
A High-Level Model for an Assembly Language
Attacker by Means of Reflection

Adriaan Larmuseau1, Marco Patrignani2, and Dave Clarke1,2

1 Uppsala University, Sweden,
first.last@it.uu.se

2 iMinds-Distrinet, K.U. Leuven, Belgium
first.last@cs.kuleuven.be

Abstract. Many high-level functional programming languages are com-
piled to or interoperate with, low-level languages such as C and assem-
bly. Research into the security of these compilation and interoperation
mechanisms often makes use of high-level attacker models to simplify for-
malisations. In practice, however, the validity of such high-level attacker
models is frequently called into question. In this paper we formally prove
that a light-weight ML equipped with a reflection operator can serve as
an accurate model for malicious assembly language programs, when rea-
soning about the security threats such an attacker model poses to the
abstractions of ML programs that reside within a protected memory
space. The proof proceeds by relating bisimulations over the assembly
language attacker and the high-level attacker.

1 Introduction

High-level functional programming languages such as ML and Haskell offer pro-
grammers numerous security features through abstractions such as type systems,
module systems and encapsulation primitives. Motivated by speed and memory
efficiency, these high-level functional programming languages are often compiled
to low-level target languages such as C and assembly [7] or extended with Foreign
Function Interfaces (FFIs) that enable interoperation with these low-level target
languages [2]. The security features of these low-level languages, however, rarely
coincide with those of functional languages. In practice, the high-level programs
are often compromised by low-level components and/or libraries that may be
written with malicious intent or susceptible to code injection attacks.

Accurately modeling the impact that such malicious low-level code has on
high-level programs is rather challenging, as the semantics of low-level code
differs greatly from that of high-level functional programming languages. As an
alternative, high-level models that capture the capabilities of certain low-level
attackers have been introduced. Jagadeesan et al. [3], for example, make use of a
λ-calculus extended with low-level memory access operators to model a low-level
attacker within a memory with randomized address spaces. The validity of such
high-level models for low-level attackers is, however, often called into question.

In this paper we present La, a high-level attacker model derived directly from
a source language L by removing type safety and adding a reflection operator.

Our claim in previous works [5] has been that this attacker model accurately
captures the threats posed by an assembly language attacker to the abstractions
of a source language L, when the programs of that language reside within a
protected memory space. This protected memory space is provided by the Pro-
tected Module Architecture (PMA) [19]. PMA is a low-level memory isolation
mechanism, that protects a certain memory area by restricting access to that
area based on the location of the program counter. PMA will be supported in
a future generation of commercial processors [10]. Our high-level model of the
threats that the assembly language attacker, residing outside of the protected
memory, poses to the abstractions of programs residing within the protected
memory, is thus bound to be useful for many different practical applications.

In what follows, we prove that La, despite being simple to derive and for-
malise, is an accurate model of this assembly language attacker. We do so for
an example source language MiniML: a light-weight ML featuring references
and recursion, from which we derive a La attacker model MiniMLa. The proof
technique proceeds as follows: first we develop a notion of bisimulation over
the interactions between the high-level attacker MiniMLa and programs in the
source language MiniML. Next we develop a notion of bisimulation over the
interactions between the assembly language attacker and programs in MiniML
by adopting the labels of a previously developed fully abstract trace semantics
for the attacker model [11]. Finally, we establish our result by proving that the
latter bisimulation is a full abstraction of the former and vice versa.

The remainder of this paper is organised as follows. Firstly the paper intro-
duces the assembly language attacker and its high-level replacement (Section 2).
Secondly it details the example source language MiniML, the derived attacker
model MiniMLa and the bisimulation over MiniMLa (Section 3). Next, the paper
introduces a bisimulation over the assembly language attacker (Section 4) and
then presents a proof of full abstraction between both bisimulations (Section 5).
Finally the paper presents related work (Section 6) and concludes (Section 7).

2 Security Overview

This section presents the security-relevant notions of this paper. Firstly it de-
tails the PMA enhanced low-level machine model and the associated assembly
language attacker (Section 2.1). Then it details contextual equivalence: the for-
malism used to reason about the abstractions of high-level programming lan-
guages as well as the threats that attackers pose to them (Section 2.2). Lastly
we introduce our high-level attacker model La, for which we prove further on in
this paper, that it captures all threats that the low-level attacker poses to the
contextual equivalence of a source language L (Section 2.3).

2.1 PMA and the Assembly Language Attacker

Our low-level attacker is a standard untyped assembly language attacker running
on a von Neumann machine consisting of a program counter p, a register file r,
a flags register f and a memory space m that maps addresses to words and

2

contains all code and data. The supported instructions are the standard assem-
bly instructions for integer arithmetic, value comparison, address jumping, stack
pushing and popping, register loading and memory storing. For a full formalisa-
tion of these instructions and their operational semantics we refer the interested
reader to Patrignani and Clarke’s formalisation [11].

To enable the development of secure applications, for this paper the devel-
opment of secure programs in MiniML, this machine model has been enhanced
with the Protected Module Architecture (PMA). PMA is a fine-grained, pro-
gram counter-based, memory access control mechanism that divides memory
into a protected memory module and unprotected memory [13]. The protected
module is further split into two sections: a protected code section accessible only
through a fixed collection of designated entry points, and a protected data sec-
tion that can only be accessed by the code section. As such the unprotected
memory is limited to executing the code at entry points. The code section can
only be executed from the outside through the entry points and the data sec-
tion can only be accessed by the code section. An overview of the access control
mechanism is given below.

From \To Protected Unprotected
Entry Point Code Data

Protected r x r x r w r w x
Unprotected x r w x

A variety of PMA implementations exist. While current implementations of PMA
are still research prototypes [13], Intel is developing a new instruction set, re-
ferred to as SGX, that will enable the usage of PMA in future commercially
available processors [10].

The attacker The attacker considered in this work is an assembly program that
has kernel-level code injection privileges that can be used to introduce malware
into a software system. Kernel-level code injection is a critical vulnerability that
bypasses all existing software-based security mechanisms: disclosing confidential
data, disrupting applications and so forth. The attacker can thus inspect and
manipulate every bit of code and data in the system except for the programs
that reside within the protected memory of the PMA mechanism. As noted
above, PMA is a program counter-based mechanism, which the kernel-level code
injection capabilities of this attacker model cannot bypass [13].

2.2 Contextual Equivalence

As detailed in Section 1 our interest in the assembly language attacker of Sec-
tion 2.1, revolves around the security threat this attacker poses to the abstrac-
tions of programs that reside within a protected memory space. We formally
reason about this threat by means of contextual equivalence, as is often the case
in this research field [12]. Contextual equivalence (also known as observational
equivalence) provides a notion of observation of the behaviour of a program and
states when two programs exhibit the same observable behaviour. Only what

3

can be observed by the context is of any relevance, and this changes from lan-
guage to language, since different languages have different levels of abstractions.
Languages that feature many strong abstractions will thus produce a larger set
of contextually equivalent programs then those languages that do not.

Informally, a context C is a program with a single hole [·] that can be filled
with a program P , generating a new program C[P]. For example, if P is a
λ-calculus expression λx.x, a context is another λ-calculus expression with a
hole, such as ((λy.y)[·]). Two programs P1 and P2 are said to be contextually
equivalent if and only if there exists no context C, that can distinguish between
the two programs. Contextual equivalence is formalised as follows.

Definition 1. Contextual equivalence (') is defined as:

P1 ' P2
def
= ∀C . C [P1]⇑ ⇐⇒ C [P2]⇑

where ⇑ denotes divergence [12].
From our security based perspective, contexts model malicious attackers that

interoperate with a program P and attack it. Consider, for example, the following
two higher-order λ-terms:

(a) (λx.(x 2) + (x 2)) (b) (λx.(x 2) ∗ 2) (Ex-1)

In a purely functional λ-calculus with no side-effects, these two terms are contex-
tually equivalent as there is no context that can distinguish them. In a λ-calculus
that includes references these two terms are, however, not equivalent as the fol-
lowing context/attack can distinguish between them.

let r = (ref 0) in ([·] (λy.r :=!r + 1; y)); if !r = 2 then Ω else 1

Applying λ-term (a) will result in divergence as the reference r will be increased
twice, whereas applying λ-term (b) will not. The above is thus considered a
successful attack against the implementation details of the two λ-terms.

Our low-level assembly-language attacker of Section 2.1 poses an incredibly
strong threat to the contextual equivalences of any source language L as it can
compare and manipulate any sequence of bits it has access to. When interop-
erating with the λ-terms of Ex-1 our low-level attacker could thus distinguish
them by doing a bit-wise comparison on their memory encodings.

2.3 The High-Level Attacker Model La

Our high-level attacker model La aims to accurately model the threats posed
by the assembly-language attacker to the contextual equivalences of a source
language L, whose programs reside in the protected memory space of PMA. To
ensure that this attacker model can be formalised quickly and easily, we specify
it as three simple transformations that one must apply to a source language L
to derive the high-level, but accurate, attacker model La.

Transformation 1: removal of type safety Type safety forces programs to preserve
types and avoids stuck states. Removing the typing rules of L ensures that La
has no such restrictions.

4

Transformation 2: introduction of reflection The assembly language attacker is
not constrained by the source level restrictions of any programming language as
it can inspect and manipulate any sequence of bits it has access to. To replicate
this observational power we apply an insight fromWand [15], who discovered that
the inclusion of reflection into a programming language renders all abstractions
and associated source level restrictions meaningless.

Transformation 3: limit control flow The assembly language attacker is in com-
plete control of its execution. The assembly language attacker can thus apply
reflection to any execution mechanisms of the original source language L. The
high-level attacker model La, however, is derived from L and is thus susceptible
to the same execution mechanisms as L. For La to be an accurate model of the
assembly language attacker these mechanisms must be relaxed or removed.

In all of our experimentations with applying the La attacker model to dif-
ferent source languages L, we have encountered but one constraint. It is only
possible to derive an accurate attacker model La from a source language L whose
function calls are observable, as an assembly-language attacker can accurately
observe function calls and their arguments. It is thus not possible to derive an
La style attacker from a purely functional λ-calculus, for example, because, as
illustrated in Ex-1 of Section 2.2, function calls are not observable there.

3 A Bisimulation over the High-Level Attacker

To prove the accuracy of the La attacker models in a general manner would
require a proof technique capable of reasoning over all source languages. This
not being possible, we instead introduce an example source language MiniML
(Section 3.1), for which we derive an instance of our La attacker model denoted
as MiniMLa (Section 3.2). Next, we model the interactions between MiniML and
the high-level attacker MiniMLa by applying our previously developed interop-
eration semantics [5], resulting in a combined calculus MiniML+ (section 3.3).
Lastly a bisimulation Ba that captures the observations and inputs of the high-
level MiniMLa attacker is derived over the semantics of this MiniML+ (Sec-
tion 3.4). Later on, in Section 5, this bisimulation is related to a bisimulation Bl
over the observations and inputs of the assembly-language attacker (Section 4),
to prove the accuracy of the high-level MiniMLa attacker.

In what follows, the source language MiniML is typeset in a black font, The
attacker model MiniMLa is typeset in a bold red font.

3.1 The Source Language MiniML

The source language is MiniML: an extension of the typed λ-calculus featuring
constants, references and recursion. The syntax is as follows.

t ::= v | x | (t1 t2) | t1 op t2 | if t1 t2 t3 | ref t | t1 := t2 | t1 ; t2
| let x = t1 in t2 | !t | fix t | hash t | letrec x : τ = t1 in t2

5

op ::= + | − | ∗ | < | > | ==
v ::= unit | li | n | (λx : τ.t) | true | false
τ ::= Bool | Int | Unit | τ1 → τ2 | Ref τ
E ::= [·] | E t | v E | op E t | op v E | if E t2 t3 | ...

Here n indicates the syntactic term representing the number n, τ denotes the
types and E is a Felleisen-Hieb-style evaluation context with a hole [·] that lifts
the basic reduction steps to a standard left-to-right call-by-value semantics [1].
The letrec operator is syntactic sugar for a combination of let and fix. The
operators op apply only to booleans and integers. Locations li are an artefact of
the dynamic semantics that do not appear in the syntax used by programmers
and are tracked at run-time in a store µ ::= ∅ | µ, li = v. Allocating new locations
is done deterministically l1, .., ln. The term hash t maps a location to its index:
li 7→ i, similar to how Java’s .hashCode method converts references to integers.

The reduction and type rules are standard and are thus omitted. The in-
terested reader can find a full formalisation of the semantics of MiniML in a
companion technical report [6].

3.2 The High-Level Attacker Model MiniMLa

We now apply the three transformations specified for La to MiniML, resulting
in a new calculus MiniMLa: the high-level attacker.

Transformation 1: removal of type safety Removing type safety is a straightfor-
ward transformation. The types and type checking rules of MiniML are removed
from the formalism and a new term wr is introduced that captures non reducible
expressions such as the following one:

µ | E[if v t2 t3] −→ µ | E[wr] where v 6= true or v 6= false

where µ is the run-time store of MiniMLa. While capturing the stuck states of
the attacker is not required, removing them from the semantics does significantly
simplify proofs over the attacker model without reducing its effectiveness.

Transformation 2: introduce reflection The most important feature of the La
attacker model is the inclusion of a reflection operator, as it renders the abstrac-
tions and the associated source level restrictions of a language meaningless [15].
Reflection is added to MiniMLa by means of a syntactic equality testing opera-
tor modulo α-equivalence ≡α. It enables a program in MiniMLa to compare the
syntax of any two terms as follows.

t1 and t2 are α-equiv

µ | E[t1≡αt2] −→ µ | E[true]

t1 and t2 are not α-equiv

µ | E[t1≡αt2] −→ µ | E[false]

Transformation 3: limit control flow MiniML enforces an evaluation order through
the evaluation contexts E (Section 3.1). The α-equivalence testing operator ≡α
works around this enforced control flow, by not reducing its sub-terms to values.

Attacks in MiniMLa While MiniMLa is clearly not a low-level code formalism,

6

it does capture all relevant threats to contextual equivalence by the assembly
language attacker, as the addition of reflection in MiniMLa by means of the
α-equivalence operator, reduces contextual equivalence to α-equivalence [15].
Consider, for example, the following two contextually equivalent MiniML terms.

(λx : Int.(+ x x)) (λx : Int.(∗ 2 x)) (Ex-2)

There exists no context/attack in MiniML that can distinguish these two terms.
The following MiniMLa context, however, is an attack against this equivalence.

C = (if ((λy.(∗ 2 y)) ≡α [·]) Ω true)

The context distinguishes the two equivalent terms due to the ≡α operator’s
ability to inspect the syntax of MiniML terms, where Ω is a diverging MiniMLa

term. A similar context C can thus be built for every pair of contextually equiv-
alent terms in MiniML apart from α-equivalent terms.

3.3 MiniML+: Interoperation between MiniMLa and MiniML

To accurately capture the inputs and observations of the high-level attacker we
must first introduce a formalism for its interactions with programs in MiniML.
To do so we apply our previously developed language interoperation seman-
tics [5]. While there exists many different multi-language semantics (Section 6),
our interoperation semantics is the only one that supports separated program
states and explicit marshalling rules. The former is required to accurately cap-
ture the behaviour of the attacker, the latter is used to simplify and streamline
the transition to the low-level attacker model in Section 4.

Concretely the MiniML+-calculus combines the attacker model MiniMLa and
the source language MiniML by defining separated program states, specifying
marshalling rules, encoding cross boundary function calls through call stacks
and sharing data structures through reference objects.

Separated program states The program state P = A || S of MiniML+ is split
into two sub-states: an attacker state A and a MiniML program state S. The
reduction rules for MiniML+ programs are denoted as follows: A || S � A′ || S′.

The MiniML state S is either (1) executing a term t of type τ , (2) marshalling
out values, (3) marshalling in input from the attacker that is expected to be of
type τ or (4) waiting on input.

(1) N;µ Σ ◦ t : τ (2) N;µ Σ � m : τ (3) N;µ Σ � m : τ (4) N;µ Σ

where m = v | v as the marshalling rules convert MiniML values to MiniMLa

values, and vice versa. The attacker state takes two forms: (1) it executes a
MiniMLa term t or (2) is suspended waiting on input from the MiniML program.

(1) A = µC • t (2) A = µC

The states never compute concurrently. Whenever the MiniML state S computes,
the attacker state A is suspended and vice-versa.

Marshalling Marshalling converts the result of MiniML programs to MiniMLa

7

values and inputs from the MiniMLa attacker to MiniML values. Marshalling,
booleans for example, is done as follows.

A || N;µ Σ � b : Bool � A || N;µ Σ � b : Bool (In-B)
A || N;µ Σ � b : Bool � A || N;µ Σ � b : Bool (Out-B)

Note that when marshalling, the typing information encoded in the MiniML
state is used to ensure that the input does not violate MiniML typing rules.

Call stacks To ensure that the program state is separable, the combined language
must explicitly encode the depth of the interactions between MiniML and the
attacker MiniMLa. To do so each state is extended with a call stack. The MiniML
state S encodes this call stack as a type annotated stack of evaluation contexts
Σ ::= E : τ → τ ′ | ε, where E denotes a sequence of evaluation contexts E that
represent the continuation of computation when a call to the attacker returns
and are thus only to be filled in by input originating from the attacker. The
stack of evaluation contexts is type annotated, these types are incorporated into
the dynamic type checks of the marshalling rules to ensure that the input from
the attacker does not break type safety.

In contrast the attacker encodes the call stack through a sequence of con-
texts/attacks C, enabling it to attack each interaction with the MiniML pro-
gram. The attacker stack C is updated directly (Share), the MiniML stack Σ is
plugged by the result of the marshalling rules (Plug), as follows.

µC,C || N;µ Σ � v : τ � µC • C[v] || N;µ Σ (Share)

µC || N;µ Σ, E : τ → τ ′ � v : τ � µC || N′, µ Σ ◦ E[v] : τ ′ (Plug)

Reference objects Security relevant MiniML terms, namely λ-terms and loca-
tions, are shared by providing the attacker with reference objects, objects that
refer to the original terms of the program in MiniML. These reference objects,
have two purposes: firstly they mask the contents of the original term and sec-
ondly they enable the MiniML program residing within the protected memory, to
keep track of which locations or λ-terms and locations have been shared with the
attacker. MiniML+ models reference objects for λ-terms and locations through
names nf

i and nl
i respectively. Both names are tracked in the MiniML state S

through a map N that records the associated term and type, as follows.

N ::= ? | N,nf
i 7→ (t, τ) | N,nl

i 7→ (t, τ)

A fresh name nf
i is created deterministically every time a λ-term is shared be-

tween the MiniML program and the attacker, in contrast the index i of the name
nl
i will correspond to the index of the location it refers to (nl

i 7→ li).
The MiniMLa attacker shares only its functions with the MiniML programs.

These attacker functions are embedded through a term τF(λx.t). A MiniML
program calls this embedded attacker function, as follows.

µC,C || N;µ Σ ◦ E[(τ1→τ2F(λx.t) v)] : τ � (M-Call)

µC,C[((λx.t) [·])] || N;µ Σ, E : τ2 → τ � v : τ1

8

3.4 Ba: a Bisimulation over the MiniMLa Attacker

To capture the inputs and observations of the high-level MiniMLa attacker in a
formalism that can be easily related to the inputs and observations of the assem-
bly language attacker, we define a notion of bisimulation Ba. To do so we define
an applicative bisimulation in the style of Jeffrey and Rathke’s applicative bisim-
ulation for the vref-calculus [4]. The applicative bisimulation is defined through
a labelled transition system (LTS), that models the inputs and observations of
the high-level MiniMLa attacker in its interactions with the MiniML program.
The LTS is a triple (S, α,

α−−→) where the MiniML states S of MiniML+ are the
states of the LTS, α the set of labels and α−−→ the labelled transitions between
states. The attacker state A is thus not represented in these labelled reductions,
instead the labels α denote the observations of the high-level MiniMLa attacker
as follows.

α ::= γ | τ |
√

γ ::= v? | v! | wr | � (λx.t) | � nl
i | � nf

i | � refτ | !nl
i

The labelled reductions of the LTS are of the form: S γ−−→ S′. The most relevant
transitions are as follows.

A || N;µ Σ ◦ t : τ � A || N;µ′ Σ ◦ t′ : τ
N;µ Σ ◦ t : τ τ−−→ N;µ′ Σ ◦ t′ : τ

(S-Inner)

N;µ Σ, E : τ → τ ′
v?−−−→ N Σ, E : τ → τ ′ � v : τ (A-V)

N;µ Σ
!nl

i−−−→ N;µ Σ ◦ !li : τ where N(nl
i) = (li, Ref τ) (D-N)

N;µ Σ
� refτ−−−−−−→ N;µ Σ, (ref [·]) : τ → Ref τ (A-R)

N;µ Σ
� nf

i−−−−→ N;µ Σ, (t [·]) : τ → τ ′ where N(nf
i) = (t, τ → τ ′) (C-N)

N;µ Σ ◦ E[(τ1→τ2F(λx.t) v)] : τ
� (λx.t)−−−−−−−→ N;µ Σ, E : τ2 → τ � v : τ1 (C-L)

N;µ Σ � wr : τ
wr−−−→ ?; ∅ ε (Wr-I)

N;µ Σ � v : τ
v!−−→ N;µ Σ (M-V) N;µ Σ

wr−−−→ ?; ∅ ε (Wr-C)

The internal reduction steps (S-Inner) and the marshalling transitions are not
observable to the attacker and are thus labelled as silent through the label τ .
The values v that the attacker returns or inputs are decorated with ? (A-V). The
values returned by the MiniML program to the attacker, returned as marshalled
values v, are decorated with ! (M-V). The attacker can dereference a shared
location in a one step transition that is labeled as !ni (D-N). The attacker can
also set locations, create shared locations (A-R) and apply shared MiniML λ-
terms through two transitions. In the first step, whose label is decorated with�,
the MiniML program is updated with the requested operation and the targeted
term. In the second step the attacker injects an argument as captured by the
value sharing rule (A-V). Whenever, an MiniML program calls a function of the
attacker (C-L) the attacker observes the call as well as the, immediately following,

9

argument to the function (M-V). If the marshalling fails (Wr-I) or the attacker
makes an inappropriate call (Wr-C), the transition is labelled as wrong (wr).

We define a weak bisimulation over this LTS. In contrast to a strong bisimu-
lation, such a bisimulation does not use the silent transitions between two states,
thus capturing the fact that the attacker cannot directly observe the number of
internal reduction steps within a MiniML program. Define the transition rela-
tion S

γ
=⇒ S′ as S τ−−→

∗ γ−−→ S′ where τ−−→
∗
is the reflexive transitive closure of the

silent transitions τ−−→. Our bismulation Ba over the observations and inputs of
the MiniMLa attacker is now defined as follows.
Definition 2. The relation Ba is a bisimulation iff S1 Ba S2 implies:

(1) Given S1
γ
=⇒ S′1 there is S′2 such that: S2

γ
=⇒ S′2 and S′1 Ba S′2

(2) Given S2
γ
=⇒ S′2 there is S′1 such that: S1

γ
=⇒ S′1 and S′1 Ba S′2

We denote bisimilarity, the largest bisimulation, as ≈a.

Congruence Just defining a bisimulation over the observations and inputs of
the MiniMLa attacker is not enough. We must also prove that the bisimulation
accurately captures those observations and inputs. We do this by proving that
the bisimulation Ba is a congruence: it coincides with contextual equivalence in
MiniML+ where the contexts of MiniML+ are all possible attacks definable in
MiniMLa. Formally contextual equivalence over MiniML+ is defined as follows.
Definition 3. Contextual equivalence for MiniML+ ('a) is defined as:

S1 'a S2
def
= ∀A.(A || S1)⇑ ⇐⇒ (A || S2)⇑

Theorem 1 (Congruence of the Bisimilarity). S1 'a S2 ⇐⇒ S1 ≈a S2.
A proof of this property is an adaptation of existing results [5], as such we leave
it to the companion technical report [6].

4 A Bisimulation over the Assembly Language Attacker

In this section we introduce a bisimulation over the assembly language that cap-
tures its interactions with an MiniML program residing in the protected memory
of the PMA mechanism. To accurately capture the inputs and observations of
the assembly language attacker we adopt the labels of a fully abstract trace se-
mantics over the interactions between the attacker and the protected memory
space (Section 4.1). Next, we define the applicative bisimulation ≈l over an LTS
whose state is a low level extension of the MiniML state of Section 3.3 (Sec-
tion 4.2). Later on in Section 5, we relate this bisimulation to the bisimulation
over the high-level attacker to prove the accuracy of the high-level attacker.

4.1 A Trace Semantics for the Assembly Language Attacker

To accurately reason about the capabilities and behaviour of the assembly at-
tacker we make use of the labels used by the fully abstract trace semantics of
Patrignani and Clarke [11] for assembly programs enhanced with PMA. These
trace semantics transitions over a state Λ = (p, r, f,m, s) where p is the program

10

counter, m is the protected memory of PMA and s is a descriptor that details
where the protected memory partition starts as well as the number of entry
points. Additionally Λ can be (unkown,m, s) when modeling the attacker. The
attacker thus does not feature an explicit state, instead the labels L capture its
observations and inputs as follows.

L ::= α | τ α ::=
√
| γ! | γ? γ ::= call p(r) | ret p(r)

A label L can be either an observable action α or a non-observable action τ .
Decorations ? and ! indicate the direction of the observable action: from the
attacker to the protected memory (?) or vice-versa (!). Observable actions include
a tick

√
indicating termination, and actions γ: function calls or returns to a

certain address p, combined with the registers r. These registers convey the
arguments of the calls and returns.

The traces provide an accurate model of the attacker as they coincide with
contextual equivalence for assembly programs enhanced with PMA.

Proposition 1 (Full Abstraction [11]). P1 'l P2 ⇐⇒ Tr(P1) = Tr(P2)

Where 'l denotes contextual equivalence between low-level programs and where
Tr(P) computes the traces of a program, with an initial state Λ(P) as follows.

Tr(P) = {γ | ∃Λ′.Λ(P) γ
==⇒ Λ′}

Note that this trace semantics does not include explicit reads or writes from
the protected memory to the unprotected memory or reads and writes from
the attacker to the protected memory. The latter is not possible as it violates
PMA (Section 2.1), the former is not required in our work as the data shared by
MiniML programs fits in to the registers r. Incorporating larger data structures
that require low-level reads and writes, has been left for future work.

4.2 Bl: a Bisimulation over the Assembly Language Attacker

While the trace semantics of Section 4.1 provides an accurate method for rea-
soning about the attacker, the states Λ of that semantics include many low-level
details of the protected memory that are not relevant to the result of this paper.
We thus define a bisimulation Bl that keeps the labels of the trace semantics,
to denote the inputs and observations of the assembly language attacker, but
features a more high-level state that denotes only the relevant information.

This state is a triple 〈S, e, p〉: the MiniML state of MiniML+ extended with
static set of entry points e and a stack of return pointers p. The MiniML state S
captures the current state of the MiniML program interacting with the attacker
from within protected memory. The set of entry points e contains the addresses
pe of the entry points into the protected memory that the attacker can call. The
stack of return pointers p enables the MiniML program to return to the address
of the attacker were a call to an entry point originated from.

Note that assembly language attacker inputs and outputs words of bytes w
instead of the high-level values v. The marshalling rules of MiniML+ over the
MiniML state S are thus adapted to convert to and from words w. Marshalling

11

in a true value and marshalling out a false value, for example, is as follows.

N;µ Σ � false : Bool � N;µ Σ � 0x0 : Bool (Out-False)
N;µ Σ � 0x01 : Bool � N;µ Σ � true : Bool (In-True)

The numbers n, and names nl
j and nf

i are converted into a word of bytes w, in
a similar manner. Functions pf from the attacker are embedded as τ1→τ2Fpf .

The bisimulation Bl is now over defined an LTS (〈S, e, p〉, L, L−−→), where L
are the labels of the fully abstract trace semantics and L−−→ denotes the labelled
transitions between the states. The most relevant transitions are as follows.

N;µ Σ ◦ t : τ � N;µ′ Σ ◦ t′ : τ
〈(N;µ Σ ◦ t : τ), e, pr : p〉

τ−−→ 〈(N;µ′ Σ ◦ t′ : τ), e, pr : p〉
(S-Inner)

〈(N;µ Σ ◦ t : τ), e, ∅〉
call pestart(pr)?−−−−−−−−−−→ 〈(N;µ Σ ◦ t : τ), e, pr : ∅〉 (A-Start)

〈(N;µ Σ � w : τ), e, pr : p〉
ret pr (w)!−−−−−−−−→ 〈(N;µ Σ), e, p〉 (M-Ret)

〈(N;µ Σ, E : τ → τ ′), e, p〉
ret peretb(w)?
−−−−−−−−−→ 〈(N;µ Σ, E : τf � w : τ), e, p〉 (A-R)

〈(N;µ Σ), e, p〉
call pederef(wn,pr)?−−−−−−−−−−−−−→ 〈(N;µ Σ ◦ !li : τ), e, pr : p〉 (A-Deref)

where N(wn) = (li, Ref τ)

〈(N;µ Σ), e, p〉
call peappl(wn,w,pr)?−−−−−−−−−−−−−−→ 〈(N;µ Σ, (t [·]) : τ → τ ′ � w : τ), e, p′〉

where N(wn) = (t, τ → τ ′) and p′ = pr : p (A-Apply)

〈(N;µ Σ � wr : τ), e, pr : p〉
√
−−→ 〈(?; ∅ ε), e, ∅〉 (Wr-I)

〈(N;µ Σ, E : τ → τ ′), e, p〉 ret p(w)?−−−−−−−→ 〈(?; ∅ ε), e, ∅〉 where p 6= peretb (Wr-R)

〈(N;µ Σ), e, pr : p〉
call p(w)?−−−−−−−→ 〈(?; ∅ ε), e, ∅〉 where p 6∈ e (Wr-C)

(M-Call)
N;µ Σ ◦ E[(τ1→τ2Fpf v)] : τ � N;µ Σ, E : τ2 → τ � v : τ1
N;µ Σ, E : τ2 → τ � v : τ1 �∗ N;µ Σ, E : τ2 → τ � w : τ1

〈(N;µ Σ ◦ E[(τ1→τ2Fpf v)] : τ), e, p〉
call pf (w)!−−−−−−−−→ 〈(N;µ Σ, E : τ2 → τ), e, p〉

Transitions within the MiniML program, such as for example S-Inner, are not
observable the attacker and are thus again labelled as silent. To start the com-
putation of the MiniML program, the low-level attacker calls the entry point
pestart passing as its only argument pr the address at which it expects the result
returned (A-Start). When the MiniML program returns to that address (M-Ret),
it makes use of modified marshalling rules to return a word w to the address at
the head of the stack p instead of MiniMLa values, as detailed earlier. The as-
sembly language attacker, in contrast, has less freedom for its returns. Because it
cannot jump to an address of the protected memory outside of the entry points,
it must return its values through a return entry point peretb (A-R). Whereas each

12

operation by the high-level attacker on the MiniML terms shared to it through
names ni was denoted with its own label, the assembly language attacker calls
a separate entry point for each operation (A-Deref,A-Apply) passing a byte word
representation of the names (wn) as an argument to the call. Whenever the
assembly-language attacker makes a mistake by either providing words that can-
not be marshalled (Wr-I) or by calling or returning to an inaccessible address (Wr-
C,Wr-R) the protected memory is terminated to the empty state 〈(?; ∅ ε), e, ∅〉.
While the attacker makes many different types of calls to the protected memory,
the MiniML program, only calls attacker functions pf whenever it applies them
to an MiniML value (M-Call).

We now define a notion of weak bisimulation, that does not take into account
the silent transitions τ only the actions α, over the LTS. Define the transition
relation 〈S, e, p〉 α

==⇒ 〈S′, e, p′〉 as 〈S, e, p〉 τ−−→
∗ α−−→ 〈S′, e, p′〉 where τ−−→

∗
is the

reflexive transitive closure of the silent transitions τ−−→.

Definition 4. Bl is a bisimulation iff 〈S1, e1, p1〉 B 〈S2, e2p2〉 implies:

1. Given 〈S1, e1, p1〉
α

==⇒ 〈S′1, e1, p1′〉, There is 〈S′2, e2, p2′〉 such that
〈S2, e2, p2〉

α
==⇒ 〈S′2, e2, p2′〉 and 〈S′1, e1, p1′〉B〈S′2, e2, p2′〉

2. Given 〈S2, e2, p2〉
α

==⇒ 〈S′2, e2, p2′〉, There is 〈S′1, e1, p1′〉 such that
〈S1, e1, p1〉

α
==⇒ 〈S′1, e1, p1′〉 and 〈S′1, e1, p1′〉B〈S′2, e2, p2′〉

We denote bisimilarity, the largest bisimulation as, ≈l.

5 Full Abstraction

We now establish the accuracy of the high-level attacker by proving that the
bisimulation over the assembly-language attacker is a full abstraction of the
bisimulation over the high-level MiniMLa attacker. We thus prove that there is
no assembly language attacker action that affects the abstractions of MiniML
programs residing in the protected memory, that cannot be replicated by the
high-level attacker MiniMLa.

Theorem 2 (Full Abstraction). {t1}↑ ≈a {t2}↑ ⇐⇒ {t1}↓ ≈l {t2}↓

where {t}↑ denotes the start state: (?; ∅ ε ◦ t : τ) of an MiniML term t
when faced with the MiniMLa attacker and where {t}↓ denotes the start state:
〈(?; ∅ ε ◦ t : τ), e, ∅〉 of an MiniML term when faced with the assembly lan-
guage attacker.

The proof splits the thesis into two sublemma: preservation and reflection.

Lemma 1. (Preservation) {t1}↑ ≈a {t2}↑ ⇒ {t1}↓ ≈l {t2}↓.

Proof Sketch We must establish that there exists a relation R, so that:
(1) {t1}↓R{t2}↓ and (2) that R relates low-level states 〈S, e, p〉 and 〈S′, e′, p′〉
as would Bl. We define R as a union of relations R = R0 ∪ R1 ∪ R2 ∪ R3: one
relation for each possible kind of low-level state. The relation R0 relates halted
states: 〈(N;µ Σ), e, p〉 and 〈(N′;µ′ Σ′), e′, p′〉 and enforces that the name maps
are equivalent: Dom(N) = Dom(N′) ∧ ∀ni.N(ni) ' N′(ni), the evaluation stacks

13

are equivalent: |Σ| = |Σ′| ∧ ∀E, E′, t.E[t] ' E′[t], the entry point sets are equal
e = e′, and that the return address stacks are equal as well p = p′. The relation
R1 relates two states reducing terms contextually equivalent terms t and t′ in
addition to upholdingR0. The relationsR2 andR3 relate the marshalling states,
they require that R0 holds and that the marshalled terms are equal if they are
assembly language terms. Case (1) now follows from the assumption. Case (2)
proceeds by analysis on the label L. The most challenging sub-case is the call
from MiniML to the low-level attacker labelled as L = call pf (w)!. To prove that
both states will perform the same outward calls, we rely on the insight that by
including references in MiniML we have that two equivalent MiniML terms will
perform the same function calls, as illustrated for (Ex-1) in Section 2.2.

Lemma 2. (Reflection) {t1}↓ ≈l {t2}↓ ⇒ {t1}↑ ≈a {t2}↑.

Proof Sketch We prove the contrapositive: {t1}↑ 6≈a {t2}↑ ⇒ {t1}↓ 6≈l {t2}↓.
The proof has two cases. In the first case the bisimulation fails immediately as
the MiniML terms t1 and t2 embedded in S either reduce to difference values or
diverge. These differing LTS transitions are replicated directly in the low-level
bisimulation, the only difference being the inclusion of a start transition with
label: call pestart(pr) that starts the reduction of the embedded MiniML terms. In
the second case there is a sequence of context actions (� (λx.t) | � nl

i | � nf
i |

� refτ | !nl
i) that result in two states where different LTS transitions apply. In

this case we establish the thesis by showing that each high-level attacker action
can be replicated by an assembly-language attacker action.

Full proofs for both lemmas are provided in a companion report [6].

6 Related Work

Our attacker model is based on the insights of Wand [15] on the nature of pro-
gramming language reflection. Alternative attacker models are Jagadeesan et
al.’s attacker language with low-level memory access operators [3] or the erasure
function approach of several non-interference works [8]. The former is only suit-
able for low-memory models with address space randomization, the latter does
not lend itself to low-level attackers.

In Section 3.3 we use the interoperation semantics of Larmuseau et al. [5] to
model the interoperation between the MiniMLa attacker and the source language
MiniML. There exist multiple alternatives for language interoperation: Matthews
and Findler’s multi-language semantics [9] enables two languages to interoperate
through direct syntactic embedding and Zdancewic et al.’s multi-agent calculus
that treats the different modules or calculi that make up a program as different
principals, each with a different view of the environment [16]. These alternatives,
however, do not provide separated program states or explicated marshalling rules
both required to model the assembly language attacker.

Our notions of bisimulation over the interactions of the high-level and low-
level attackers are based on the bisimulations for the νref-calculus by Jeffrey and
Rathke [4]. An alternative approach could be the environmental bisimulations of

14

Sumii and Pierce [14], which would not require a hash operation in MiniML to
make the locations observable within the labels. Their bisimulations, however,
do not provide a clear formalism to reason about the observations of an attacker.

7 Conclusions

This paper presented a high-level attacker model La that captures the threat
that an assembly-language attacker poses to the abstractions of a program that
resides within the memory space protected by PMA, a low-level memory isolation
mechanism. The accuracy of this high-level attacker model was proven for an
example language MiniML, by relating a bisimulation over the the high-level
attacker model to a bisimulation over the assembly language attacker.

References

1. M. Felleisen and R. Hieb. The revised report on the syntactic theories of sequential
control and state. Theoretical Computer Science, 103(2):235–271, 1992.

2. M. Furr and J. S. Foster. Checking type safety of foreign function calls. In PLDI
’05, pages 62–72. ACM, 2005.

3. R. Jagadeesan, C. Pitcher, J. Rathke, and J. Riely. Local memory via layout
randomization. In CSF ’11, pages 161–174. IEEE, 2011.

4. A. Jeffrey and J. Rathke. Towards a theory of bisimilarity for local names. In
Logic in Computer Science, pages 56–66. IEEE, 2000.

5. A. Larmuseau and D. Clarke. Formalizing a secure foreign function interface. In
SEFM 2015, LNCS. Springer. To appear, online at: https://db.tt/y87tcQ0V.

6. A. Larmuseau and D. Clarke. Modelling an Assembly Attacker by Reflection.
Technical Report 2015-026, Uppsala University, 2015.

7. X. Leroy, D. Doligez, J. Garrigue, D. Rémy, and J. Vôuillon. The Objective Caml
system, release 4.02. Technical report, INRIA, August 2014.

8. P. Li and S. Zdancewic. Arrows for secure information flow. Theoretical Computer
Science, 411(19):1974 – 1994, 2010.

9. J. Matthews and R. B. Findler. Operational semantics for multi-language pro-
grams. TOPLAS, 31(3):12:1–12:44, 2009.

10. F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi, V. Shanbhogue,
and U. R. Savagaonkar. Innovative instructions and software model for isolated
execution. In HASP ’13, pages 10:1–10:1. ACM, 2013.

11. M. Patrignani and D. Clarke. Fully Abstract Trace Semantics of Low-level Isolation
Mechanisms. In SAC ’14, pages 1562–1569. ACM, 2014.

12. G. Plotkin. LCF considered as a programming language. Theor. Comput. Science,
5:223–255, 1977.

13. R. Strackx and F. Piessens. Fides: Selectively hardening software application com-
ponents against kernel-level malware. In CCS ’12, pages 2–13. ACM.

14. E. Sumii and B. C. Pierce. A bisimulation for dynamic sealing. In POPL ’04,
pages 161–172. ACM, 2004.

15. M. Wand. The theory of fexprs is trivial. Lisp and Symbolic Computation,
10(3):189–199, 1998.

16. S. Zdancewic, D. Grossman, and G. Morrisett. Principals in programming lan-
guages: a syntactic proof technique. In ICFP ’99, pages 197–207. ACM.

15

