
Formal Verification of Combined Spectre Attacks
Xaver Fabian1 Koby Chan2 Marco Guarnieri3 Marco Patrignani1

1CISPA Helmholz Center for Information Security 2Stanford 3Imdea Software Institute

Speculative execution allows CPUs to improve performance
by using prediction mechanisms that predict the outcome
of branching and other instructions without waiting for the
correct result. When the prediction is wrong, the CPU rolls
back the effects of the speculatively-executed instructions on
the architectural state (i.e., memory, registers). However, the
side effects on the microarchitectural state, which includes
the cache and buffers, are not rolled back and thus can
leak possible confidential data that was speculatively accessed
(Listing 1). Spectre attacks [1–4] demonstrate that most mod-
ern CPUs are affected by this speculation-based vulnerability.

1 if (y < size_A)
2 x = A[y];
3 temp &= B[x * 512];

Listing 1: Standard SPECTRE V1 example. For y >=
size_A, A[y] can be speculatively read and is leaked into
the cache via an access to array B.

The scientific community came up with different tools to
verify that a program is resistant against Spectre attacks. One
branch of these solutions focuses on operational semantics to
build program verification tools. However, these verification
tools concentrate on specific Spectre variants in isolation,
while in practice, processors are using different prediction
mechanisms in combination at the same time. Unfortunately,
there is no way to verify the absence of Spectre attacks that
use multiple predictors at the same time. Furthermore, to
scale the verification of such combined Spectre attacks, it
is desirable to compose existing solutions together into the
combined approach, instead of devising ad-hoc semantics (and
tools) for specific variants. A combined approach would allow
maximising the reuse of the verification (and proofs) of the
already existing solution for the verification (and proofs) of
the new combined attacks.

In addition, there are not many semantics for verification
of programs vulnerable to Spectre variants different from
SPECTRE V1. For example, one of the Spectre attacks we
want to focus on is SPECTRE V4 [4], because it abuses
a different prediction mechanism. SPECTRE V4 exploits the
prediction mechanism behind store-to-load forwarding. To
gain speedup, modern processors employ a store queue and
they will put store instructions into the store queue until they
are committed to the main memory. When a load instruction
is executed, the processor will look first in the store queue
for a matching store. This lookup can be slow, so the CPU
employs a memory disambiguation predictor that guesses if the

address of the load matches with the address of the store.
In Listing 2, a misprediction for the load instruction in Line 3
causes it to take its value from the stale store instruction in
Line 1. The speculative access of the memory is then leaked
into the microarchitectural state by the array access into B.

1 p = &secret;
2 p = &public;
3 temp = B[*p * 512];

Listing 2: SPECTRE V4 example.

Now with SPECTRE V4, we can give an example of a novel
attack (Listing 3) that exploits the prediction mechanisms
behind SPECTRE V1 and SPECTRE V4 combined.

1 x = 0;
2 p = &secret;
3 p = &public;
4 if (x != 0)
5 temp &= A[*p];

Listing 3: Combining Spectre v1 and v4. Misprediction of
the branching instruction in Line 4 and the missed matching
store in Line 3 for the load of p in Line 5, leads to leaking
the secret value into the cache in Line 5.

In this paper, we propose two new semantics: one for
SPECTRE V4 and one for a combination of SPECTRE V1 and
SPECTRE V4. Then, we extend the SPECTRE V1 verification
tool SPECTECTOR [5] with our new semantics.

We exploit properties of the semantics of SPECTRE V1 and
SPECTRE V4 to merge them into a new combined semantics
we call SPECTRE V14. This combined semantics detects the
vulnerability in Listing 3 and we prove that (1) the combined
semantics is strictly stronger than its parts and (2) that we can
recover the analysis of the parts from the combined semantics.
In addition, we provide insights into how countermeasure
against one Spectre variant affects the vulnerabilities relying
on multiple Spectre variants.

We validate our extension of SPECTECTOR on a benchmark
for SPECTRE V4 proposed by Daniel et al. [6] while for the
combined V14 semantics, we use our novel code snippets.

For the future, we want to create a semantics for SPECTRE
V5 to investigate how our compositional approach scales to
new versions such as V15, V45 and V145.

I. SEMANTICS FOUNDATIONS

We build on the semantics for SPECTRE V1 in Guarnieri
et al. [5] and devise an always mispredict semantics to model

v4 speculation. The model similarities make it easier to com-
bine the existing v1 semantics with the new v4 one into v14.
Additionally, the always mispredict semantics is deterministic,
which makes for efficient verification.

We formalise our semantics for a µASM language with
the expected assembly-like instructions. Its operational non-
speculative semantics makes a program p with configurations
σ (which consists of the memory and the register assignments)
step while producing observable actions τ (reads, writes, pc
locations). This semantics is denoted with p, σ τ−→ p, σ′.

The states of our v4 semantics are Φ4, i.e., stacks of spec-
ulative instances Φ4, where the topmost instance of the state
is used to execute the instruction. States are stacks because
speculation pushes a new state on top of the stack, which
is popped when speculation ends. Each instance contains
the program p, a counter ctr that uniquely identifies the
speculation instance, a configuration σ, and the speculation
window ω, describing the amount of instructions possible
during speculation. Speculation is modeled by mispredicting
every store instruction, i.e., it is skipped (Rule AM-Store).

V4 semantics judgement: Φ4

τ

4 Φ
′
4

(AM-Store)

p(σ(pc)) = store x, e (p, σ)
τ−→ (p, σ′) j = min(ω, n)

σ′′ = σ[pc 7→ σ(pc) + 1] τ ′ = τ · skip ctr · start ctr

〈p, ctr , σ, n+ 1〉
τ ′

4 〈p, ctr , σ′, n〉 · 〈p, ctr + 1, σ′′, j〉

The rule pushes a new instance with configuration σ′′,
that skips the store instruction: this models speculatively
skipping a store, because it models the effect of the memory
disambiguator mispredicting the matching address between
this store instruction and future load instructions, which
results in loading stale values. When speculation ends, the in-
stance used for speculation is popped and execution continues
with the old instance σ′, which is calculated according to the
non-speculative semantics. The behaviour of a program p is:

Beh4(p) = {τ | ∀σ ∈ InitConf . (p, σ)
τ

4 }

where, with a slight abuse of notation, (p, σ)
τ

4 indicates
the execution of program p until completion, while generating
the trace τ (i.e., a list of observable actions).

To create the combined semantics v14, we define its states
as the union of the states of the SPECTRE V1 and SPECTRE V4
semantics. We extend our trace model with tags t = {v1 , v4}
for the start id t and rollback id t observations to mark the
origin of the speculative transaction they were generated from.

We define projection functions �4 : Φ14 → Φ4 and
�1 : Φ14 → Φ1 that extract the corresponding state from the
combined state. We overload them to work on traces as well:

ε�4 = ε (τ · τ)�4 = τ · (τ)�4

startv1 id · · · · rollbackv1 id · τ�4 = τ�4

The projection on traces deletes all speculative transactions
(marked by start id and rollback id) that are not generated
by the corresponding semantics that we project to.

The rules of the combined semantics (Rule AM-v1-step,
AM-v4-step) use the projection functions to extract the corre-
sponding state and delegate to the semantics of 1 and 4

to make a step. This delegation allows us to reuse proofs about
1 and 4 in the proofs for the combined semantics.

V14 semantics judgement: Φ14

τ

14 Φ
′
14

(AM-v4-step)

Φ14�4
τ

4 Φ
′
14�

4

Φ14

τ

14 Φ
′
14

(AM-v1-step)

Φ14�1
τ

1 Φ
′
14�

1

Φ14

τ

14 Φ
′
14

We note that the combined V14 semantics is technically not
deterministic, but is confluent for single steps. We now have
everything to relate the combined v14 semantics to its parts:

Theorem 1. Let p be a program and ω be a speculation
window. Then Beh4(p) = Beh14(p)�4.

Theorem 2. Let p be a program and ω be a speculation
window. Then Beh1(p) = Beh14(p)�1.

We use Speculative Non-Interference (SNI [5]) as the secu-
rity condition to show security of programs, and we prove that
SNI of the combined semantics implies SNI of the individual
ones. Note that the inverse is not true, SNI of the individual
semantics (V1 and V4) does not imply SNI of the combined
ones (v14). An example is our snippet Listing 3, which is SNI
under SPECTRE V1 and SPECTRE V4 in isolation, but is not
SNI (and it is not secure) under SPECTRE V14.

II. IMPLEMENTATION

We implemented our semantics in SPECTECTOR by
Guarnieri et al. [5] and validated our extension on the test
suite for SPECTRE V4 by Daniel et al. [6] (Table I).

Test case Correct

case01 (-) X
case02 (-) X
case03 (+) X
case04 (-) X
case05 (-) X
case06 (-) X
case07 (-) X
case08 (-) X
case09* (+) X
case10 (-) X
case11 (-) X
case12 (+) X
case131 (-) X

Listing 3 (-) X

TABLE I: Result of the lit-
mus test cases for SPECTRE
V4. The expected results are
SAFE (+) or UNSAFE (-) w.r.t
SPECTRE V4. A Xrepresents
that our tool correctly clas-
sifies the test case. The *
represents that the speculation
window ω was reduced, be-
cause of state explosion. For
the combined attacks, there
are no existing benchmarks
we can use. That is why we
analyse our snippet with the
combined v14 semantics (last
row).

The results show that our semantics correctly classifies all
the test cases.

1Following the discussion of https://github.com/binsec/haunted bench/
issues/2 and Ponce-de León and Kinder [7] approach, we marked this test
case as unsafe, because we assume all initial values to be secret

https://github.com/binsec/haunted_bench/issues/2
https://github.com/binsec/haunted_bench/issues/2

REFERENCES

[1] P. Kocher, J. Horn, A. Fogh, , D. Genkin, D. Gruss,
W. Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher,
M. Schwarz, and Y. Yarom, “Spectre attacks: Exploiting
speculative execution,” in 40th IEEE Symposium on Secu-
rity and Privacy (S&P’19), 2019.

[2] G. Maisuradze and C. Rossow, “Ret2spec: Speculative
execution using return stack buffers,” in Proceedings of
the 2018 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’18. New York, NY,
USA: Association for Computing Machinery, 2018, p.
2109–2122. [Online]. Available: https://doi.org/10.1145/
3243734.3243761

[3] E. M. Koruyeh, K. N. Khasawneh, C. Song, and
N. Abu-Ghazaleh, “Spectre returns! speculation attacks
using the return stack buffer,” in 12th USENIX
Workshop on Offensive Technologies (WOOT 18).
Baltimore, MD: USENIX Association, Aug. 2018.
[Online]. Available: https://www.usenix.org/conference/
woot18/presentation/koruyeh

[4] J. Horn, “Speculative execution, variant 4: Speculative
store bypass,” https://bugs.chromium.org/p/project-zero/
issues/detail?id=1528, 2018, accessed: 2021-04-11.

[5] M. Guarnieri, B. Köpf, J. F. Morales, J. Reineke, and
A. Sánchez, “Spectector: Principled detection of specu-
lative information flows,” in 2020 IEEE Symposium on
Security and Privacy (SP), 2020, pp. 1–19.

[6] L. Daniel, S. Bardin, and T. Rezk, “Hunting the
haunter - efficient relational symbolic execution
for spectre with haunted relse,” in 28th
Annual Network and Distributed System Security
Symposium, NDSS 2021, virtually, February 21-
25, 2021. The Internet Society, 2021. [Online].
Available: https://www.ndss-symposium.org/ndss-paper/
hunting-the-haunter-efficient-relational-symbolic-execution-for-spectre-with-haunted-relse/

[7] H. Ponce-de León and J. Kinder, “Cats vs. spectre: An
axiomatic approach to modeling speculative execution
attacks,” 2021.

https://doi.org/10.1145/3243734.3243761
https://doi.org/10.1145/3243734.3243761
https://www.usenix.org/conference/woot18/presentation/koruyeh
https://www.usenix.org/conference/woot18/presentation/koruyeh
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://www.ndss-symposium.org/ndss-paper/hunting-the-haunter-efficient-relational-symbolic-execution-for-spectre-with-haunted-relse/
https://www.ndss-symposium.org/ndss-paper/hunting-the-haunter-efficient-relational-symbolic-execution-for-spectre-with-haunted-relse/

	Semantics Foundations
	Implementation

