case-upfIn;τ

in-dnfIn;Unit = λx : Unit. downgrade
fI
n;Unit (inl x) in-dnfIn;Bool = λx : Bool. downgrade

fI
n;Bool (inl x)

in-dnfIn;τ→τ ′ =
λx : BtTfIn;τ → BtTfIn;τ ′ .

downgradefIn;τ→τ ′ (inl x)
in-dnfIn;τ×τ ′ =

λx : BtTfIn;τ × BtT
fI
n;τ ′ .

downgradefIn;τ×τ ′ (inl x)

in-dnfIn;τ⊎τ ′ =
λx : BtTfIn;τ ⊎ BtTfIn;τ ′ .

downgradefIn;τ⊎τ ′ (inl x)
in-dnfIn;µα .τ =

λx : BtTfIn;τ [µα .τ /α]
.

downgradefIn;µα .τ (inl x)

case-upfIn;τ = λx : BtT
fI
n;τ . case

fI
n;τ

(
upgradefIn;τ (x)

)
in-dnfEn;τ and case-upfEn;τ = as above, without a case for τ = µα . τ

in-dnIEn;τ and case-upIEn;τ = as above, without a case for τ = µα . τ

Fig. 7. Compacted functions used to manipulate backtranslated values.

In the backtranslation, we generally use creation of a backtranslated value together with a

downgradefI , while we use destruction of backtranslated values together with an upgradefI . Thus,
we provide compacted functions that do exactly this, in-dnfIn;τ and case-upfIn;τ (Figure 7). Note that

the arguments to the first function is not ill-typeset: they indeed take a parameter whose type is the

inl projection of type BtTfIn;Unit. As for the previous helpers, the compacted versions that operate

on terms of type BtTfEn;µα .τ (and BtTIE
n;µα .τ) are different. Since there is no destructor for BtTfEn;µα .τ ,

there also is no need for a compacted version.

At this point we may ask ourselves: how can we reason about these functions, as well as about

backtranslated terms? This is what we explain next.

3.3 Relating Backtranslated Terms
If we were to use the logical relations of Figure 3 to relate a term and its backtranslation, this would

simply not work. Consider λ
µ
I type Unit, that is backtranslated (at any approximation n > 0) into

BtTfIn;Unit, i.e., Unit ⊎ Unit. Value unit should normally be backtranslated to inl unit. Following the

value relation in LRfxµI for ⊎ types, both terms need to have an inl tag, so this does not work. More

importantly, it should not work: we are not relating terms of ⊎ type, we are relating backtranslated

terms, where the backtranslation performs a modification on the type (and thus the term) by

inserting the inl .
This is the reason we have pseudotypes and, in particular, the reason we have EmulT . We have

three EmulTs—one per backtranslation—and each follows the same intuition, which we explain

starting with EmulTfIn;p;τ , the type of backtranslated λ
µ
I terms into λfx (top of Figure 8). EmulTfIn;p;τ

is indexed by a non-negative number n, a value p ::= precise | imprecise and the original target

type τ . The number tracks the depth of type that are being related, index p tracks the precision

of the approximation (as explained below) and the original type carries precise information of

the type to expect in the backtranslation. As seen, sometimes we have unk values (i.e., inr unit)

in the backtranslation Thus, V

r
EmulTfIn;p;τ

z

▽
regulates how these values occur depending on

the precision index. p = imprecise will only be used in the ≲ direction of the approximation,

i.e., we have that source termination in any number of steps implies target termination. Here,

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 21. Publication date: January 2021.

21:16 Marco Patrignani, Eric Mark Martin, and Dominique Devriese

V

r
EmulTfI0;imprecise;τ

z

▽

def
= {(W , v, v) | v = unit} V

r
EmulTfI0;precise;τ

z

▽

def
= ∅

V

r
EmulTfIn+1;p;τ

z

▽

def
= {(W , v, v) | v ∈ oftype

(
EmulTfIn+1;p;τ

)
and v ∈ oftype (τ) and

either · v = inr unit and p = imprecise

or ·




· τ = Unit and ∃v′. v = inl v′ and (W , v′, v) ∈ V JUnitK▽
· τ = Bool and ∃v′. v = inl v′ and (W , v′, v) ∈ V JBoolK▽
· τ = τ1 → τ2 and ∃v′. v = inl v′ and (W , v′, v) ∈ V

r
EmulTfIn;p;τ1 → EmulTfIn;p;τ2

z

▽

· τ = τ1 × τ2 and ∃v′. v = inl v′ and (W , v′, v) ∈ V
r
EmulTfIn;p;τ1 × EmulTfIn;p;τ2

z

▽

· τ = τ1 ⊎ τ2 and ∃v′. v = inl v′ and (W , v′, v) ∈ V
r
EmulTfIn;p;τ1 ⊎ EmulTfIn;p;τ2

z

▽
· τ = µα . τ and ∃v′. v = inl v′ and

∃v′. v = foldµα .τ v′(W , v′, v′) ∈ ▷V
r
EmulTfIn;p;τ [µα .τ /α]

z

▽




V

r
EmulTfE0;imprecise;τ

z

▽

def
= {(W , v, v) | v = unit} V

r
EmulTfE0;precise;τ

z

▽

def
= ∅

V

r
EmulTfEn+1;p;τ

z

▽

def
= {(W , v, v) | v ∈ oftype

(
EmulTfEn+1;p;τ

)
and v ∈ oftype (τ) and

either · v = inr unit and p = imprecise

or ·




· omitted parts are as above

· τ = µα . τ and τ contractive in α and (W , v, v) ∈ V
s
EmulTfI

n+1;p;τ [µα .τ /α]

{

▽




V

r
EmulTIEn;p;τ

z

▽
is defined analogously toV

r
EmulTfEn;p;τ

z

▽

repEmulfI
(
EmulTfIn;p;τ

)
= BtTfIn;τ repEmulfI (τ̂1 → τ̂2) = repEmulfI (τ̂1) → repEmulfI (τ̂2)

repEmulfI (Bool) = Bool repEmulfI (τ̂1 × τ̂2) = repEmulfI (τ̂1) × repEmul
fI (τ̂2)

repEmulfI (Unit) = Unit repEmulfI (τ̂1 ⊎ τ̂2) = repEmulfI (τ̂1) ⊎ repEmulfI (τ̂2)

fxToIs
(
EmulTfIn;p;τ

)
= τ fxToIs (τ̂1 → τ̂2) = fxToIs (τ̂1)→ fxToIs (τ̂2)

fxToIs (Unit) = Unit fxToIs (τ̂1 × τ̂2) = fxToIs (τ̂1) × fxToIs (τ̂2)

fxToIs (Bool) = Bool fxToIs (τ̂1 ⊎ τ̂2) = fxToIs (τ̂1) ⊎ fxToIs (τ̂2)

repEmulfE (·) : τ̂ → τ repEmulIE (·) : τ̂ → τ fxToEq (·) : τ̂ → τ isToEq (·) : τ̂ → τ

Fig. 8. Missing bits of the logical relation: value relation for backtranslation type (excerpts). Note that p can
be either precise or imprecise in the second clause (the ’or’) of the n + 1 case.

V

r
EmulTfIn;p;τ

z

▽
allows unk values to occur anywhere in a backtranslated term, and they can

correspond to arbitrary target terms. These constraints are simple to enforce because with ≲ we

can achieve this by making backtranslated terms diverge whenever they try to use a unk value.

This is sufficient because the ≲ approximation trivially holds when the source term diverges.

On the other hand, p = precise will be used for the other direction of approximation: ≳. Recall
that for this direction, termination of target terms in less than n steps implies termination of source

terms. In this case, the requirements on backtranslated terms are stronger: unk is ruled out by the

definition ofV

r
EmulTfIn;p;τ

z

▽
within depth n, i.e., we cannot reach unk in the steps of the world.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 21. Publication date: January 2021.

On the Semantic Expressiveness of Recursive Types 21:17

The pseudotype for the λ
µ
E to λfx backtranslation (EmulTfE·) follows the same pattern as BtTfE· :

it does not lose a step in the µα . τ case (Figure 8). At a cursory glance, it appears that a non-

contractive µα . τ ruins the well-foundedness of our induction as without decrementing our step

index, a non-contractive type seems to infinitely recurse under this definition. Fortunately, however,

the condition v ∈ oftype (τ), which with the fact that no values exist of non-contractive types

prevents this concern from arising. As before, the pseudotype for the λ
µ
E to λ

µ
I backtranslation

(EmulTIE
·) follows the same approach as EmulTfE· .

Finally, we can define function repEmulfI (·) that translate from source pseudo-types into plain

source types and function fxToIs (·), that translates source pseudotypes into target types. We

present the formalisation for the case for source types being λfx types and target types being λ
µ
I

types. As expected, these functions exists for all backtranslations and they follow the same pattern

presented here; for completeness we only report the names and types of the omitted ones.

4 THE THREE COMPILERS AND THEIR BACKTRANSLATIONS
Our compilers (Section 4.1) and backtranslations (Section 4.2) translate between languages as

depicted in Figure 1. After showing their formalisation and proving that they relate terms cross-

language, this section proves the compilers are fully abstract (Section 4.3).

4.1 Compilers and Reflection of Fully-Abstract Compilation
The compilers (Figure 9) are all mostly homomorphic apart from what we describe below. We

overload the compilation notation and express the compiler for types and terms in the same way

(we omit the compiler for types since it is the identity). Compiler J·Kλ
fx

λ
µ
I
translates fix· into the

Z-combinator annotated with fold and unfold for λ
µ
I . We cannot use the Y combinator since it does

not work in call-by-value [Devriese et al. 2017; New et al. 2016], but fortunately the Z-combinator

does [Pierce 2002, Sec. 5]. Compiler J·Kλ
µ
I

λµE
erases fold and unfold annotations since λ

µ
E does not

have them. Compiler J·Kλ
fx

λµE
is just the composition of the previous two.

Correctness of the compilation (Lemmas 5 to 7 below) is proven via a series of standard com-

patibility lemmas (Lemma 4, we report just the case for lambda since the others follow the same

structure). These, in turn, rely on a series of standard results for these kinds of logical relations

such as the fact that related terms plugged in related contexts are still related and antireduction

(i.e., if two terms step to related terms, then they are themselves related).

Lemma 4 (Compatibility for λ). if Γ, x : τ ′ ⊢ t ▽n t : τ then Γ ⊢ λx : τ ′. t ▽n λx : τ ′. t : τ ′ → τ

Lemma 5 (J·Kλ
fx

λ
µ
I
is semantics preserving). if Γ ⊢ t : τ then Γ ⊢ t ▽n JtKλ

fx

λ
µ
I
: τ

Lemma 6 (J·Kλ
fx

λµE
is semantics preserving). if Γ ⊢ t : τ then Γ ⊢ t ▽n JtKλ

fx

λµE
: τ

Lemma 7 (J·Kλ
µ
I

λµE
is semantics preserving). if Γ ⊢ t : τ then Γ ⊢ t ▽n JtKλ

µ
I

λµE
: τ

Since fully-abstract compilation requires reasoning about program contexts, we extend the

compiler to operate on them too. This follows the same structure of the compilers above and

therefore we omit this definition. Correctness of the compiler scales to contexts too (Lemma 8).

Lemma 8 (J·Kλ
fx

λ
µ
I
is semantics preserving for contexts).

if ⊢ C : Γ,τ → Γ′,τ ′ then ⊢ C ▽n JCKλ
fx

λ
µ
I
: Γ,τ → Γ′,τ ′

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 21. Publication date: January 2021.

21:18 Marco Patrignani, Eric Mark Martin, and Dominique Devriese

J·Kλ
fx

λ
µ
I
: t→ t and J·K

λ
µ
I

λµE
: t→ t and J·Kλ

fx

λµE
: t→ t

JunitKλ
fx

λ
µ
I
= unit Jλx : τ . tKλ

fx

λ
µ
I
= λx : Jτ Kλ

fx

λ
µ
I
. JtKλ

fx

λ
µ
I

Jt.1Kλ
fx

λ
µ
I
= JtKλ

fx

λ
µ
I
.1 JxKλ

fx

λ
µ
I
= x

JtrueKλ
fx

λ
µ
I
= true Jt t′Kλ

fx

λ
µ
I
= JtKλ

fx

λ
µ
I

Jt′Kλ
fx

λ
µ
I

Jt.2Kλ
fx

λ
µ
I
= JtKλ

fx

λ
µ
I
.2 Jinl tKλ

fx

λ
µ
I
= inl JtKλ

fx

λ
µ
I

JfalseKλ
fx

λ
µ
I
= false J

〈
t, t′

〉
Kλ

fx

λ
µ
I
=

〈
JtKλ

fx

λ
µ
I
, Jt′Kλ

fx

λ
µ
I

〉
Jt; t′Kλ

fx

λ
µ
I
= JtKλ

fx

λ
µ
I
; Jt′Kλ

fx

λ
µ
I

Jinr tKλ
fx

λ
µ
I
= inr JtKλ

fx

λ
µ
I

Jcase t of inl x1 7→ t′ | inr x2 7→ t′′Kλ
fx

λ
µ
I
= case JtKλ

fx

λ
µ
I
of inl x1 7→ Jt′Kλ

fx

λ
µ
I
| inr x2 7→ Jt′′Kλ

fx

λ
µ
I

Jif t then t′ else t′′Kλ
fx

λ
µ
I
= if JtKλ

fx

λ
µ
I
then Jt′Kλ

fx

λ
µ
I
else Jt′′Kλ

fx

λ
µ
I

Jfixτ1→τ2 tK
λfx

λ
µ
I
=

*.................
,

λf : J(τ1 → τ2) → τ1 → τ2K
λfx

λ
µ
I
.

*
,
λx : µα .α → Jτ1 → τ2K

λfx

λ
µ
I
. f (λy : Jτ1K

λfx

λ
µ
I
. ((unfold

µα .α→Jτ1→τ2K
λfx

λ
µ
I

x) x) y) +
-

fold
µα .α→Jτ1→τ2K

λfx

λ
µ
I

*
,
λx : µα .α → Jτ1 → τ2K

λfx

λ
µ
I
. f (λy : Jτ1K

λfx

λ
µ
I
. ((unfold

µα .α→Jτ1→τ2K
λfx

λ
µ
I

x) x) y) +
-

+/////////////////
-

JtKλ
fx

λ
µ
I

omitted rules are as above

q
foldµα .τ t

yλµ
I

λµE
= JtK

λ
µ
I

λµE

q
unfoldµα .τ t

yλµ
I

λµE
= JtK

λ
µ
I

λµE

JtKλ
fx

λµE
=

s
JtKλ

fx

λ
µ
I

{λ
µ
I

λµE

, i.e., as above, without fold/unfold annotations in the compilation of fix

Fig. 9. Definition of our compilers (excerpts).

With these results, we can already prove the reflection direction of fully-abstract compilation

(Theorems 9 to 11). The proof follows the structure depicted in the left part of Figure 4.

Theorem 9 (J·Kλ
fx

λ
µ
I
reflects equivalence). If ∅ ⊢ Jt1K

λfx

λ
µ
I
≃ctx Jt2K

λfx

λ
µ
I
: Jτ Kλ

fx

λ
µ
I
then ∅ ⊢ t1 ≃ctx t2 : τ

Theorem 10 (J·Kλ
µ
I

λµE
reflects equivalence). If ∅ ⊢ Jt1K

λ
µ
I

λµE
≃ctx Jt2K

λ
µ
I

λµE
: Jτ Kλ

µ
I

λµE
then ∅ ⊢ t1 ≃ctx t2 : τ

Theorem 11 (J·Kλ
fx

λµE
reflects equivalence). If ∅ ⊢ Jt1K

λfx

λµE
≃ctx Jt2K

λfx

λµE
: Jτ Kλ

fx

λµE
then ∅ ⊢ t1 ≃ctx t2 : τ

Since this last compiler is the composition of the other two, the proof of Theorem 11 trivially

follows from composing the proofs of the other two compilers.

4.2 Backtranslations and Preservation of Fully-Abstract Compilation
Function emulatefI (·) is responsible for translating a target term of type τ into a source one of

type BtTfIn;τ (Section 4.2.1) by relying on the machinery needed for working with BtTfI terms from

Section 3.2. This function is easily extended to work with program contexts, producing contexts

with hole of type BtTfIn;τ . However, recall that the goal of the backtranslation is generating a source

context whose hole can be filled with source terms t1 and t2 and their type is not BtTfIn;τ but τ .

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 21. Publication date: January 2021.

On the Semantic Expressiveness of Recursive Types 21:19

Thus, there is a mismatch between the type of the hole of the emulated context and that of the

terms to be plugged there. Since emulated contexts work with BtTfI values, we need a function

that wraps terms of an arbitrary type τ into a value of type BtTfIn;τ . This function is called injectfI

(Section 4.2.2) and it is the last addition we need before the backtranslations (Section 4.2.3).

4.2.1 Emulation of Terms and Contexts. Like the compiler, the emulation must not just operate on

types and terms, but also on program contexts. Unlike the compiler, the emulation operates on type
derivations for terms and contexts since all our target languages are typed. Thus, the emulation of

a lambda would look like the following (using D as a metavariable to range over derivations and

omitting functions to work with BtTfI).

emulatefI *.
,

D
Γ, x : τ ⊢ t : τ ′

Γ ⊢ λx : τ . t : τ → τ ′

+/
-
= λx :BtTfIn;τ . emulatefI

(
D

Γ, x : τ ⊢ t : τ ′
)

However, note that each judgement uniquely identifies which typing rule is being applied and the

underlying derivation. Thus, for compactness, we only write the judgement in the emulation and

implicitly apply the related typing rule to obtain the underlying judgements for recursive calls.

Function emulatefIn (·) (Figures 10 and 11) is indexed by the approximation index n in order

to know which BtTfI-helper functions to use. There are few interesting bits in the emulation of

terms (and of contexts). When emulating constructors for terms of type τ , we create a value of the
corresponding backtranslation type BtTfIn;τ and, in order to be well-typed, we downgradefI that

value by 1. Dually, emulating destructors for terms of type τ requires upgrading the term for 1 level

of precision because they are then destructed to access the underlying type. When emulating λ
µ
I

derivations into λfx, we need to consider the case when foldµα .τ and unfoldµα .τ annotations are

encountered. There, we know that the backtranslation will work with terms typed at the unfolding

of µα .τ , so we simply perform the recursive call and insert the appropriate helper function to

ensure the resulting term is well-typed.

When emulating λ
µ
E derivations (in the other two emulates in Figure 10), we need to consider

the case when term t is given type τ knowing it had type σ and that σ ⊜ τ (Rule λ
µ
E -Type-eq).

Here we rely on a crucial observation: given two equivalent types, their backtranslation types are

the same (Theorem 12). To understand why this is the case, consider how the definition of BtTfIn;τ
simply unfolds recursive types without losing precision, i.e. it essentially only looks at the depth-n
unfolding of type τ and these unfoldings are equal for equal types τ ⊜ σ . With this fact, we can get

away with just performing the recursive call on the sub-derivation for t at type σ .

Theorem 12 (Equivalent types are backtranslated to the same type). If τ ⊜ σ then BtTfEn;τ = BtTfEn;σ

Finally, consider emulateIE· (·), i.e., the emulation of λ
µ
E terms into λ

µ
I : there is no construct that

adds fold/unfold annotations. This is due to the same intuition presented before regarding the

unfolding of the backtranslation type BtTIE
n;µα .τ , which is BtTIE

n;τ [µα .τ /α]
i.e, the indexing type is

unfolded but the step is not decreased. Intuitively, the backtranslation performs an n-level deep
unfolding of the recursive types and operates on those. Thus, backtranslated contexts do not use

recursive types but just their n-level deep unfolding, so their annotations are not needed.

In order to state that emulatefI (·) is correct, we rely on compatibility lemmas akin to those used

for compiler correctness (recall Lemma 4). First, note that all our logical relations relate a source

and target term at a source pseudo-type. We have extended the logical relation to express the

relation between a source and target term at pseudotype EmulTfI, so we should use this to relate

a target term and its backtranslation. Second, all logical relations require a source environment

to relate terms, and in this case we are given a target environment (the one for the typing of the

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 21. Publication date: January 2021.

21:20 Marco Patrignani, Eric Mark Martin, and Dominique Devriese

emulatefIn (·) : Γ ⊢ t : τ → t

emulatefIn (Γ ⊢ unit : Unit) def= in-dnfIn;Unit unit emulatefIn (Γ ⊢ true : Bool) def= in-dnfIn;Bool true

emulatefIn (Γ ⊢ false : Bool) def= in-dnfIn;Bool false emulatefIn (Γ ⊢ x: τ) def= x

emulatefIn
(
Γ ⊢ λx : τ . t: τ → τ ′

) def
= in-dnfIn;τ→τ ′

(
λx : BtTfIn;τ . emulatefIn

(
Γ, x : τ ⊢ t: τ ′

))
emulatefIn

(
Γ ⊢ t t′: τ

) def
=

(
case-upfIn;τ ′→τ emulatefIn

(
Γ ⊢ t: τ ′ → τ

)) (
emulatefIn

(
Γ ⊢ t′ : τ ′

))
emulatefIn

(
Γ ⊢

〈
t, t′

〉
: τ × τ ′

) def
= in-dnfIn;τ×τ ′

〈
emulatefIn (Γ ⊢ t : τ), emulatefIn

(
Γ ⊢ t′ : τ ′

)〉
emulatefIn (Γ ⊢ t.1: τ) def=

(
case-upfIn;τ×τ ′ emulatefIn

(
Γ ⊢ t : τ × τ ′

))
.1

emulatefIn (Γ ⊢ t.2: τ) def=
(
case-upfIn;τ ′×τ emulatefIn

(
Γ ⊢ t : τ ′ × τ

))
.2

emulatefIn
*...
,

Γ ⊢ case t of
������

inl x1 7→ t′

inr x2 7→ t′′
: τ

+///
-

def
=

case
(
case-upfIn;τ1⊎τ2 emulatefIn (Γ ⊢ t : τ1 ⊎ τ2)

)
of

������

inl x1 7→emulatefIn
(
Γ, (x1 : τ1) ⊢ t′ : τ

)
inr x2 7→emulatefIn

(
Γ, (x2 : τ2) ⊢ t′′ : τ

)
emulatefIn

(
Γ ⊢ inl t: τ ⊎ τ ′

) def
= in-dnfIn;τ⊎τ ′

(
inl emulatefIn (Γ ⊢ t : τ)

)
emulatefIn

(
Γ ⊢ inr t: τ ⊎ τ ′

) def
= in-dnfIn;τ⊎τ ′

(
inr emulatefIn

(
Γ ⊢ t : τ ′

))
emulatefIn

(
Γ ⊢

if t then t1

else t2
: τ

)
def
=

if
(
case-upfIn;Bool emulatefIn (Γ ⊢ t : Bool)

)
then emulatefIn (Γ ⊢ t1 : τ) else emulatefIn (Γ ⊢ t2 : τ)

emulatefIn
(
Γ ⊢ t; t′: τ

) def
=

(
case-upfIn;Unit emulatefIn (Γ ⊢ t : Unit)

)
; emulatefIn

(
Γ ⊢ t′ : τ

)
emulatefIn

(
Γ ⊢ foldµα .τ t: µα . τ

) def
= in-dnfIn;τ [µα .τ /α]

emulatefIn (Γ ⊢ t : τ
[
µα .τ/α

]
)

emulatefIn *
,

Γ ⊢ unfoldµα .τ t

: τ
[
µα .τ/α

] +
-
def
= case-upfIn;µα .τ emulatefIn (Γ ⊢ t : µα . τ)

emulatefEn
(
Γ ⊢ t : τ τ ⊜ σ

Γ ⊢ t : σ

)
def
= emulatefEn (Γ ⊢ t : τ) emulatefEn (· · ·)

def
=

other cases

are as above

emulateIEn (· · ·)
def
= as emulatefEn (· · ·)

Fig. 10. Emulation of target terms into source ones.

backtranslated term). To create a source environment starting from this target environment, we

take each bound variable and give it backtranslation type using function toEmul (·). Finally, in these
lemmas we need to account for the different directions of the approximation we have. Thus, these

compatibility lemmas require that either n < m (so that the results only hold in worlds W with

lev (W) ≤ n < m) and p = precise or ▽ =≲ and p = imprecise, for m being the approximation

level of interest. Thus, a typical compatibility lemma for emulate looks like Lemma 13.

Lemma 13 (Compatibility for λ Emulation).

if (m > n and p = precise) or (▽ = ≲ and p = imprecise)

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 21. Publication date: January 2021.

On the Semantic Expressiveness of Recursive Types 21:21

emulatefIn (·) : (⊢ C : Γ,τ → Γ′,τ ′) → C

emulatefIn ([·])
def
= [·]

emulatefIn *
,

⊢λx : τ ′.C :

Γ′′,τ ′′→ Γ,τ ′ → τ
+
-
def
= in-dnfIn;τ→τ ′

(
λx : BtTfIn;τ . emulatefIn

(
⊢C : Γ′′,τ ′′→ Γ, x : τ ′,τ

))
emulatefIn

(
⊢C t2 : Γ′,τ ′→ Γ,τ2

) def
=

(
case-upfIn;τ ′→τ emulatefIn

(
⊢C : Γ′,τ ′→ Γ,τ1 → τ2

))
(
emulatefIn (Γ ⊢ t2 : τ1)

)
emulatefIn

(
⊢ t1 C : Γ′,τ ′→ Γ,τ2

) def
=

(
case-upfIn;τ ′→τ emulatefIn (Γ ⊢ t1: τ1 → τ2)

)
(
emulatefIn

(
⊢C : Γ′,τ ′→ Γ,τ1

))
emulatefIn

(
⊢ foldµα .τC : Γ′,τ ′→ Γ, µα . τ

) def
=

in-dnfIn;τ [µα .τ /α]

emulatefIn
(
⊢C : Γ′,τ ′→ Γ,τ

[
µα .τ/α

])
emulatefIn

(
⊢ unfoldµα .τC : Γ′,τ ′→ Γ,τ

[
µα .τ/α

]) def
= case-upfIn;µα .τ emulatefIn

(
⊢C : Γ′,τ ′→ Γ, µα . τ

)
Fig. 11. Emulation of target contexts into source ones (excerpts).

then if toEmulm;p (Γ, x : τ) ⊢ t ▽n t : EmulTfIm;p;τ ′

then toEmulm;p (Γ) ⊢ in-dnfIm;τ→τ ′

(
λx : BtTfIm;τ . t

)
▽n λx : τ . t : EmulTfIm;p;τ→τ ′

The compatibility lemma for terms typed using type equality (Lemma 14) is the most interesting

of these. The proof of this lemma is surprisingly simple because most of the heavy lifting is done by a

corollary of Theorem 12, which proves that equivalent types have not only the same backtranslation

type but also the same term relation.

Lemma 14 (Compatibility lemma for emulation of type eqality).

if (m > n and p = precise) or (▽ = ≲ and p = imprecise)

then if toEmulfEm;p (Γ) ⊢ t ▽n t : EmulTfEm;p;τ and τ ⊜ σ then toEmulfEm;p (Γ) ⊢ t ▽n t : EmulTfEm;p;σ

Corollary 1 (Equivalent types have the same term relation).

if τ ⊜ σ then ∀n. E
r
EmulTfEn;p;τ

z

▽
= E

r
EmulTfEn;p;σ

z

▽

Given a series of these kinds of compatibility lemmas, we can state that emulate is correct.

Lemma 15 (Emulate is semantics-preserving).

if (m > n and p = precise) or (▽ = ≲ and p = imprecise) and Γ ⊢ t : τ

then toEmulm;p (Γ) ⊢ emulatefIm (Γ ⊢ t : τ) ▽n t : EmulTfIm;p;τ

The key property we rely on for fully-abstract compilation though, is that emulation of contexts

is correct (this relies on correctness of emulation for terms though).

Lemma 16 (Emulate is semantics preserving for contexts).

if (m > n and p = precise) or (▽ = ≲ and p = imprecise) and ⊢ C : Γ′,τ ′ → Γ,τ

then ⊢ emulatefIm
(
⊢ C : Γ′,τ ′ → Γ,τ

)
▽n C : toEmulm;p

(
Γ′

)
, EmulTfIm;p;τ ′ → toEmulm;p (Γ), EmulTfIm;p;τ

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 21. Publication date: January 2021.

21:22 Marco Patrignani, Eric Mark Martin, and Dominique Devriese

4.2.2 Inject and Extract. As mentioned, the backtranslated target context must be a valid source

context in order to be linked with a source term. Specifically, it must have a hole whose type is

the compilation of some source type τ . Backtranslated terms, however, have backtranslation type

BtTfEn;τ , so we need to convert values of source type into values of backtranslation type (and back).

To do this conversion we rely on functions injectfI and extractfI whose types and definitions are in

Figure 12. Function injectfI takes a source value of type τ and converts it into “the same” value at

the backtranslation type so that backtranslated terms can use that value. Since the backtranslation

type is indexed by target types, we use function fxToIs (·) to generate the target type related to τ .
Function extractfI does the dual and takes a value of backtranslation type and converts it into a type

of some source type. These functions are defined mutually inductively in order to contravariantly

convert function arguments to the appropriate type.

injectfIn;τ : τ → BtTfIn;fxToIs(τ) and extractfIn;τ : BtTfIn;fxToIs(τ) → τ

injectfI0;τ = λx : τ . unit injectfIn+1;Unit = λx : Unit. inl x injectfIn+1;Bool = λx : Bool. inl x

injectfIn+1;τ→τ ′ = λx : τ → τ ′.inl λy : BtTfIn;fxToIs(τ) .inject
fI
n;τ ′

(
x (extractfIn;τ y)

)
injectfIn+1;τ×τ ′ = λx : τ × τ ′.inl

〈
injectfIn;τ (x.1), injectfIn;τ ′ (x.2)

〉
injectfIn+1;τ⊎τ ′ = λx : τ ⊎ τ ′.inl case x of inl x1 7→ inl (injectfIn;τ x1) | inr x2 7→ inr (injectfIn;τ ′ x2)

extractfI0;τ = λx : BtT
fI
n;fxToIs(τ) . omegaτ

extractfIn+1;Unit = λx : BtT
fI
n+1;Unit. case

fI
n+1;Unit x extractfIn+1;Bool = λx : BtT

fI
n+1;Bool. case

fI
n+1;Bool x

extractfIn+1;τ→τ ′ = λx : BtTfIn+1;fxToIs(τ→τ ′) . λy : τ . extractfIn;τ ′
(
casefIn+1;fxToIs(τ→τ ′) x

(
injectfIn;τ y

))

extractfIn+1;τ×τ ′ = λx : BtT
fI
n+1;fxToIs(τ×τ ′) .

〈 extractfIn;τ (
casefIn+1;fxToIs(τ) x.1

)
,

extractfIn;τ ′
(
casefIn+1;fxToIs(τ ′) x.2

)〉

extractfIn+1;τ⊎τ ′ = λx : BtT
fI
n+1;fxToIs(τ⊎τ ′) . case

(
casefIn+1;fxToIs(τ⊎τ ′) x

)
of

�������

inl x1 7→inl extractfIn;fxToIs(τ) x1

inr x2 7→inr extractfIn;fxToIs(τ ′) x2

injectfEn;τ
def
= as above extractfEn;τ

def
= as above

injectIEn+1;µα .τ = λx : µα .τ . injectIEn+1;τ [µα .τ /α]
(unfoldµα .τ x)

extractIEn+1;µα .τ = λx : BtTIEn+1;isToEq(µα .τ) . extract
IE
n+1;µα .τ foldµα .τ (caseIEn+1;isToEq(µα .τ) x)

omitted cases are as above

Fig. 12. Definition of the inject and extract functions.

For values of the base type, these functions use the already introduced constructors and destruc-

tors for backtranslation type to perform their conversion. For pair and sum types, these functions

operate recursively on the structure of the values they take in input. For arrow type, these functions

convert the argument contravariantly before converting the result after the application of the

function. When the size of the type is insufficient for these functions to behave as expected (i.e.,

when n is 0) it is sufficient for injectfI to return unit and for extractfI to just diverge.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 21. Publication date: January 2021.

On the Semantic Expressiveness of Recursive Types 21:23

Note that these functions are indexed by source types since they convert between them and the

backtranslation type. Thus, while two of our compilers have the same source language (and therefore

the same inject/extract), the third compiler has a different source language, with more types: µα .τ .
Thus, for the third backtranslation, we have a different, extended version of injectIE /extractIE

that converts values of recursive types into values of backtranslation type and back. Additionally,

the hole of the first two backtranslations cannot have a recursive type, since the source type for

those backtranslations is λfx.
As for the emulation of terms, we prove that these functions are correct according to the logical

relations. Terms that are related at a source type are related at backtranslation type after an injectfI

while terms that are related at backtranslation type are related at source type after an extractfI .

Lemma 17 (Inject and extract are semantics preserving).

If (m ≥ n and p = precise) or (▽ = ≲ and p = imprecise)

then if Γ ⊢ t ▽n t : τ then Γ ⊢ injectfIm;τ t ▽n t : EmulTfIm;p;fxToIs(τ)

if Γ ⊢ t ▽n t : EmulTfIm;p;fxToIs(τ) then Γ ⊢ extractfIm;τ t ▽n t : τ

4.2.3 The Backtranslations. The backtranslation of a target context based on its type derivation is

defined as follows by relying on both emulatefI (·) and injectfI . All three backtranslations follow
exactly the same pattern and enjoy the same properties. As already shown, the only interesting

changes are in the sub-parts of the backtranslation (e.g., in the different definitions of inject/extract).

Thus, we only show the backtranslation from λ
µ
I to λfx and we state properties only for this one.

Definition 3 (Approximate backtranslation for λ
µ
I contexts into λfx).

⟨⟨C,n⟩⟩
λ
µ
I

λfx
def
= emulatefIn

(
⊢ C : Γ, Jτ Kλ

fx

λ
µ
I
→ Γ′,τ ′

) [
injectfIn;τ ·

]
(provided ⊢ C : Γ, Jτ Kλ

fx

λ
µ
I
→ Γ′,τ ′)

▽n ▽n ▽n

emulatefIn (C)[injectfIn;τ (t)]

⟨⟨C,n⟩⟩
λ
µ
I

λfx

C
[

JtKλ
fx

λ
µ
I

]

⟨⟨C,n⟩⟩
λ
µ
I

λfx
[t]

▽n

C
[
JtKλ

fx

λ
µ
I

]

Lemma 5 Lemma 17 Lemma 16

L
e
m
m
a
1
8

i
s
e
x
p
a
n
d
e
d
t
o
t
h
i
s

Fig. 13. Diagram representing the relatedness between dif-
ferent bits of the backtranslation and of the compiler.

As for the compiler from λfx to λ
µ
E , we

can derive the backtranslation from λ
µ
E

to λfx by composing the backtranslations

through λ
µ
I . Thus, ⟨⟨t⟩⟩

λµE
λfx
=

〈〈
⟨⟨t⟩⟩

λµE
λ
µ
I

〉〉λµ
I

λfx
.

Interestingly, this means that the type of

λ
µ
E terms backtranslated into λfx is the

same as the one for λ
µ
E terms backtrans-

lated into λ
µ
I , i.e., the case for BtTfE for

µα . τ should not lose precision (as shown

in Figure 5). Notice that the first backtrans-

lation (⟨⟨·⟩⟩
λµE
λ
µ
I
) directs this, since BtTIE

is

simply a collection of τ̂ ⊎ τ̂ ′ pseudotypes,

the second backtranslation (⟨⟨·⟩⟩
λ
µ
I

λfx
) simply

relies on the case for BtTfIn;τ⊎τ ′ .
Using the same approach for the correctness of emulate, we can state that the backtranslations

are correct. For simplicity, we provide a visual representation of this proof in Figure 13 (adapted

from the work of Devriese et al. [2016] to our setting). All of the infrastructure used by the

backtranslation (i.e., injectfI /extractfI and the BtTfI helpers) have correctness lemmas that follow

the same structure of the one for emulatefI (·). Specifically, they relate terms at EmulTfI, they

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 21. Publication date: January 2021.

21:24 Marco Patrignani, Eric Mark Martin, and Dominique Devriese

transform target environments into source ones via function toEmul (·) and they have a condition

on the different directions of the approximation (the first line in Lemmas 13 to 16).

Lemma 18 (Correctness of ⟨⟨·⟩⟩
λ
µ
I

λfx
).

If (m ≥ n and p = precise) or (▽ = ≲ and p = imprecise)

then if ⊢ C : ∅, Jτ Kλ
fx

λ
µ
I
→ ∅,τ and ∅ ⊢ t ▽n t : τ then ∅ ⊢ ⟨⟨C,m⟩⟩

λ
µ
I

λfx
[t] ▽n C[t] : EmulTfIm;p;τ

With correctness of the backtranslation we can prove the preservation direction of fully-abstract

compilation for all compilers, following the proof structure of Figure 4.

Theorem 19 (J·Kλ
fx

λ
µ
I
preserves equivalence). If ∅ ⊢ t1 ≃ctx t2 : τ then ∅ ⊢ Jt1K

λfx

λ
µ
I
≃ctx Jt2K

λfx

λ
µ
I
: Jτ Kλ

fx

λ
µ
I

Proof. Take C such that ⊢ C : ∅, Jτ Kλ
fx

λ
µ
I
→ ∅,τ . We need to prove that C

[
Jt1K

λfx

λ
µ
I

]
⇓ ⇐⇒

C
[
Jt2K

λfx

λ
µ
I

]
⇓. By symmetry, we prove only that if C

[
Jt1K

λfx

λ
µ
I

]
⇓ then C

[
Jt2K

λfx

λ
µ
I

]
⇓ (HPTT). Take n

strictly larger than the steps needed for C
[
Jt1K

λfx

λ
µ
I

]
⇓. By Lemma 5 (J·Kλ

fx

λ
µ
I
is semantics preserving)

we have ∅ ⊢ t1 ▽n Jt1K
λfx

λ
µ
I
: τ . Takem = n, so we have (m ≥ n and p = precise) and therefore

(▽ = ≳). By Lemma 18 (Correctness of ⟨⟨·⟩⟩
λ
µ
I

λfx
) we have ∅ ⊢ ⟨⟨C,m⟩⟩

λ
µ
I

λfx
[t1] ≳n C

[
Jt1K

λfx

λ
µ
I

]
:

EmulTfIm;p;τ . By Lemma 3 (Adequacy for ≈) for ≳ and HPTT we have: ⟨⟨C,m⟩⟩
λ
µ
I

λfx
[t1] ⇓, which by

source contextual equivalence gives us ⟨⟨C,m⟩⟩
λ
µ
I

λfx
[t2] ⇓ (HPTS2). Given n′ the number of steps for

HPTS2, by Lemma 5 (J·Kλ
fx

λ
µ
I
is semantics preserving) we have: ∅ ⊢ t2 ▽n′ Jt2K

λfx

λ
µ
I
: τ . So by definition:

∅ ⊢ t2 ≲n′ Jt2K
λfx

λ
µ
I
: τ . By Lemma 18 (Correctness of ⟨⟨·⟩⟩

λ
µ
I

λfx
) (with n = n′, p = imprecise and ▽ = ≲)

we can conclude ∅ ⊢ ⟨⟨C,m⟩⟩
λ
µ
I

λfx
[t2] ≲n C

[
Jt2K

λfx

λ
µ
I

]
: EmulTfIm;p;τ . By Lemma 3 (Adequacy for ≈) for

≲ with HPTS2 we conclude the thesis. □

Theorem 20 (J·Kλ
µ
I

λµE
preserves equivalence). If ∅ ⊢ t1 ≃ctx t2 : τ then ∅ ⊢ Jt1K

λ
µ
I

λµE
≃ctx Jt2K

λ
µ
I

λµE
: Jτ Kλ

µ
I

λµE

Theorem 21 (J·Kλ
fx

λµE
preserves equivalence). If ∅ ⊢ t1 ≃ctx t2 : τ then ∅ ⊢ Jt1K

λfx

λµE
≃ctx Jt2K

λfx

λµE
: Jτ Kλ

fx

λµE

4.3 Full Abstraction for the Three Compilers
With the two directions of fully-abstract compilation already proved, we can easily show that

all three compilers are fully abstract. As before, full abstraction of J·Kλ
fx

λµE
trivially follows from

composing full abstraction for the other two compilers.

Theorem 22 (J·Kλ
fx

λ
µ
I
is fully abstract). ∅ ⊢ t1 ≃ctx t2 : τ ⇐⇒ ∅ ⊢ Jt1K

λfx

λ
µ
I
≃ctx Jt2K

λfx

λ
µ
I
: Jτ Kλ

fx

λ
µ
I

Theorem 23 (J·Kλ
µ
I

λµE
is fully abstract). ∅ ⊢ t1 ≃ctx t2 : τ ⇐⇒ ∅ ⊢ Jt1K

λ
µ
I

λµE
≃ctx Jt2K

λ
µ
I

λµE
: JτKλ

µ
I

λµE

Theorem 24 (J·Kλ
fx

λµE
is fully abstract). ∅ ⊢ t1 ≃ctx t2 : τ ⇐⇒ ∅ ⊢ Jt1K

λfx

λµE
≃ctx Jt2K

λfx

λµE
: Jτ Kλ

fx

λµE

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 21. Publication date: January 2021.

On the Semantic Expressiveness of Recursive Types 21:25

5 RELATEDWORK
Two alternative formulations of equi-recursive types exist: one based on an inductive type equality

(which we dub λ
µ
Ei in this section) and one based on a weak type equality (which we dub λ

µ
Es).

6

λ
µ
Ei defines an equality relation on types (≏) that, unlike ours, is inductively defined [Abadi and

Fiore 1996]. Types are equal if they are the same (Rules Eq-type-Base and Eq-type-Var), when their

subparts are equal (Rules Eq-type-Bi and Eq-type-Mu) or when one is the unfolding of the other

(Rule Eq-type-Unfold). To keep track of type variables, typing equality is defined with respect to an

environment ∆ ::= ∅ | ∆;α .

τ ≏ σ

(Eq-type-Symmetric)
∆ ⊢ τ ′ ≏ τ

∆ ⊢ τ ≏ τ ′

(Eq-type-Transitive)
∆ ⊢ τ ≏ τ ′′

∆ ⊢ τ ′′ ≏ τ ′

∆ ⊢ τ ≏ τ ′

(Eq-type-Bi)
⋆ ∈ {→,×,⊎}

∆ ⊢ τ1 ≏ τ
′
1 ∆ ⊢ τ2 ≏ τ

′
2

∆ ⊢ τ1 ⋆ τ2 ≏ τ
′
1 ⋆ τ

′
2

(Eq-type-Base)
ι = Unit ∨
ι = Bool

∆ ⊢ ι ≏ ι

(Eq-type-Var)
α ∈ ∆

∆ ⊢ α ≏ α

(Eq-type-Mu)
∆,α ⊢ τ ≏ τ ′

∆ ⊢ µα . τ ≏ µα . τ ′

(Eq-type-Unfold)
∆ ⊢ τ

[
µα . τ/α

]
≏ τ ′

∆ ⊢ µα . τ ≏ τ ′

Cai et al. [2016] explain that this notion of type equality is strictly weaker than the coinductive one

we have used. For example, they mention two type equalities that do not hold in λ
µ
Ei:

∅ ⊢ µα . α → Unit (µα . (α → Unit) → Unit ∅ ⊢ µα . µβ . α → β (µα . α → α

To understand why these equalities do not hold in the inductive formulation, consider that no

amount of unfolding of a recursive type µs will ever produce recursive types with a different body.

(Type-λµEs-fold)
Γ ⊢ t : τ

[
µα . τ/α

]
Γ ⊢ t : µα . τ

(Type-λµEs-unfold)
Γ ⊢ t : µα . τ

Γ ⊢ t : τ
[
µα . τ/α

]
λ
µ
Es instead enforces that just a recursive type

and its unfolding are equivalent [Ahmed 2004;

Appel and McAllester 2001; MacQueen et al.

1986; Urzyczyn 1995]. This leads to more com-

pact typing rules and it does not require a type

equivalence relation, effectively this is like λ
µ
I but without fold/unfold annotations.

The main difference is that in this last variant, unfoldings can only happen at the top-level

of a type of a term (i.e., when terms are of a recursive type themselves). In both λ
µ
Ei and in our

coinductive variant λ
µ
E , unfoldings can also happen inside the types. For example, types such

as (µα . B ⊎ α) → B and (B ⊎ (µα . B ⊎ α)) → B are not equivalent in this last variant, because we

can unfold µα . B ⊎ α to (B ⊎ (µα . B ⊎ α)) inside the domain of the function type. These types are

however equivalent in λ
µ
Ei and in λ

µ
E .

Since terms of λ
µ
Ei (or λ

µ
Es) can be typed in λ

µ
E and their semantics do not vary, our results

show that all these different formulations of equi-recursive types are equally expressive. Since the

approximate backtranslation is needed to deal with the coinductive derivations of λ
µ
E , we believe

that a precise backtranslation akin to that of New et al. [2016] can be used to prove full abstraction

for the compiler from λ
µ
I to λ

µ
Ei. We leave investigating this for future work.

As mentioned in Section 1, the closest work to ours is that of Abadi and Fiore [1996]. Like us,

they study the relation between iso- and equi-recursive types and prove that any term typed λ
µ
I

can be typed in λ
µ
Ei and vice versa. For the backward direction, they insert cast functions which

appropriately insert fold and unfold annotations to make terms typecheck. Additionally, they use a

logic to prove that the terms with the casts are equivalent to the original, but the logic does not come

with a soundness proof. Abadi and Fiore do not connect their results to the operational semantics

6
We typeset these languages in a green, verbatim font, though they appear in this section only.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 21. Publication date: January 2021.

21:26 Marco Patrignani, Eric Mark Martin, and Dominique Devriese

in any way, unlike ours, and their results cannot be used to derive fully-abstract compilation, as

they relate one term and its compilation, not two terms and their compilation. Finally, it is not clear

if Abadi and Fiore’s Theorem 6.8 can be interpreted to imply any form of equi-expressiveness of

the two languages. In fact, what Abadi and Fiore prove is that an equi-recursive term is equal to a

back-translated term under a certain equality that is (conjectured to be) almost (but not entirely)

sound for observational equivalence in equi-recursive contexts. On the other hand, in our setting,

the interaction of the same programs with arbitrary contexts provides a measure on the relative

expressiveness of those contexts when interacting with the given programs. This difference is key

to make claims about the relative expressive power of languages, as we make.

Fully-abstract compilation derived from fully-abstract semantics models [Milner 1977], and it has

been initially devised to study the relative expressive power of programming languages [Felleisen

1991; Gorla and Nestmann 2016; Mitchell 1993].
7
Fully-abstract compilation has been widely used

to compare process algebras and their relative expressiveness, as surveyed by Parrow [2008].

Additionally, researchers have argued that fully-abstract compilation is a feasible criterion for

secure compilation [Abadi 1998; Kennedy 2006], as surveyed by Patrignani et al. [2019].

Proofs of fully-abstract compilation are notoriously complex and thus a large amount of work

exists in devising proof techniques for it. Most of these proof techniques require a form of back-

translation [Ahmed and Blume 2008, 2011; Bowman and Ahmed 2015]. Precise backtranslations

generate source contexts that reproduce the behaviour of the target context faithfully, without

any approximation [New et al. 2016; Van Strydonck et al. 2019]. Approximate backtranslations,

instead, generate source contexts that reproduce that behaviour up to a certain number of steps.

The approximate backtranslation proof technique we use was conjectured by Schmidt-Schauß et al.

[2015] and was used by Devriese et al. [2017] to prove full abstraction for a compiler from λfx to the
untyped lambda calculus (λu). Unlike these works, we deal with a family of backtranslation types

that is indexed by target types. Additionally, our compilers do not perform dynamic typechecks;

they are simply the canonical translation of a term in the source language into the target. Finally,

we remark that our results cannot be derived from Devriese et al. [2016] since the languages in

that paper have no recursive types.

Interestingly, our current result can be seen as factoring out the first phase of Devriese et al.

[2016]’s compiler; their result could be seen as composing one of our current results with a second

fully abstract compiler from λ
µ
I to λu, which takes care of dynamic type enforcement. The full

abstraction proof for this second compiler could be a lot simpler with recursive types in the source

language, as it would no longer require an approximate backtranslation. In fact, we believe that

reusable sub-results could be factored out from other full abstraction results in the literature too.

For example, we conjecture that one could separate closure conversion from purity enforcement in

New et al. [2016]’s compiler, or separate contract enforcement from universal contract erasure in

Van Strydonck et al. [2019]’s compiler. We hope our experience can inspire other researchers to pay

more attention to such factoring opportunities and strive to minimize compiler phases. In other

words, we believe the community could benefit from using a nanopass secure compilation mindset,

in the spirit of nanopass compilation [Sarkar et al. 2004]. Even computationally-trivial nanopasses

like ours can be useful as they enrich the power of contexts and simplify secure compilation proofs

further downstream.

6 CONCLUSION
This paper demonstrates that the simply typed lambda calculus with iso- and equi-recursive types

has the same expressive power. To do so, it presented three fully-abstract compilers in order to

7
Not all these works use the term “fully-abstract compilation” but their intuition is the same.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 21. Publication date: January 2021.

On the Semantic Expressiveness of Recursive Types 21:27

reason about iso- and equi-recursively typed terms interacting over a simply-typed interface and a

recursively-typed one. The first compiler translates from a simply-typed lambda calculus with a

fixpoint operator (λfx) to a simply-typed lambda calculus with iso-recursive types (λ
µ
I). The second

compiler translates from λfx to a simply-typed lambda calculus with coinductive equi-recursive

types (λ
µ
E). These two compilers demonstrate the same expressive power of iso- and equi-recursive

types on a simply-typed interface. The third compiler translates from λ
µ
I to λ

µ
E , demonstrating equal

expressiveness of iso- and equi-recursive types on a recursively-typed interface. All fully-abstract

compilation proofs rely on a novel adaptation of the approximate backtranslation proof technique

that works with families of target types-indexed backtranslation type.

ACKNOWLEDGMENTS
The authors thank the anonymous reviewers for detailed feedback on an earlier draft as well as

Phil Wadler for interesting comments and suggestions. This work was partially supported: by

the Office of Naval Research for support through grant N00014-18-1-2620, Accountable Protocol

Customization, by the German Federal Ministry of Education and Research (BMBF) through funding

for the CISPA-Stanford Center for Cybersecurity (FKZ: 13N1S0762), by the Air Force Office of

Scientific Research under award number FA9550-21-1-0054, and by the Fund for Scientific Research

- Flanders (FWO).

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 21. Publication date: January 2021.

21:28 Marco Patrignani, Eric Mark Martin, and Dominique Devriese

REFERENCES
Martín Abadi. 1998. Protection in Programming-Language Translations. In ICALP’98. 868–883.
Martin Abadi and Marcelo P. Fiore. 1996. Syntactic Considerations on Recursive Types. In Proceedings of the 11th Annual

IEEE Symposium on Logic in Computer Science (LICS ’96). IEEE Computer Society, Washington, DC, USA, 242–.

Amal Ahmed. 2004. Semantics of Types for Mutable State. Ph.D. Dissertation. Princeton University.

Amal Ahmed and Matthias Blume. 2008. Typed Closure Conversion Preserves Observational Equivalence. In International
Conference on Functional Programming. ACM, 157–168.

Amal Ahmed and Matthias Blume. 2011. An Equivalence-Preserving CPS Translation via Multi-Language Semantics. In

Proceedings of the 16th ACM SIGPLAN International Conference on Functional Programming (Tokyo, Japan) (ICFP ’11).
ACM, 431–444.

Andrew W. Appel and David McAllester. 2001. An Indexed Model of Recursive Types for Foundational Proof-carrying Code.

ACM Trans. Program. Lang. Syst. 23, 5 (Sept. 2001), 657–683.
Nick Benton and Chung-Kil Hur. 2009. Biorthogonality, step-indexing and compiler correctness. SIGPLAN Not. 44, 97–108.
William J. Bowman and Amal Ahmed. 2015. Noninterference for free. In ICFP. ACM.

Yufei Cai, Paolo G. Giarrusso, and Klaus Ostermann. 2016. System F-omega with Equirecursive Types for Datatype-generic

Programming. SIGPLAN Not. 51, 1 (Jan. 2016), 30–43.
Dominique Devriese, Marco Patrignani, and Frank Piessens. 2016. Fully-abstract Compilation by Approximate Back-

translation. In Principles of Programming Languages. 164–177.
Dominique Devriese, Marco Patrignani, Frank Piessens, and Steven Keuchel. 2017. Modular, Fully-abstract Compilation by

Approximate Back-translation. Logical Methods in Computer Science Volume 13, Issue 4 (Oct. 2017).

Matthias Felleisen. 1991. On the Expressive Power of Programming Languages. In Selected Papers from the Symposium on
3rd European Symposium on Programming (ESOP ’90). Elsevier North-Holland, Inc., New York, NY, USA, 35–75.

Cedric Fournet, Nikhil Swamy, Juan Chen, Pierre-Evariste Dagand, Pierre-Yves Strub, and Benjamin Livshits. 2013. Fully

Abstract Compilation to JavaScript. In Principles of Programming Languages. ACM, 371–384.

M. Gordon, R. Milner, and C. P. Wadsworth. 1979. Edinburgh LCF: A Mechanized Logic of Computation. Springer-Verlag,
Berlin Heidelberg. https://doi.org/10.1007/3-540-09724-4

Daniele Gorla and Uwe Nestmann. 2016. Full abstraction for expressiveness: history, myths and facts. Mathematical
Structures in Computer Science 26, 4 (2016), 639–654.

Robert Harper and John C. Mitchell. 1993. On the Type Structure of Standard ML. ACM Transactions on Programming
Languages and Systems 15, 2 (April 1993), 211–252. https://doi.org/10.1145/169701.169696

Chung-Kil Hur and Derek Dreyer. 2011. A Kripke Logical Relation Between ML and Assembly. In Principles of Programming
Languages. 133–146.

Hyeonseung Im, Keiko Nakata, and Sungwoo Park. 2013. Contractive Signatures with Recursive Types, Type Parameters,

and Abstract Types. In Automata, Languages, and Programming, Fedor V. Fomin, Rūsiņš Freivalds, Marta Kwiatkowska,

and David Peleg (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 299–311.

Andrew Kennedy. 2006. Securing the .NET Programming Model. Theoretical Computer Science 364 (2006), 311–317.
David MacQueen, Gordon Plotkin, and Ravi Sethi. 1984. An Ideal Model for Recursive Polymorphic Types. In Proceedings of

the 11th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages (Salt Lake City, Utah, USA) (POPL
’84). Association for Computing Machinery, New York, NY, USA, 165–174. https://doi.org/10.1145/800017.800528

David MacQueen, Gordon Plotkin, and Ravi Sethi. 1986. An ideal model for recursive polymorphic types. Information and
Control 71, 1 (1986), 95 – 130.

Robin Milner. 1977. Fully abstract models of typed λ-calculi. Theoretical Computer Science 4, 1 (1977), 1 – 22.

John C.Mitchell. 1993. On abstraction and the expressive power of programming languages. Science of Computer Programming
21, 2 (1993), 141 – 163.

James H. Morris. 1968. Lambda-Calculus Models of Programming Languages. Ph.D. Dissertation. Massachusetts Institute of

Technology.

Max S. New, William J. Bowman, and Amal Ahmed. 2016. Fully Abstract Compilation via Universal Embedding. In

International Conference on Functional Programming. ACM, 103–116.

Joachim Parrow. 2008. Expressiveness of Process Algebras. Elec. Not. Theo. Comp. Sci. 209, 0 (2008), 173 – 186.

Marco Patrignani. 2020. Why Should Anyone use Colours? or, Syntax Highlighting Beyond Code Snippets. CoRR

abs/2001.11334.

Marco Patrignani, Pieter Agten, Raoul Strackx, Bart Jacobs, Dave Clarke, and Frank Piessens. 2015. Secure Compilation to

Protected Module Architectures. ACM Trans. Program. Lang. Syst. 37, Article 6 (April 2015), 6:1–6:50 pages.
Marco Patrignani, Amal Ahmed, and Dave Clarke. 2019. Formal Approaches to Secure Compilation A Survey of Fully

Abstract Compilation and Related Work. ACM Comput. Surv. 51, 6, Article 125 (Jan. 2019), 36 pages.
Marco Patrignani, Eric Mark Martin, and Dominique Devriese. 2020. On the Semantic Expressiveness of Recursive Types.

arXiv:2010.10859 [cs.PL]

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 21. Publication date: January 2021.

https://doi.org/10.1007/3-540-09724-4
https://doi.org/10.1145/169701.169696
https://doi.org/10.1145/800017.800528
http://arxiv.org/abs/2010.10859

On the Semantic Expressiveness of Recursive Types 21:29

Benjamin Pierce. 2002. Types and Programming Languages. MIT Press.

Gordon D. Plotkin. 1977. LCF Considered as a Programming Language. Theoretical Computer Science 5 (1977), 223–255.
Dipanwita Sarkar, Oscar Waddell, and R. Kent Dybvig. 2004. A Nanopass Infrastructure for Compiler Education. ACM

SIGPLAN Notices 39, 9 (Sept. 2004), 201–212. https://doi.org/10.1145/1016848.1016878

Manfred Schmidt-Schauß, David Sabel, Joachim Niehren, and Jan Schwinghammer. 2015. Observational program calculi

and the correctness of translations. Theoretical Computer Science 577 (2015), 98 – 124.

Lau Skorstengaard, Dominique Devriese, and Lars Birkedal. 2019. StkTokens: Enforcing Well-Bracketed Control Flow and

Stack Encapsulation Using Linear Capabilities. Proc. ACM Program. Lang. 3, POPL (Jan. 2019), 19:1–19:28.

Pawel Urzyczyn. 1995. Positive Recursive Type Assignment. In Proceedings of the 20th International Symposium on Mathe-
matical Foundations of Computer Science (MFCS ’95). Springer-Verlag, Berlin, Heidelberg, 382–391.

Thomas Van Strydonck, Frank Piessens, and Dominique Devriese. 2019. Linear Capabilities for Fully Abstract Compilation

of Separation-Logic-Verified Code. Proc. ACM Program. Lang. ICFP (2019).

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 21. Publication date: January 2021.

https://doi.org/10.1145/1016848.1016878

	Abstract
	1 Introduction
	2 Languages and Cross-Language Logical Relations
	2.1 Syntax
	2.2 Static Semantics
	2.3 Dynamic Semantics
	2.4 Logical Relations Between Our Languages

	3 Fully-abstract compilation and Approximate Backtranslations
	3.1 A Primer on Fully-Abstract Compilation and Approximate Backtranslations
	3.2 A Family of Backtranslation Types
	3.3 Relating Backtranslated Terms

	4 The Three Compilers and Their Backtranslations
	4.1 Compilers and Reflection of Fully-Abstract Compilation
	4.2 Backtranslations and Preservation of Fully-Abstract Compilation
	4.3 Full Abstraction for the Three Compilers

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

