
A Secure Compiler for ML Modules

Adriaan Larmuseau1, Marco Patrignani2, and Dave Clarke1,2

1 Uppsala University, Sweden,
first.last@it.uu.se

2 iMinds-Distrinet, K.U. Leuven, Belgium
first.last@cs.kuleuven.be

Abstract. Many functional programming languages compile to low-
level languages such as C or assembly. Numerous security properties of
those compilers, however, apply only when the compiler compiles whole
programs. This paper presents a compilation scheme that securely com-
piles a standalone module of ModuleML, a light-weight version of an ML
with modules, into untyped assembly. The compilation scheme is secure
in that it reflects the abstractions of a ModuleML module, for every
possible piece of assembly code that it interacts with. This is achieved
by isolating the compiled module through a low-level memory isolation
mechanism and by dynamically type checking its interactions. We eval-
uate an implementation of the compiler on relevant test scenarios.

1 Introduction

High-level functional programming languages such as ML or Haskell offer pro-
grammers numerous security features through abstractions such as type systems,
module systems and encapsulation primitives. Motivated by speed, memory ef-
ficiency and portability these high-level functional programming languages are
often compiled to low-level target languages such as C and assembly [3]. The se-
curity features of such low-level target languages, however, rarely coincide with
those of high-level source languages. As a result the compiled program might
leak confidential information or break integrity when faced with an attacker
operating in the low-level target language.

This security risk is rarely considered in existing compilers as it is often
assumed that the compiler compiles the whole program, isolating it from ma-
licious attackers. In practice, however, the final executable will consist of more
than just the program in the functional language, it will be linked with various,
low-level libraries and/or components that may be written with malicious intent
or susceptible to code injection attacks. These low-level components have low-
level code execution privileges enabling them to inject code into the system and
inspect the variables and memory contents of the compiled program.

This paper presents a compilation scheme that compiles ModuleML, a light-
weight version of ML featuring references and a module system, into an untyped
assembly language running on a machine model enhanced with the Protected
Module Architecture (PMA) [19]. PMA is a low-level memory isolation mech-
anism, that protects a certain memory area by restricting access to that area

based on the location of the program counter. Our compilation scheme compiles
an input ModuleML module to this protected memory in a way that protects it
from low-level attackers while at the same time preserving all of its functionality.

Contributions The security of a compilation scheme between two programming
languages, is often discussed in terms of full abstraction [1]. A fully-abstract
compilation scheme preserves and reflects contextual equivalence between source
and target-level components (Section 2). Preservation of contextual equivalence
means that the compilation scheme outputs target-level components that be-
have as their source-level counterparts. Reflection implies that the source-level
security properties are not violated by the generated target-level output.

This paper introduces a secure compilation scheme from ModuleML to un-
typed assembly extended with PMA (Section 3), that is proven to reflect con-
textual equivalence (Section 4). As is common in secure compilation works that
target a realistic low-level language [16], we assume that preservation holds.
Preservation coincides with compiler correctness, it establishes that the secure
compiler is a correct ModuleML compiler. While we have tested our implementa-
tion intensely (Section 5), we consider formally verifying our compiler a separate
research subject (Section 6). To better explain the secure compilation scheme,
this paper also introduces a pattern referred to as the Secure Abstract Data Type
pattern (Section 2.4). This pattern bundles together some of the techniques ap-
plied in previous secure compilation and full abstraction works.

This paper is not the first work to securely compile to untyped assembly ex-
tended with PMA. Previous work on secure compilation by Patrignani et al. [16]
has fully abstractly compiled an object-oriented language to PMAs. The secure
compilation scheme introduced in this paper differs from that work in the fol-
lowing three ways. Firstly, the secure compilation scheme of Patrignani et al. is
limited in its usefulness as a real world compilation scheme in that it does not
accept any arguments from the attacker outside of basic values, such as inte-
gers and booleans, and shared object identities. In this work we develop a more
realistic compiler that accepts attacker defined functions, locations and modules.

Secondly, the abstractions of functional languages are more challenging than
those of imperative object-oriented languages. In a functional language such as
ModuleML, functions are for example higher-order and thus cannot be compiled
into a straight-forward sequence of calls and returns. In this work we address
these challenges through the use of an interaction counting masking mechanism.

Lastly, the inclusion of functors, higher-order functions mapping modules
to modules, in ModuleML presents a novel secure compilation challenge. The
modules created through functors are not analogous to objects, from a secure
compilation standpoint. Whereas every object produced by a constructor is of
the same type and thus subject to the same type checks and security constraints,
functors can produce modules with different types and security constraints. In
this work we address all security challenges introduced by functors and develop
an efficient method of encoding the required checks.

Limitations To simplify the compilation scheme, polymorphic types and type

2

kinds have been left out of ModuleML. The effects of certain low-level errors
such as stack overflows or out of memory errors are also not considered.

2 Overview

This section introduces the source language ModuleML (Section 2.1), the target
language A+I (Section 2.2), the threat model (Section 2.3) and a secure compi-
lation pattern that we reuse throughout this work (Section 2.4).

2.1 The Source Language ModuleML

The source language ModuleML is divided into a core language and a module
language. The core language is an extension of the simply typed λ-calculus fea-
turing booleans, integers, unit, pairs, references, sequences, recursion and integer
and boolean comparison operators. The module system is an adaption of Leroy’s
variant of the SML module system that features manifest types [11]. It consists
of signatures, structures and functors, as illustrated below.

signature S = sig
type T
val func: T → T
end

Signature

module M : S = struct
type T = int
val func x = x +1
end

Structure

module F = functor(A : S)
struct
val fd y = (A.func y)
end
module M’ = F(M);

Functor

A signature is a sequence of signature components that are either value decla-
rations type declarations or module declarations. The signature S listed above,
for example, defines an abstract type T and a value declaration func that is
a function of type T → T. A structure is a sequence of structure components
that are either value bindings, module bindings or type bindings. The structure
M listed above, binds the type T to int and binds the value func to a simple
addition function. A functor can be considered as a parametrized module, a pos-
sibly higher-order function mapping modules to modules. The module F listed
above, is a functor that maps a structure conforming to S to a new structure
that consists only of a value binding fd that applies the value binding A.func to
the argument y. The module M’, for example, is the result of applying F to M.

The typing rules for the ModuleML module system are standard. Note that
this work uses SML style generative functors which return fresh abstract types
with each application [4], as this type of functor provides strong data encapsu-
lation. The interested reader can find a complete formalisation of ModuleML in
the accompanying technical report [10].

Contextual Equivalence The secure compilation scheme aims to reflect Module-
ML contextual equivalence in the target language A+I. A ModuleML context
C : τ ′ → τ is a well-typed program P of type τ with a single hole [·] that is
to be filled with a module M of type τ ′. Two ModuleML modules M1 and M2 are
contextually equivalent if and only if there is no context C that can distinguish
them. Contextual equivalence is formalised as follows.

3

Definition 1 (Contextual Equivalence).
M1' M2

def
= ∀C : τ ′ → τ. C[M1]⇑ ⇐⇒ C[M2]⇑

where ⇑ indicates divergence.
The following two ModuleML modules M1 and M2 are, for example, not contex-

tually equivalent as they are distinguishable by the denoted context C, assuming
Ω is a diverging term.

module M1 = struct
val v1 = ref 1

end

Module A

module M2 = struct
val v1 = ref 0

end

Module B

open M
(if (!(M.v1) == 0) Ω
else true)

Context C

Note that the open M statement implements the hole of the context C.

2.2 The Low-Level Target Language A+I

To model a realistic compilation scheme, the target language should be close
to what is used by modern processors. For this reason this paper adopts A+I
(acronym of Assembly plus Isolation), a low-level language that models an ide-
alised von Neumann machine enhanced with a low-level memory protection
mechanism referred to as Protected Module Architecture (PMA) [19]. PMA is
a fine-grained, program counter-based, memory access control mechanism that
divides memory into a protected memory module and unprotected memory. The
protected module is further split into two sections: a protected code section
accessible only through a fixed collection of designated entry points, and a pro-
tected data section that can only be accessed by the code section. As such the
unprotected memory is limited to executing the code at entry points. The code
section can only be executed from the outside through the entry points and the
data section can only be accessed by the code section. An overview of the access
control mechanism is given below.

From \To Protected Unprotected
Entry Point Code Data

Protected r x r x r w r w x
Unprotected x r w x

A variety of PMA implementations exist. While most of them are research pro-
totypes [19], Intel is developing a new instruction set, referred to as SGX, that
enables the usage of PMA in commercial processors [15].

Trace Equivalence Our secure compiler relates contextually equivalent Mod-
uleML modules to contextually equivalent low-level components. Reasoning about
contexts is, however, notoriously complex. Reasoning about untyped low-level
contexts is especially complex as they lack any inductive structure. In this work
we thus adopt the fully abstract trace semantics of Patrignani and Clarke for
PMA enhanced programs, to reason about trace equivalence instead [17].

The trace semantics transition over a state Λ = (p, r, f,m, s), where m rep-
resents only the protected memory of PMA and s is a descriptor that details

4

where the protected memory partition starts, as well as the number of en-
try points and the size of the code and data sections. Additionally, Λ can be
(unknown,m, s) a state modelling that A+I code, possibly malicious, is executing
in unprotected memory. The trace semantics denote the observations of the A+I
contexts that interact with the protected memory through labels L as follows.

L ::= α | τ α ::=
√
| δ! | γ?

γ ::= call p(r; f) | ret p(r; f) δ ::= γ | ω(a, v).δ ω ::= read | write

A label L can be either an observable action α or a non-observable action τ in-
dicates that an unobservable action occurred in protected memory. Decorations
? and ! indicate the direction of the observable action: from the unprotected
memory to the protected memory (?) or vice-versa (!). Observable actions γ are
function calls or returns to a certain address p, combined with the registers r
and flags f . Registers and flags are in the labels as they convey information
on the behaviour of the code executing in the protected memory. Observable
actions ω(a, v) from the protected memory to the unprotected memory detail
read and writes to the unprotected memory where a is the memory address and
v is the value written to the address. The values will always be data, the com-
piler does not produce code that writes instructions to the unprotected memory.
Additionally, an observable action α can be a tick

√
indicating termination.

Formally the trace semantics of an A+I program L, denoted as Traces(L), are
computed as follows: Traces(L) = {α|∃Λ.Λ0(L)

α
==⇒⇒ Λ}. Where Λ0 is the initial

state and the relation Λ
α

==⇒⇒ Λ′ describes the traces generated by transitions
between states. An important property of this trace equivalence is that the in-
formation they convey is so precise that we can rely on the equality between the
traces produced by A+I programs as a replacement for contextual equivalence.

Proposition 1 (Fully Abstract Trace Semantics for A+I [17]).
L1 'l L2 ⇐⇒ Traces(L1) = Traces(L2)

Where 'l denotes contextual equivalence between two A+I programs.

2.3 The Attacker

The attacker considered in this work has kernel-level code injection privileges
that can be used to introduce malware into a software system. Kernel-level code
injection is a critical vulnerability that bypasses all existing software-based se-
curity mechanisms: disclosing confidential data, disrupting applications and so
forth. For the sake of simplicity, no differentiation between kernel and user code
is defined in A+I. Thus, by modelling the attacker as injecting A+I code, we are
modelling kernel-level code injection. Note that PMA is a program counter based
mechanism that this attacker model cannot bypass [19].

2.4 The Secure Abstract Data Type Pattern

An A+I context must be able to perform the operations of ModuleML on the
compiled ModuleML module. Each of these operations is different, but poses a

5

similar secure compilation challenge: how do we enable the A+I context to per-
form the relevant operations without exposing the implementation details of the
abstraction? In this work we introduce the Secure Abstract Data Type (ADT)
pattern as a general approach to addressing this challenge. This pattern bundles
together the individual techniques applied in certain secure compilation [16] and
full abstraction results [14].

An ADT defines both the values of a data type as well as the functions that
apply to it, relying on static typing rules to hide the implementation details of the
data type. The Secure ADT pattern, in contrast, protects the implementation
details of a source language abstraction τ without relying on static typing rules.
As illustrated in Figure 1, it does this by inserting an ADT like interface between
the actual implementation of the abstraction and the target language context.
Concretely a secure ADT has the following elements: a secured type Sec[τ], an
interface that defines the operations applicable to the protected type, marshalling
rules that handle the transitions between the different representations for τ , and
additional run-time checks if required.

Secured type The Secure ADT pattern states that values of the type τ , the type
of the abstraction that the Secure ADT aims to secure, must be isolated and can
thus not be shared directly. Instead they can be, for example, shared securely
by encrypting the value or by providing a reference object, an object that refers
to the original value. The type of these securely shared instances is denoted as
Sec[τ]. The Secure ADT pattern considers not only the secure sharing of values
of type τ , but also input from the target language context. This input is denoted
as Ins[τ ′], where τ ′ denotes the source language type that the input is expected
to conform to. We use τ ′ and not τ as the outside input can be of a different
type then the abstraction that the secure ADT pattern secures.

Interface As illustrated in Figure 1, the interface defines a series of functions
(vi) that provide the outside context with the functionality of ModuleML. These

Secured

v : τ

Interface

type Sec[τ] = ..

val vi : (Sec[τ] ∨ Ins[τ ′])∗ →
(Sec[τ] ∨ Ins[τ ′])∗

Outside

Target
Language
Context

v : Ins[τ]
Marshallτc

Marshallτo

Marshallτi

shared

uses

supplies

functionality

Fig. 1: The Secure ADT pattern isolates an abstraction of type τ through an ADT-like
interface that shares secured instances of τ (Sec[τ]) and accepts outside input (Ins[τ ′]).

6

functions take as arguments some sequence of securely shared values and target
language input and return a securely shared or a target language value.

Marshalling The Secure ADT pattern introduces type directed marshalling func-
tions to handle the transitions between the values of type τ , which are the se-
curely compiled values, the values of type Sec[τ], which are the securely shared
instances, and the values of type Ins[τ] which are defined by the outside context.
The function Marshallτo : τ → Sec[τ] converts values into their secured instances.
The functionMarshallτi : Sec[τ]→ τ converts the secured instances back into the
original value. Note that this function performs an implicit run-time type check.
It fails when given an input that does not correspond to a securely shared value
of type τ . Certain secure compilation schemes, such as the one considered in this
work, also specify a third type of marshalling function: Marshallτc : Ins[τ]→ τ .
Such a marshalling function converts values from the target language context
into values of the secured type τ , by converting the input value into the correct
representation and by wrapping the result with type checks. Note that if the
input is of type Ins[τ ′], where τ ′ 6= τ , then the input will only be marshalled in
if there exists a marshalling function: Marshallτ

′

c : Ins[τ ′]→ τ ′.

Run-time checks The marshalling rules verify that the input provided by the
outside target language context and the output shared to the outside context
conform to the typing rules of the source language. This, however, is sometimes
not enough to protect the abstractions of the source language. Certain security
relevant language properties such as, for example: control-flow integrity, are not
always explicitly captured by the typing system. Enforcing these properties must
thus be done through additional run-time security checks.

3 A Secure Compiler for ModuleML

The secure compilation scheme for ModuleML is a type directed compilation
scheme that compiles a standalone ModuleML module and its signature to a
protected module (Figure 2). The secure compilation scheme applies the Secure
ADT pattern in a general manner. The entry points of the protected module im-
plement an ADT-like interface to the A+I context. The abstractions of ModuleML
are isolated by placing all code and data into the data and code sections of the
protected module. The protected data section also includes a heap and stack of
a fixed size, that can only be accessed by the securely compiled program. This
ensures that the run-time memory of the compiled program is also inaccessible.

The inner workings of how ModuleML is compiled to assembly is of little
relevance to this result of this paper. Instead this section focusses on the se-
curity relevant aspects of the compilation scheme. This section details how we
apply the Secure ADT pattern of Section 2.4 to securely compile abstract types
(Section 3.2), structures and signatures (Section 3.3), functions (Section 3.4),
locations (Section 3.5) and functors (Section 3.6). Basic types such as integers
or pairs are not compiled using the Secure ADT pattern, but must still be mar-
shalled when interacting with the A+I context (Section 3.1).

7

struct
val v1 =...
module X1 = ...
...
end

Attacker

EntryPoints:
◦ entry_v1
◦ entry_X1

...
Code:

◦ Security Checks
◦ Program Code

Data:
◦ Values & Types
◦ Stack & Heap

Protected Module

sig
val v1: τ1 → τ2
module X1: M
...
end

r/x

r/w

interact

Type Check
Compile

Fig. 2: Our scheme compiles the module and its type into the protected memory.

3.1 Booleans, Integers and pairs

The securely compiled module shares and inputs not only abstractions such
as functions, but also basic ModuleML values: booleans, integers and pairs.
Booleans and integers are exchanged with the A+I context using their respec-
tive A+I representation. The marshalling functions for integers are thus defined
as Marshallintc : Ins[int]→ int, which converts A+I integers into ModuleML in-
tegers, and Marshallinto : int→ Ins[int], which converts ModuleML integers to
A+I integers. The marshalling functions for booleans are analogous.

Marshalling pairs is different. When marshalling, for example, a pair 〈v1, v2〉
the marshalling functions for pairs marshall each value with the type appropriate
marshalling function as dictated by the Secure ADT pattern. Marshalling out
the pair 〈1, 2〉, for example, will thus produce a value of type 〈Ins[int], Ins[int]〉,
while marshalling out the pair of lambdas 〈(λx : τ.t), (λx : τ.t′)〉 will produce a
value of type 〈Sec[τ → τ ′],Sec[τ → τ ′′]〉.

3.2 Abstract types

Abstract types are, as the name indicates, abstract in that associated values
are unobservable to an ModuleML context. Consider, for example, the following
module A that conforms to the signature S. This signature defines an abstract
type T that abstracts the value bindings v1 and v2.

module A : S = struct
type T = bool
val v1 = true
val v2 = v1
end

signature S = sig
type T
val v1 : T
val v2 : T
end

An A+I context should not be able to observe that A.v1 and A.v2 both return
the value true. To achieve this our compilation scheme applies the Secure ADT

8

pattern to compile values of an abstract type. Instead of directly sharing the
value of an abstract type T with the A+I context, we share a secured instance
of type Sec[T] instead. These secured instances are implemented as indices to
a table A. This table A maps natural numbers to values and their types in a
deterministic manner, simply denumerating its entries. Note that this map is not
a set: it may map different numbers to duplicate elements.

As illustrated in Figure 3, every time a value of an abstract type is returned
the securely compiled module will share a new index i that corresponds to the
number of requests that the A+I context has made to abstract types. Note that
each member of a pair (Section 3.1) counts as a separate request. The marshalling
functions MarshallTo and MarshallTi are thus implemented as extending the table
A and looking up an index in A respectively, as illustrated in Figure 3.

We have formally proven in prior work [9], by means of a full abstraction
proof, that these request counting indices do not reveal any information to the
A+I context other than the number of times the A+I context has requested a value
of an abstract type. This is information that the context of any source language
with state can reproduce and thus does not harm full abstraction. In the case of
ModuleML, a context can count its interactions with the protected module by
making use of references (a detail that returns in our proof of Section 4).

3.3 Structures and Signatures

Our compiler compiles both structures and signatures into records stored within
the data section of the protected memory. As dictated by the Secure ADT pattern
these records are not exposed directly to the A+I context. Instead the compilation
scheme defines an ADT-like interface of entry points to the protected memory
that provide access to the value and structure bindings exposed by the module’s
signature. Note that, as in previous works [16], these entry points are sorted
to obscure their implementation order. The compiler also includes a load entry
point that evaluates each of the expressions defined within a structure. Our
compilation scheme defines marshalling rules that both share secure structures
as well as convert in structures created by the A+I context.

Load entry point As is the case in most ML implementations, the value bindings
of ModuleML map names to expressions not values. These expressions must be

Secured

v : T

Interface

type Sec[T] = int

val vi : Sec[T]

Outside

A+I
Context

A,[i 7→ (v, T)]

A[i]

share i

request ireturns

Fig. 3: We use request counting to obscure the value of an abstract type.

9

reduced to values before the value bindings of a structure can be queried. Our
compiler, however, compiles a standalone ModuleML module not a full program,
it thus does not have any control over when or if the expressions are evaluated.
Instead our compilation scheme provides the A+I context the ability to load the
module through a load entry point. This entry point takes no arguments and
executes each of the expressions defined throughout the compiled module, storing
the result in the appropriate record. Because it is up to the low-level context
to invoke this load entry point, a malicious A+I context may attempt to query
bindings before the module is loaded or attempt to load the module multiple
times. To prevent this, the compiler introduces an additional run-time check in
the form of a global flag Lf , that encodes whether or not the module has been
loaded. What follows is a pseudo code implementation of the load entry point.

1. Check the flag Lf . Abort if set.
2. For each value binding vi with an associated expression e:

(a) Evaluate e and store the result in the appropriate record.
3. Set Lf .

Value binding entry points For each value binding vi reduced to a value v : τ
declared within the signature of a structure, the compilation scheme creates an
entry point of type: vi : Sec[τ], if τ is an abstraction that must be secured, or
vi : Ins[τ] if τ is a basic type such as int. Both are implemented as follows.

1. Check the flag Lf . Abort if not set.
2. Fetch the value v and its type τ from the data section.
3. Return Marshallτo (v)

Entry points to structures For each module binding Mi to a structure s with
signature S that is declared within the signature of the outer structure, our
compiler creates an entry point of type: Mi : Sec[S] that takes no arguments and
returns a marshalled instance of the structure of secured type Sec[S], as follows.

1. Check the flag Lf . Abort if not set.
2. Return MarshallSo(s)

MarshallSo and MarshallSi As dictated by the Secure ADT pattern, structures are
not shared directly but instead marshalled out using a type directed function
MarshallSo : S→ Sec[S]. This function converts a structure of signature S into a
secured instance Sec[S]: a record that contains an index i to the table M and
references to the entry points of each value/module binding in S. The references
to the entry points are included to inform the A+I context of the functionality that
the structure provides, simplifying interoperation. Like the tableA of Section 3.2,
the tableM maps numbers to structures and their signatures. This index i thus
enables the marshalling in functionMarshallSi : Sec[S]→ S to retrieve the original

10

structure and its signature from M. Note that this marshalling function thus
performs an implicit type check as the function fails whenever the retrieved
signature is not a subtype of S.

MarshallSc Our compilation scheme enables the A+I context to supply its own
structures as arguments to the functors of Section 3.6. These structures are
marshalled in by a function MarshallSc : Ins[S]→ S, that iterates through the
components of the expected signature S, querying the A+I context’s structure
for the names of the bindings, marshalling in the results or aborting if a name
isn’t found. When a value binding is marshalled in it is marshalled in using the
type appropriate function. When a module binding is marshalled the marshalling
function recurses. Note that this function performs a sub-type check: Ins[S] <: S.

3.4 Higher-Order Functions

To compile the λ-terms of ModuleML the compiler uses closure conversion [18]
to eliminate free variables by using an explicit environment that stores bindings
between variables and values. As is required by the Secure ADT pattern, these
closures are not made available to the A+I context but are instead shared as
secured instance of type Sec[τ1 → τ2]: indices to a table C that maps numbers
to closures and their types. As was the case for the indices of Section 3.2, these
numbers simply denumerate the requests made by the A+I context. The mar-
shalling functions Marshallτ1→τ2

o and Marshallτ1→τ2
i are thus implemented as

extending the table C and looking up the closure and its type in C respectively.

Closure application entry point As is required by the Secure ADT pattern we
enable the A+I context to apply shared closures through an entry point of type:
appl : Sec[τ1 → τ2] → (Ins[τ1] ∨ Sec[τ1]) → (Ins[τ2] ∨ Sec[τ2]), where the result
is Ins[τ2] if τ2 is a basic type and Sec[τ2] otherwise. This entry point takes as
its arguments an index i to the table C and as a value v of the appropriate
representation for type τ1. The entry point is implemented as follows.

1. Check the flag Lf . Abort if not set.
2. c = Marshallτ1→τ2

i (i)
3. Depending on the representation of v:

(a) If Ins[τ1]: r = Marshallτ1c (v)
(b) If Sec[τ1]: r = Marshallτ1i (v)

4. Apply c to v, store the result in r′.
5. Return Marshallτ2o (r ′)

Note that the marshalling rules of 3(a) and 3(b) implement the typing rule for
function applications, by ensuring that the input value v is of type τ1.

Marshallτ1→τ2
c Our compilation scheme enables the A+I context to supply its

own functions as arguments to the securely compiled entry points that accept
an argument of type: Ins[τ1 → τ2]. These A+I functions are marshalled by a

11

function Marshallτ1→τ2
c : Ins[τ1 → τ2]→ (τ1 → τ2), that takes in a reference to

the A+I function f and wraps that function into a new function that performs
the following steps, whenever the A+I function f is applied to a ModuleML value
v within the securely compiled module.

1. a = Marshallτ1o (v)
2. Apply f to a. Store the result in r.
3. Return Marshallτ2c (r)

3.5 Locations

As is the case in most commonly used ML variants [13], memory locations do
not explicitly appear in the syntax used by programmers. Locations are thus not
directly observable to an ModuleML context, leading to many equivalences. Con-
sider, for example, the following two contextually equivalent implementations of
the value binding v1.

val v1 = (let x = (ref true) in
let y = (ref true) in y)

val v1 = (let x = (ref true) in
let y = (ref true) in x)

No ModuleML context can observe that the left implementation differs from the
right implementation in that it returns the second location it created, stored
within variable y, and not the first location stored within the variable x.

Again our compilation scheme applies the Secure ADT pattern to protect
ModuleML’s locations and the operations available on them. Locations are shared
with the A+I context in the same manner as higher-order functions (Section 3.4)
and abstract types (Section 3.2): as indices into a table L that maps numbers
to locations and their types. As was the case previously, these numbers sim-
ply denumerate the requests made by the A+I context for access to ModuleML
locations. The marshalling functions Marshallref τo and Marshallref τi are thus
implemented as extending the table L and looking up an index in L respectively.

Write and read entry points To enable the low-level A+I context to write and read
to shared locations in the same way that an ModuleML context can, we introduce
a write location entry point of type: write : Sec[ref τ]→ (Ins[τ] ∨ Sec[τ])→ unit,
and a read location entry point of type read : Sec[ref τ]→ (Ins[τ] ∨ Sec[τ]). The
write location entry points takes two arguments: an index i to the table L and a
value v of the appropriate representation for type τ . It securely writes v to the
appropriate location, as follows.

1. Check the flag Lf . Abort if not set.
2. l = Marshallref τi (i).
3. Depending on the representation of v:

(a) If Ins[τ]: r = Marshallτc (v)
(b) If Sec[τ]: r = Marshallτi (v)

4. Write r to l.

12

Note again, that the marshalling rules 3(a) and 3(b) implement the assign loca-
tion typing rule, by ensuring that the input value v is of type τ .

The implementation of the read location entry point is straight-forward: it
retrieves the location from L, dereferences it and marshalls the value.

Marshallref τc A ModuleML context can allocate new locations and share them
with the ModuleML module embedded within the context’s hole. We thus enable
the A+I context to supply its own locations as arguments to entry points that
accept an argument of type Ins[ref τ1]. As specified by the Secure ADT pattern
these locations are marshalled by a function Marshallref τc : Ins[ref τ]→ ref τ ,
that takes in a location lf of the A+I context and wraps it with two functions. The
first function enables a ModuleML expression to read the foreign location, the
second function enables an ModuleML expression to write to the foreign location.
The implementation of the latter is analogous to the implementation of the write
entry point. The implementation of the former is simply: Marshallτc (!lf), where
!lf denotes the dereference of the A+I location lf .

3.6 Functors

As noted earlier, a ModuleML functor is a higher-order function that maps
modules (structures or functors) to modules. Consider the following example.

signature Sa = sig
type U
val v1: int →int
val vs : U
end

signature Sr = sig
type T
val fd: int → int
val F1:functor(X:Sa)→Sa
val M1: sig
val v1: T
end
end

module F = functor(A : Sa)
struct
type T = int
val fd y = (A.v1 y)
module F1 = functor(X:Sa)=A
module M1 = A
end : Sr
module M’ = F(Mi)

Module F is a functor that maps a structure that conforms to signature Sa, to a
new structure that consists of: a value binding fd, that applies the argument’s
value binding v1 to an argument y, and an inner functor F1 and an inner structure
M1 that copies the argument. This new structure is ascribed with the signature
Sr which seals the value binding M1.v1 with the abstract type T. When compil-
ing functors the compiler operates in two modes. The first mode considers the
static functor applications within the compiled module, such as, for example,
the application of F to an example module Mi in the above listing. Compiling
these applications is straightforward, the compiler performs the application and
compiles the result in the same way that it compiles any other module.

The second mode considers those functors that are part of the interface to
the A+I context. In this case we must securely compile functors into run-time
constructs. As is dictated by the Secure ADT pattern we do not share these
run-time representations directly with the A+I context, but instead share them
(again) as indices into a table F that maps numbers to functors and their types.
As was the case previously, these numbers simply denumerate the requests made
by the A+I context for access to ModuleML functors. The marshalling functions

13

module F: functor (A : Sa) →
sig
type T
val fd: int → int
module F1: functor(X : S) →(sig
type U
val v1: Int
val vs: U
end)
module M1: (sig
val v1: T end)

end

F

Σ1

fd F1

Σ2

v1 vs

M1

Σ3

v1

Fig. 4: The secure compiler compiles the signature of F into a tree of unique stamps Σi,
that enable the functor entry points to identify their arguments.

Marshall
functor(Xi :S)→S′

o and Marshall
functor(Xi :S)→S′

i , where functor(Xi : S)→
S′ is the expected type of the functor, are thus implemented by extending the
table F and looking up an index in F and confirming the type respectively. Our
compilation scheme also provides a marshalling rule Marshall

functor (Xi :S)→S′

c

that converts structures of the A+I context.

Compiling run-time functors Functors are compiled into run-time constructs in a
manner similar to the way in which λ-terms are compiled to closures. The functor
body is compiled into a function that takes as its arguments a module and an
environment of module bindings and returns a new module that conforms to the
specification of the functor body. In addition to being compiled into a function,
every functor is also compiled into a tree structure of the accessible bindings,
assigning a unique stamp Σi to each non-leaf node (Figure 4). These stamps Σi
are used by the entry points for these bindings to authenticate its arguments.

The module that results from applying a run-time functor is stored as a
record that incorporates the resulting module as well as additional run-time
data. Additionally the record stores a stamp Σi, that identifies the functor that
produced it, a module binding environment e, which includes the argument to
the functor, and environment of abstract type identifiers et. The latter is required
to keep track of the abstract types that are created by functors that seal their
result, as they generate a new abstract type each time they are applied.

Functor application entry point To enable the low-level A+I context to apply
functors to modules in the same way that a ModuleML context can, we intro-
duce a functor application entry point into the protected memory that has type:
fappl : Sec[functor(Xi : S)→ S′]→ (Ins[S] ∨ Sec[S])→ Sec[S′]. The first argument
to this entry point is an index to the table F , the second argument m is a shared
module or a module defined by the A+I context. The entry point securely applies
the appropriate functor f with associated stamp Σf to the argument a, as long
as a conforms to the signature S, as follows.

14

1. Check the flag Lf . Abort if not set.
2. f = Marshall

functor(Xi :S)→S′

i (i).
3. Depending on the representation of m:

(a) If Ins[S]: a = MarshallSc(a)
(b) If Sec[S]: a = MarshallSi (a)

4. Apply f to a. Store the result in r.
5. Stamp r with Σf .
6. Return MarshallS

′

o (r).

Note that as specified in Section 3.3, the marshalling rules of 3(a) and 3(b)
perform the sub-typing check required by the functor application rule.

Functor entry points The secure compilation scheme outputs entry points that
enable the A+I context to gain access to the functor as well as interact with the
result of the functor application. The entry points to functor bindings that are
not embedded within another functor have a type: Mi : Sec[functor(Xi : S)→ S′]
and marshall out the associated functor through an index to a table F .

The entry points to the bindings of structures that are defined within the
body of a functor, differ from the previously detailed entry points for value,
structure and functor bindings in that they take an argument: an index i to
the tableM. As detailed in the previous paragraph, the functor application en-
try point marshalls out its result through the marshalling function MarshallSo ,
which, as explained in Section 3.3, stores the result into the structure requests
counting tableM. The implementations of these entry points extend the previ-
ously discussed entry point implementations in that their result is not statically
defined but depends on the structure associated with the input index i. The en-
try points will thus look up index i inM and check that the retrieved structure
is stamped with the correct stamp Σi, as follows.

1. d = MarshallSi (i).
2. Check that stamp of d = Σi. If not Abort.

To illustrate the necessity of this stamp check, we reconsider the example functor
F introduced at the beginning of this section. This functor is assigned the stamp
Σ1 (Figure 4) and each of its bindings F.fd, F.F1 and F.M1, check that the
structure associated with input index i is stamped by Σ1. If they did not do
so the A+I context could, for example, violate the typing rules of ModuleML by
passing a structure created using F to the bindings of the following functor Fb.

signature Sb = sig
type U
val v1: int → int
val vs: int
end

module Fb = functor (A : Sb) struct
type T = int
val fd y = (A.v1 y)
module F1 = functor(X:Sa)struct type U = int

val vs = 0; val v1 = A.vs end
module M1 = A : S_a
end : Sr

15

While both Fb and F produce a structure with signature Sr, the argument of Fb
conforms to the signature Sb not the signature Sa, which seals the binding vs
whereas Sb does not. Without the stamp checking mechanism the A+I context
could break the abstractions of ModuleML by passing a module produced by
applying F to the entry point for Fb.F1 as the implementation of Fb.F1 exposes
the value binding A.vs, as highlighted in gray in the listing for Fb.

The entry points for F.F1 and F.M1 stamp their result with a stamp Σ2

and Σ3 respectively. This further specialization of the stamps within the inner
modules is necessary to prevent similar attacks.

Marshall
functor(Xi :S)→S′

c Our compilation scheme enables the A+I context to
supply its own functors as arguments to the functor application entry point.
These foreign functors are marshalled into ModuleML functors by a function
Marshall

functor(Xi :S)→S′

c : Ins[functor(Xi : S)→ S′]→ (functor(Xi : S)→ S′),
that takes in a reference to an A+I function f and wraps that function into a
new function that performs the following steps, whenever the foreign functor is
applied to a ModuleML module M, within the securely compiled module.

1. a = MarshallSo(M)
2. Apply f to a. Store the result in r.
3. Return MarshallS

′

c (r)

4 Compiler Reflection

Denote the result of compiling the module M down to A+I as M↓. Compiler reflec-
tion is formally expressed as.

M1 ' M2 ⇒ M↓1 ' M↓2

It states that the equivalences of the modules M1 and M2 are preserved through
the secure compilation scheme in the A+I context. To prove this statement we
will prove the contra-positive: M↓1 6' M↓2 ⇒ M1 6' M2. This contra-positive can
be stated as: whenever an A+I context can distinguish between two compiled
modules, there exists a ModuleML context that can distinguish between the
original modules. As detailed in Section 2.2 we do not directly reason about
contextual equivalence for A+I programs but instead rely on trace equivalence.
As such we can redefine compiler reflection as follows.

Theorem 1 (Module Differentation). Any two ModuleML modules M1 and
M2 whose compilation results produce two different low-level traces γ1 and γ2 are
not contextually equivalent. Formally: Traces(M1↓) 6= Traces(M2

↓)⇒ M1 6' M2.

To prove the theorem we adopt the established proof technique [8,16] of develop-
ing an algorithm that given two ModuleML modules M1 and M2 and their differing

16

A+I traces γ1 and γ2 can produce a "witness" ModuleML context C that can
distinguish between M1 and M2 .

We have implemented exactly such a witness building algorithm in Ocaml3.
The algorithm analyses the labels of the low-level traces γ1 and γ2 that detail the
interactions between an unknown A+I context (it’s a black box) and the modules
M1 and M2. For the algorithm to be correct, it must detect the first two labels γ
in the traces that differ. Assuming the first differening labels are at position i,
the algorithm produces an ModuleML module that will replicate the first i − 1
labels of the traces and at the i-th step will diverge for M1 and terminate for M2,
distinguishing them as required. The resulting module must thus keep track of
the number of interactions it has with the unknown A+I context, which is done
through the use of the ModuleML locations. A full explanation of the inner
workings of the algorithm is provided in the accompanying technical report [10].

5 Implementation and Experimental Results

We have developped a compiler4. that compiles ModuleML modules using ei-
ther the secure compilation scheme detailed in this paper or through a naive
and insecure compilation scheme that features none of the security checks. The
compiler targets the Fides implementation of PMA [19]. Fides implements PMA
through use of a hypervisor that runs two virtual machines: one that handles the
secure memory module and one handles the outside memory. One consequence
of this architecture is that, as the low-level context interacts with the compiled
module, the Fides hypervisor will be forced to switch between the two virtual
machines for each call and callback between the context and the module.

The security checks described in this paper are only triggered when execution
crosses the boundary between protected and unprotected memory. As such we
benchmark five scenarios (included with the source code of the compiler) that
involve boundary crossings. In the first scenario (Value) the A+I context retrieves
a value binding by calling the appropriate entry point. In the second scenario
(Closure Application) the A+I context applies a secure closure to another secure
closure using the closure application entry point. In the third scenario (Callback)
the atacker applies a secure closure to a function of the A+I context. In the next
scenario (Functor Application) the A+I context applies a functor to a module of
the A+I context using the functor application entry point. In the final scenario
(Dynamic Value) the A+I context accesses the value binding of a structure that
results from applying a functor at run-time. We have timed the performance of
each of these five scenarios, as denoted in Table 1.

The tests were performed on a Dell Latitude with a 2.67 GHz Intel Core i5 and
4GB of DDR3 RAM. The difference between rows "Insecure" and "Insecure +
Fides" shows the high overhead of the Fides architecture. It is especially notable
in the call back and functor application scenarios which transition between the
protected and unprotected memory twice. The security checks of the functor
3 https://github.com/sylvarant/moduleml-witness-algorithm
4 https://github.com/sylvarant/secure-ml-compiler

17

Insecure Insecure + Fides Secure + Fides
Value Binding 0.18µs 17.59µs 17.86µs
Closure Application 0.32µs 17.68 µs 18.09µs
Callback 0.31µs 36.59µs 36.97µs
Functor Application 0.57µs 37.14µs 106.50µs
Dynamic Value Binding 0.26µs 17.73µs 18.41µs

Table 1: The average execution time for each test scenario.

application scenario have by far the biggest performance impact. This is due
to the fact that this scenario involves both the dynamic type checking of the
structure input by the A+I context as well as the creation of a new module,
two computationally intensive operations. The additional performance impact
of the security checks in the other scenarios is small, peaking at about 4% when
securing the value binding of a dynamically obtained structure.

6 Related Work

Secure (fully abstract) compilation was first introduced by Abadi [1] as a criti-
cism of the way in which Java was translated into the Java bytecode language.
Secure compilation schemes have since been introduced for many different source
language and target languages. Closely related to this work is the secure compi-
lation scheme for ML to JavaScript by Fournet et al. [5]. Their definition of ML,
however, does not feature a module system. Their Javascript attacker model is
also more high-level than our untyped assembly contexts with low-level code
execution privileges. Another related compilation scheme is the secure compi-
lation scheme for the λµhashref-calculus to a machine model with adress space
layout randomisation by Jagadeesan et al. [7]. Like the ModuleML used in this
work the λµhashref-calculus features dynamic memory allocation. In contrast to
ModuleML, locations in λµhashref are observable through a hash operation. The
attacker model differs as well. Whereas the attacker in this work is unable to
read the memory of the securely compiled program, due to the PMA mechanism,
the attacker considered by Jagadeesan et al. can probe the memory.

Verified compilation, is a broad research topic that aims to provide compil-
ers that are proven to be correct [2,12]. The resulting compilers thus come with
proofs for the preservation property that we have assumed (Section 1). Many
established verified compilation results hold only for closed world assumptions,
but recently, verified compilers have appeared for partial programs as well. Re-
lated to this work is a verified compositional compiler for an ML language, that
features references and recursive types, to assembly by Hur and Dreyer [6]. Their
compiler preserves the equivalences of ML programs for well-behaved assembly
contexts, but does not consider the threats posed by possibly malicious contexts.

Throughout the secure compilation scheme we make use of our previously
developed interaction counting masking system [9] to securely share the values
of security relevant abstractions. Alternatively, we could have applied the sealing
mechanism of Matthews et al. [14], to achieve the same result.

18

7 Conclusions

This paper presented a secure compiler for ModuleML: a light-weight ML lan-
guage with higher-order functions, references and a module system. This secure
compilation scheme compiles ModuleML to untyped assembly code enhanced
with a memory isolation mechanism, known as the Protected Module Architec-
ture, in a way that reflects the equivalences of ModuleML. This security property
is proven through the implementation of a witness building algorithm.

References

1. M. Abadi. Protection in programming-language translations. In Secure Internet
programming, pages 19–34. Springer-Verlag, London, UK, 1999.

2. A. Chlipala. A certified type-preserving compiler from lambda calculus to assembly
language. In PLDI ’07, pages 54–65, New York, NY, USA, 2007. ACM.

3. P. Codognet and D. Diaz. wamcc: Compiling Prolog to C. In ICLP, pages 317–331.
MIT PRess, 1995.

4. D. Dreyer. Understanding and Evolving the ML Module System. PhD thesis,
Carnegie Mellon, May 2005.

5. C. Fournet, N. Swamy, J. Chen, P.-E. Dagand, P.-Y. Strub, and B. Livshits. Fully
abstract compilation to javascript. In POPL, pages 371–384, 2013.

6. C.-K. Hur and D. Dreyer. A kripke logical relation between ml and assembly. In
POPL ’11, pages 133–146. ACM, 2011.

7. R. Jagadeesan, C. Pitcher, J. Rathke, and J. Riely. Local memory via layout
randomization. In CSF ’11, pages 161–174. IEEE, 2011.

8. A. Jeffrey and J. Rathke. A fully abstract may testing semantics for concurrent
objects. Theor. Comput. Sci., 338(1-3):17–63, 2005.

9. A. Larmuseau and D. Clarke. Formalizing a secure foreign function interface. In
SEFM 2015, LNCS. To appear, currently at: https://db.tt/y87tcQ0V.

10. A. Larmuseau, M. Patrignani, and D. Clarke. A secure compiler for ml modules -
extended version. Technical Report 2015-028, Uppsala University, September 2015.

11. X. Leroy. Manifest types, modules, and separate compilation. In POPL ’94, pages
109–122, New York, NY, USA, 1994. ACM.

12. X. Leroy. Formal verification of a realistic compiler. CACM, 52(7):107–115, 2009.
13. X. Leroy, D. Doligez, J. Garrigue, D. Rémy, and J. Vôuillon. The Objective Caml

system, release 4.02. Technical report, INRIA, August 2014.
14. J. Matthews and A. Ahmed. Parametric polymorphism through run-time sealing

or, theorems for low, low prices! In ESOP 2008, pages 16–31, 2008.
15. F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi, V. Shanbhogue,

and U. R. Savagaonkar. Innovative instructions and software model for isolated
execution. In HASP ’13. ACM, 2013.

16. M. Patrignani, P. Agten, R. Strackx, B. Jacobs, D. Clarke, and F. Piessens. Secure
compilation to protected module architectures. TOPLAS, 37(2):6:1–6:50, 2015.

17. M. Patrignani and D. Clarke. Fully Abstract Trace Semantics of Low-level Isolation
Mechanisms. In SAC ’14, pages 1562–1569. ACM, 2014.

18. C. Queinnec. Lisp in small pieces. Cambridge University Press, 2003.
19. R. Strackx and F. Piessens. Fides: Selectively hardening software application com-

ponents against kernel-level or process-level malware. In CCS, pages 2–13, 2012.

19

