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The formal calculus System F models the essence of polymorphism and abstract data types, features that exist

in many programming languages. The calculus’ core property is parametricity: a theorem expressing the

language’s abstractions and validating important principles like information hiding and modularity.

When System F is combined with features like recursive types, mutable state, continuations or exceptions,

the formulation of parametricity needs to be adapted to follow suit, for example using techniques like step-

indexing, Kripke world-indexing or biorthogonality. However, it is less clear how this formulation should

change when System F is combined with untyped languages, gradual types, dynamic sealing and runtime

type analysis (typecase) alongside type generation. Extensions of System F with these features have been

proven to satisfy forms of parametricity (with Kripke worlds carrying semantic interpretations of types).

However, the relative power of the modified formulations of parametricity with respect to others and the

relative expressiveness of System F with and without these extensions are unknown.

In this paper, we explain that the aforementioned different settings have a common characteristic: they do

not enforce or preserve the lexical scope of System F’s type variables. Formally, this results in the existence

of a universal type (note: this is not the same as a universally-quantified type). We explain why standard

parametricity is incompatible with such a type and how type worlds resolve this. Building on these insights,

we answer two open conjectures from the literature, negatively, and we point out a deficiency in current

proposals for combining System F with gradual types.
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1 INTRODUCTION
System F is a widely influential type system, originally defined by Reynolds [1974] and Girard

[1972], featuring parametric polymorphism and an impredicative universe. The core property

of System F is parametricity. Parametricity guarantees that polymorphic functions in System F

cannot behave differently when invoked at different types. Parametricity is formalised using a

logical relation (LR): an (often relational) property about values and terms, derived from their

type [Reynolds 1983]. A Fundamental Theorem of Logical Relations or Abstraction Theorem then

states that the LR properties are automatically satisfied by any term, without the need to verify

their code. For this reason, Wadler [1989] has described them as free theorems. A canonical example

is the fact that any value of type ∀X.X→X must behave as the identity function.

It is well known that the formulation of parametricity must be adapted when language features

are added to System F. For example, consider a value f of type ∀X.X→X. In vanilla System F,

it must behave as the identity function, i.e., return its argument in every invocation. If we add

general recursion, then there is another possibility: f can also be the function that diverges on

every invocation. Adding mutable state changes the situation again: it is now possible for f to

return its argument in some invocations and to diverge in others, even though the choice can still

not depend on the argument. If we add continuations, then it may be possible for f to return more

than once, but still: on every return, the return value must be the one it received as an argument.

These behavioural differences are reflected in the different definition of the logical relation used

to formalize parametricity. Thus, formulations of parametricity using logical relations capture

semantic guarantees about the language as a whole.
1

In many cases (like the addition of state mentioned above), it is well understood that a particular

change in the formulation of parametricity introduces changes both in the set of equivalences it

implies as well as in the logical relation used to state it (see e.g., [Dreyer et al. 2010]). However, there

are also cases where a certain formulation of parametricity is motivated by technical considerations,

but it is not clear what effects this change has on equivalence reasoning and whether the change

could have been somehow avoided. Specifically, in this paper, we look at the work by Sumii

and Pierce [2003] on logical relations for encryption, the work by Neis et al. [2009, 2011] on

parametricity in the presence of a dynamic type inspection primitive and runtime type generation,

and the work by Ahmed et al. [2017], Toro et al. [2019], and New et al. [2019a] on parametricity

in gradually-typed variants of System F. Although they work in different contexts, these authors

prove (a form of) parametricity with a logical relation indexed by System F types (or a superset of

these types), with the exception of Sumii and Pierce who index with simple types for cryptographic

primitives. Additionally, the logical relation used by all these parametricity results (including Sumii

and Pierce’s) follow a particular pattern: they are indexed by a type world. For this reason, we refer
to these LRs as type-world logical relations (TWLRs). TWLRs should not be regarded as a clearly

delineated subclass of logical relations, but rather as a design pattern that can be applied and varied

upon in the design of a logical relation.

The type worlds in TWLRs are a form of Kripke worlds: they capture a set of assumptions with

respect to which the logical relation holds (or does not hold). There is also an order relation on

worlds that expresses when one world (a “future world”) represents a stronger set of assumptions

1
In this paper we strive to reserve the term parametricity for the informal property that polymorphic functions must

preserve relatedness of values of parametric types, following Strachey’s [Strachey 2000] and Reynolds’ [Reynolds 1983] use

of the term. However, it is sometimes hard to formally draw the line between this restricted interpretation of parametricity

and other properties (like purity or forms of type safety) that happen to be formulated together with the intuitive notion of

parametricity in the Fundamental Theorem of Logical Relations for a specific logical relation. We will refer to this formal

theorem as “a formulation of parametricity”. Because the line between (informal) parametricity and a formal formulation of

it is not very clear, we are not always very strict about this distinction.
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Two Parametricities versus Three Universal Types 0:3

than another and whenever the logical relation holds with respect to a world, it automatically also

holds for future worlds. While traditional logical relations (e.g., Dreyer et al. [2011b]; Reynolds

[1983]) keep track of semantic interpretations for type variables in a type environment (as we

discuss later in Section 2.3), the logical relations used by Ahmed et al.; Neis et al.; New et al.;

Sumii and Pierce; Toro et al. carry semantic interpretations for dynamically-allocated opaque

type variables or seals in the Kripke world. Additionally, instantiating polymorphic functions (or

allocating fresh seals in the case of Sumii and Pierce [2003]) results in terms that are only related

in a world that stores the relation between the applied types as the type interpretation for the

instantiated type (or seal).

So why is the same kind of TWLR used in these three different domains? In this paper, we suggest

this is because they are used in settings where the lexical scope of type variables is not enforced.

Thus, in types like ∀X.X → A (with X not free in A), it is possible for values of type X to escape

from their scope, be stored as values of a type that does not mention X (such as A) and somehow

be recovered from there as a value of type X again.

Instead of TWLRs, other work that predates TWLRs used logical relations that enforced such

lexical scoping, similar to Reynolds’ original formulation [Reynolds 1983]. Thus, we refer to these

traditional logical relations as Reynolds-style logical relations (RLRs).

Although some of our insights might appear obvious, the importance of understanding the

pattern of type-world logical relations can be seen in the literature, in two ways. First, if we look

at the history of one of the aforementioned results [Ahmed et al. 2017], then we see that an RLR

was actually used in a precursor of the work [Matthews and Ahmed 2008]. However, a flaw was

later discovered in this proof [Ahmed et al. 2017]. Few details are available about this flaw, but our

results make it clear that the RLR could not possibly have been compatible with the language’s

non-lexically scoped type variables, i.e., the theorem was wrong, not just the proof. The flaw was

resolved by the authors in an unpublished draft by moving to a TWLR [Ahmed et al. 2011c] and

the whole effort culminated in the mature TWLR of Ahmed et al. [2017].

A second consequence is that researchers had wrong expectations of how program equivalence

changes when not enforcing lexical scope of type variables in extensions of System F. Concretely, our

insights allow us to disprove two long-standing conjectures made by experts in published literature.

These conjectures are respectively related to secure compilation of System F using dynamic sealing

(read, idealised encryption) and to the enforcement of parametricity in the presence of dynamic type

analysis and runtime type generation. Additionally, we also identify a concern in the interaction
between gradually typed languages and polymorphic types. Let us take a closer look at these three

topics.

Secure compilation. The field of secure compilation studies high-level programming languages

that are compiled to low-level target languages where they may interact with untrusted target-level

components. The goal of secure compilation is to ensure that those target-level components can only

interact with the compiled code in ways that high-level components can interact with the original

code. This constitutes a powerful security property, as it effectively excludes a wide variety of

low-level attacks like improper stack manipulation, breaking control flow guarantees, reading from

or writing to private memory of other components, inspecting or modifying the implementation of

a function etc.

Formally, secure compilation has been expressed as full abstraction: given two source-level

contextually equivalent programs, their target-level compilation are also contextually equivalent

(and vice versa) [Abadi 1998].
2
Compiler full abstraction has been proven for compilers that rely

2
Other formal characterisations of secure compilation have been proposed more recently [Abate et al. 2018, 2019; Patrignani

and Garg 2017, 2019]. We discuss their relation to our work in Section 9.
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0:4 Dominique Devriese, Marco Patrignani, and Frank Piessens

on address-space layout randomisation [Abadi and Plotkin 2012; Jagadeesan et al. 2011], or secure

enclaves [Agten et al. 2012; Larmuseau et al. 2015, 2016; Patrignani et al. 2015, 2016], tagged

architectures [Juglaret et al. 2015, 2016], dynamic type checking in JavaScript [Fournet et al. 2013],

typed closure conversion [Ahmed and Blume 2008], cryptographic primitives [Abadi et al. 1998,

1999, 2000; Bugliesi and Giunti 2007] etc, we refer the interested reader to the survey of Patrignani

et al. [2019].

In a paper from the year 2000, Pierce and Sumii [2000] proposed a compiler from System F to a

cryptographic lambda calculus, which enforces parametricity using a form of idealised encryption

primitives (sealing) called lambda-seal (𝜆𝜎 ). They conjectured that this compiler was fully abstract,

owing part of the complexity of such a proof to the target language being more expressive than the

source. Their conjecture has received further research attention, but remains open to this day [Siek

and Wadler 2016; Sumii and Pierce 2004]. In other work, the same authors proposed a TWLR for

the cryptographic lambda calculus [Sumii and Pierce 2003].

Non-parametric parametricity. Some programming languages include away to perform intensional
type analysis through a type cast operator [Abadi et al. 1995; Rossberg 2003]. This appears to be in

direct conflict with parametric polymorphism, possibly violating parametricity and representation

independence guarantees [Mitchell 1986]. Researchers have proposed runtime type generation as

a way to regain parametricity for languages with a type cast operator. Ideally, when an abstract

type is defined, a fresh type name should also be generated at runtime. Such a name should then be

used as a runtime representative of the abstract type for type analysis purposes.

Runtime type generation has been proven to indeed provide parametricity guarantees for System F

terms that interact with terms that can perform type casts [Neis et al. 2009]. This guarantee has

been dubbed non-parametric parametricity.
Neis et al. [2009] also conjectured that their way of using runtime type generation preserves any

System F abstraction in their type cast language. Although they do not explain the reasons behind

this conjecture, we have an idea of the intuition behind it. Parametricity is the most powerful

abstraction programmers think that System F has, so it seems logical to believe that once that

has been preserved, all other abstractions will follow. These authors also use a TWLR for stating

parametricity in their system, and our results let us conclude that their version is weaker than the

parametricity one states with RLR.

Gradual typing. The final fieldwherewe contribute new insight is gradual typing. In order to allow

programmers to incrementally migrate large, untyped code bases to a typed programming language,

gradual programming languages allow for typed and untyped code to interact. Such languages

generally strive to preserve the benefits of the statically-typed components of an application, even

when interacting with untyped components. Such benefits include performance benefits, absence

of runtime type errors but also benefits for reasoning [de Amorim et al. 2020; New et al. 2019b;

Toro et al. 2018]. While the literature mentions several ways to formalise the former two properties,

the latter has received less attention.

Based on a suggestion in the conference version of this paper [Devriese et al. 2018], Jacobs et al.

[2021] have recently proposed to formally express that a gradual language preserves the reasoning

principles of the typed language by reusing the same notion of fully abstract compilation that we

mentioned above. Specifically, if the embedding of the typed language into the gradual language
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Two Parametricities versus Three Universal Types 0:5

is fully abstract, then similarly to secure compilation, this expresses that untyped code can only

interact with typed code in ways that are also possible using just typed code.
3

Also in the field of gradual typing, System F’s parametric polymorphism presents a formidable

challenge. The observation that sealing could be useful to combine parametric polymorphism with

dynamic typing was already made by Pierce and Sumii [2000]. This idea was further developed

with the definition of a gradually-typed language based on this idea [Ahmed et al. 2011c; Matthews

and Ahmed 2008], the addition of blame in the polymorphic blame calculus [Ahmed et al. 2011b],

further developed by Igarashi et al. [2017], Ahmed et al. [2017], Toro et al. [2019] and New et al.

[2019a]. The latter two papers also formulate parametricity using a TWLR in the polymorphic

blame calculus. In these cases it is also unclear what are the benefits of relying on TWLRs has as

opposed to relying on RLR.

Three questions, one answer. To answer these questions, we have to define non-lexical scoping of

type variables. Our best formal characterisation is based on the existence of what we call a universal
type.4 A universal type is a type which any other type can be embedded into and extracted from.

Thus, by this definition, the term universal type is broader than Abadi et al. [1991]’s dynamic type
or Siek and Taha [2006]’s gradual type: the former includes any type that arbitrary values can

be embedded into and extracted from, while the latter are specific primitive types, specifically

intended for representing untyped values in a typed language.
5
We point out that enforcing the

lexical scope of type variables forbids the existence of a universal type such as the following one:

Univ def
= ∃Y.∀X. (X→Y)×(Y→X)

Type Univ expresses the existence of a universal type Y such that for any other type X, there is

a mapping from X into Y and vice versa. In a non-terminating variant of System F, there exist

inhabitants of Univ, but we prove that they are all degenerate in the sense that mapping a value

into the universal type and back must necessarily diverge. Our key finding is that this degeneracy

can be proven using RLRs (and this illustrates the incompatibility of RLRs with universal types)

but it cannot be proven using TWLRs.

Thus, by clarifying the subtleties of TWLRs and RLRs, we solve these aforementioned open

problems and answer these questions negatively. Concretely, we prove that Sumii and Pierce’s

compiler is not fully abstract, and that System F does not embed fully abstractly into either Neis

et al.’s language with a type cast, or any of the published polymorphic blame calculi.

More in detail, Sumii and Pierce’s compiler fails to enforce this degeneracy of Univ. In fact,

their target language really does contain a universal type: since it is untyped we can think about

it as being “uni-typed”, citing Dana Scott [Statman 1991]. As a consequence, their fully abstract

compilation conjecture is false, as we will formally show by constructing two System F terms tu
and t𝝎 whose contextual equivalence relies on the degeneracy of Univ. We can then falsify Sumii

and Pierce’s conjecture by showing that these two terms are mapped to non-equivalent terms by

their proposed compiler.

In Neis et al.’s language with non-parametric parametricity, we show that type cast operators

also break the degeneracy of Univ, despite the presence of runtime type generation primitives.

3
This is related to the notion that fully abstract compilation can also be used to reason about language expressiveness in

general, beyond just language security (which is what is done in the case of secure compilation) [Felleisen 1991; Mitchell

1993; Parrow 2008].

4
This seems to imply non-lexical scoping of type variables, so it suffices for our results. Ultimately, we think that the

non-lexical scope of type variables is the more fundamental characteristic of the systems we are interested in.

5
The term universal type was introduced by Longley [2003] based on a similarity to universal objects in category theory and

related terms have been used in the literature [New et al. 2016a]. As mentioned before, the term universal type should be

clearly distinguished from universally-quantified types, i.e., types of the form ∀𝑋 . 𝜏 .
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0:6 Dominique Devriese, Marco Patrignani, and Frank Piessens

The type ∀Z. Z, which is normally only inhabited by diverging terms, becomes a universal type in

the presence of a dynamic type cast, as any value can be embedded in it and extracted from it. By

relying on this type, System F does not embed fully abstractly into this language, contradicting

Neis et al.’s conjecture.

Finally, in the field of gradual typing, we demonstrate that existing polymorphic blame calculi

also break the degeneracy of Univ.6 Like Sumii and Pierce’s target language, they also provide

a universal type: the type of untyped values ★, common to most gradual languages (also often

indicated as ?). Exploiting the existence of this type, we demonstrate that the polymorphic blame

calculus does not embed System F in a fully abstract way and as a result, they do not preserve

System F’s parametricity.

To close, we discuss a number of consequences and perspectives that follow from our results.

First, we discuss some thoughts on how Sumii and Pierce’s compiler might be fixed (so that it does

enforce full abstraction), and what could be modified in the polymorphic blame calculus to make it

preserve all of System F’s contextual equivalences. However, in neither case there appears to be

a panacea solution: potential fixes all seem to come with certain downsides. Because of this, we

also discuss whether we should not instead adjust our expectations and find a way to formalise the

guarantees that we do get from both Sumii and Pierce’s compiler, Neis et al.’s sealing wrappers and

the polymorphic blame calculus.

Outline. We start our discussion by repeating the definition of System F and defining two logical

relations for it (an RLR and a TWLR), which we will use in subsequent proofs (Section 2). Then

we present type Univ and two key terms: tu and t𝝎 , and we discuss their contextual equivalence

(Section 3). We then prove that Univ is degenerate and that these terms are contextually equivalent

using the previously-defined logical relations (Section 4). Next, we present Sumii and Pierce’s

compiler and disprove their conjecture by explaining how it treats t𝝎 and tu and fails to preserve

their equivalence (Section 5). We then present G, an extension of System F with type casts and

runtime type generation and demonstrate how embedding tu and t𝝎 into G breaks contextual

equivalence (Section 6). Next, we turn to gradual typing, introducing polymorphic blame calculi

and demonstrating how the contextual equivalence of tu and t𝝎 is also lost in the presence of these

calculi’s universal type (Section 7). Finally, we discuss perspectives and consequences of our results

(Section 8), related work (Section 9) and we conclude (Section 10). We omit only few auxiliary

lemmas, their proofs and tedious, long reductions used in the main proofs, all of this can be found

in the supplementary material.

Relation with the Previous Version. This paper extends a paper by the same authors that was

published at POPL 2018 [Devriese et al. 2018]. In this version, the main changes include (1) a more

detailed analysis of the type Univ and how its degeneracy varies in the presence of effects and

value polymorphism (2) a presentation of a Reynolds-style or lexically-scoped (Section 2.3), Kripke

(Section 2.4) and type-world logical relation (Section 2.5), (3) a more elegant proof of the degeneracy

of Univ ( Section 4), (4) a detailed analysis of the relation between the different logical relations,

non-lexically-scoped type variables and degeneracy of the universal type (Section 4.2), and (5) the

disproval of the conjecture by Neis et al. [2011] in Section 6.

2 SYSTEM F
We now consider System F itself (Section 2.1), the standard formulation of parametricity for it

(Section 2.2) and the different kinds of logical relations for it: Reynolds-style or lexically-scoped

6
Unlike the previous two, this was not an existing conjecture we debunk.
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(Section 2.3) and type-world (Section 2.5). To introduce type-world logical relations, we first explain

their more general variant: Kripke logical relations (Section 2.4)

Note on divergence and recursive types. Technically, the language we should be using is System F

with recursive types since that is the language considered by the conjectures we examine [Pierce

and Sumii 2000]. We choose against including recursive types in our technical development since

their presence is not central to our argument for disproving existing conjectures. Recursive types

are required only insofar as System F is allowed some way to diverge. Fortunately, there are simpler

ways to allow a language to diverge, as for example the addition of a diverging term (a solution

also proposed by Pierce and Sumii [2000] and that we also adopt). Moreover, well-founded logical

relations for languages with recursive types require step indices, and the addition of steps makes

the technical development noisy without adding particular insights. Thus, in this paper we remove

recursive types from System F and instead add a diverging term 𝝎.

2.1 The Source Language 𝜆F

Figure 1 presents the variant of System F that we will be using in this paper, which we indicate

with 𝜆F
. In addition to standard polymorphic functions (∀X.𝝉 ) and existential packages (∃X.𝝉 ),

the variant includes Unit and Bool and product 𝝉1×𝝉2 types. In the figure, we present types 𝝉 ,
values v and terms t, here the most peculiar addition is 𝝎𝝉 , which is a diverging term of type 𝝉 .

We show the most important typing rules 𝚫; 𝚪 ⊢ t : 𝝉 in terms of term and type variable contexts 𝚪

and 𝚫 (but we omit context and type well-formedness judgements 𝚫; 𝚪 ⊢ ⋄ and 𝚫 ⊢ 𝝉 ). Finally, we
define call-by-value evaluation rules in terms of evaluation contexts E. There, we indicate the usual
capture-avoiding substitution of value v (or type 𝝉 ′) for variable x (or type variable X) in term t (or
type 𝝉 ) as t[v/x] (as 𝝉 [𝝉 ′/X]). We indicate lists of such substitutions as 𝜸 .
Program contexts C are defined as terms with exactly one subterm replaced by a hole [·].

An omitted well-typedness judgement for program contexts C : 𝚫; 𝚪;𝝉 → 𝚫
′
; 𝚪

′
;𝝉 ′ guarantees

that plugging a well-typed term 𝚫; 𝚪 ⊢ t : 𝝉 in the hole produces the well-typed resulting term

𝚫
′
; 𝚪

′ ⊢ C[t] : 𝝉 ′.

Definition 2.1 (𝜆F Contextual equivalence). For two terms t1, t2 that have the same type 𝝉 in

the same contexts 𝚫 and 𝚪, we define that they are contextually equivalent (𝚫; 𝚪 ⊢ t1 ≃ t2 : 𝝉 )
iff for all C such that ⊢ C : 𝚫; 𝚪,𝝉 → ∅; ∅,𝝉 ′, we have that C[t1] ⇑ iff C[t2] ⇑, where ⇑ indicates

divergence [Plotkin 1977].

Value polymorphism. An interesting aspect of this definition of System F is that the body of a

polymorphic functions 𝚲X. t is a general term t. This means that it is possible for polymorphic

functions to diverge or perform effects when instantiated. This means, for example, that the poly-

morphic type ∀X.⊥ (for an empty type ⊥) is inhabited by the function 𝚲X.𝝎. In effectful variants

of System F, we could similarly write a function of type ∀X. Ref (Maybe X): 𝚲X. ref nothing. For
this function, it is important that different applications of this function are evaluated separately and

produce different mutable reference locations, as otherwise, we could use a single location to store

a value of one type and read a value of another, leading to a type error. In particular, this means

that polymorphic lambdas and type applications cannot be erased away in an untyped execution

scheme.

Although the choice of allowing arbitrary terms in the body of a polymorphic function is standard

in formal accounts of System F, imperative polymorphic languages like ML make a different

choice. They use value polymorphism, originally proposed by Wright [1995], which restricts ML

polymorphism to values. This choice can be modeled in System F by restricting the syntax of

polymorphic functions from 𝚲X. t to 𝚲X. v, i.e., the body of the polymorphic function must be a
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0:8 Dominique Devriese, Marco Patrignani, and Frank Piessens

Syntax:

t ::= v | x | t t | t.1 | t.2 | ⟨t, t⟩ | t 𝝉 | if t then t else t | pack ⟨𝝉 , t⟩ as ∃X.𝝉

| unpack t as ⟨X, x⟩ in t | 𝝎𝝉

Val ∋ v ::= unit | true | false | 𝝀x : 𝝉 . t | ⟨v, v⟩ | 𝚲X. t | pack ⟨𝝉 , v⟩ as ∃X.𝝉

𝝉 ::= Unit | Bool | 𝝉 → 𝝉 | 𝝉 × 𝝉 | X | ∀X.𝝉 | ∃X.𝝉

𝚪 ::= ∅ | 𝚪, (x : 𝝉 ) 𝚫 ::= ∅ | 𝚫,X
E ::= [·] | E t | v E | E.1 | E.2 | ⟨E, t⟩ | ⟨v, E⟩ | E 𝝉 | if E then t else t | unpack E as ⟨X, x⟩ in t

Typing rules (excerpts):

𝚫; 𝚪 ⊢ ⋄
(x : 𝝉 ) ∈ 𝚪

𝚫; 𝚪 ⊢ x : 𝝉

𝚫; 𝚪, x : 𝝉 ⊢ t : 𝝉 ′

𝚫; 𝚪 ⊢ 𝝀x : 𝝉 . t : 𝝉→𝝉 ′
𝚫,X; 𝚪 ⊢ t : 𝝉

𝚫; 𝚪 ⊢ 𝚲X. t : ∀X.𝝉

𝚫; 𝚪 ⊢ t : 𝝉 ′→𝝉
𝚫; 𝚪 ⊢ t′ : 𝝉 ′

𝚫; 𝚪 ⊢ t t′ : 𝝉

𝚫 ⊢ 𝝉 ′ 𝚫; 𝚪 ⊢ t : ∀X.𝝉

𝚫; 𝚪 ⊢ t 𝝉 ′ : 𝝉 [𝝉 ′/X]

𝚫 ⊢ 𝝉 𝚫; 𝚪 ⊢ t : 𝝉 [𝝉 ′/X]
𝚫; 𝚪 ⊢ pack ⟨𝝉 ′, t⟩ as ∃X.𝝉 : ∃X.𝝉

𝚫; 𝚪 ⊢ t : ∃X.𝝉 𝚫 ⊢ 𝝉 ′ 𝚫,X; 𝚪, x : 𝝉 ⊢ t1 : 𝝉 ′

𝚫; 𝚪 ⊢ unpack t as ⟨X, x⟩ in t1 : 𝝉 ′ 𝚫; 𝚪 ⊢ 𝝎𝝉 : 𝝉

Evaluation rules (excerpts):

t ↩→0 t′

E[t] ↩→E[t′] (𝝀x : 𝝉 . t) v ↩→0 t[v/x] (𝚲X. t) 𝝉 ↩→0 t[𝝉/X]

unpack (pack ⟨𝝉 ′, v⟩ as ∃X.𝝉 ) as ⟨X′, x⟩ in t ↩→0 t[v/x] [𝝉 ′/X′] 𝝎𝝉 ↩→0 𝝎𝝉

Fig. 1. System F syntax, typing rules and evaluation rules (excerpts). The semantics relation ↩→ relies on the
primitive reductions indicated as ↩→0.

syntactic value [Pitts 1998]. Value polymorphism is not central to our technical development, but

we will come back to this in Section 3.2 when discussing the aforementioned universal type in

more general settings.

2.2 Parametricity
The main information hiding mechanism in 𝜆F

is parametric polymorphism: the representation

type of an existentially quantified package is invisible outside the package, and hence clients of the

package cannot depend on that representation type.

Example 2.2 (Z𝑛 implementation in 𝜆F). We could for instance represent the type Z𝑛 of integers

modulo 𝑛 as a tuple ⟨⟨zero, succ⟩ , zero?⟩ of type ∃X.X×(X→X)×(X→Bool), and then implement

this type as a 𝑘-tuple of booleans.
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Two Parametricities versus Three Universal Types 0:9

Example 2.3 (Example polymorphic function type in 𝜆F). Dually, the type system ensures that

code cannot depend on parameters of universally quantified types, for instance the only thing a

function of type ∀X.X×X→X can do is return one of its two arguments or diverge.

Reynolds formalised (relational) parametricity in the form of a theorem that all 𝜆F
terms of a

certain type satisfy a property that can be derived from their type [Reynolds 1983]. For example, if

we assume a value f of type ∀X.X→X, then parametricity states that for any closed types 𝝉1,𝝉2,

any relation 𝑅 between values of types 𝝉1 and 𝝉2, and any two closed values v1, v2 of type 𝝉1 and 𝝉2
respectively, if (v1, v2) is in 𝑅, then f 𝝉1 v1 and f 𝝉2 v2 will either both diverge or reduce to values

(v′
1, v

′
2) ∈ 𝑅. The relational property is derived from the type using what is known as a logical

relation.

2.3 Reynolds-style Logical Relation
As we explained in the introduction, this logical relation can be defined in various ways. For our

purposes, it is instructive to first consider Reynolds’ original definition. For simplicity and because

it suffices for our purposes, we present a unary variant.
7

The Reynolds-style or lexically-scoped Logical Relation (RLR) defines a relation on values V J·K
and on terms E J·K. Both are indexed with a type environment 𝝆, which maps type variables to

a closed type 𝝉 and a relation R on values of type 𝝉 . The value relationV J·K𝝆 for type variables

X defers to the appropriate entry in 𝝆 for type variables X. Otherwise, the value relation accepts

boolean and unit values when they are of canonical form and pairs when both components are in

the appropriate relation themselves. For function types, the value relation accepts appropriately

typed lambdas that map related values to related terms. We apply the type environment to the type

𝝉 (denoted with 𝝆 (𝝉 )) to indicate type 𝝉 with any type variable X replaced with its binding in 𝝆,
i.e., with 𝝆 (X).1. Polymorphic functions are accepted when they can be applied to an arbitrary

type 𝝉 ′ and an arbitrary relation R on 𝝉 ′ to obtain a term in the appropriate term relation, with

𝝆 extended with R. Finally, existential packages must contain a type 𝝉 ′ and a value related at the

appropriate type, extending 𝝆 with some relation R on 𝝉 ′. Values in the value relation are also

required to be syntactically well-typed, as denoted by function oftype (v,𝝉 ), which simply checks

∅; ∅ ⊢ v : 𝝉 . The term relation accepts terms that diverge or produce a suitable value.

𝝆 ∈
{
X ↦→ (𝝉 ,R)

��� R ∈ Rel (𝝉 )
}

Rel (𝝉 ) = P ({v | ∅ ⊢ v : 𝝉 })
V JXK𝝆 = 𝝆 (X).𝑅

V JUnitK𝝆 = {unit}
V JBoolK𝝆 = {true, false}

V J𝝉 → 𝝉 ′K𝝆 =

{
𝝀x : 𝝆 (𝝉 ). t

����� oftype
(
𝝀x : 𝝆 (𝝉 ). t,𝝉 → 𝝉 ′

)
and

∀v. if v ∈ V J𝝉K𝝆 then t[v/x] ∈ E J𝝉 ′K𝝆

}
V J𝝉 × 𝝉 ′K𝝆 =

{
⟨v, v′⟩

����� oftype
(
⟨v, v′⟩,𝝉 × 𝝉 ′

)
and

v ∈ V J𝝉K𝝆 and v′ ∈ V J𝝉 ′K𝝆

}
V J∀X.𝝉K𝝆 =

{
𝚲X. t

����� oftype (𝚲X. t,∀X.𝝉 ) and
∀R ∈ Rel

(
𝝉 ′

)
. t

[
𝝉 ′/X

]
∈ E J𝝉K𝝆,X↦→(𝝉 ′,R)

}
7
We will continue to use words like relation, related etc. despite the fact that they are unary.
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V J∃X.𝝉K𝝆 =

{
pack

〈
𝝉 ′, v

〉
as ∃X. 𝝆 (𝝉 )

����� oftype
(
pack

〈
𝝉 ′, v

〉
as ∃X. 𝝆 (𝝉 ), ∃X.𝝉

)
and

∃R ∈ Rel
(
𝝉 ′

)
. v ∈ V J𝝉K𝝆,X↦→(𝝉 ′,R)

}
E J𝝉K𝝆 =

{
t

��� if t ↩→* v then v ∈ V J𝝉K𝝆
}

We can then define relations on environments G J·K and on type environmentsD J·K. The former

accepts environments which map free variables to values in the appropriate value relation. The

latter requires a type and a relation on that type for every free type variable.

G J∅K𝝆 = {∅}
G J𝚪, (x : 𝝉 )K𝝆 =

{
𝜸 ; [v/x]

�� 𝜸 ∈ G J𝚪K𝝆 and v ∈ V J𝝉K𝝆
}

D J∅K = {∅}
D J𝚫;𝜶 K =

{
𝝆,𝜶 ↦→ (𝝉 ,R)

�� 𝝆 ∈ D J𝚫K and R = Rel (𝝉 )
}

With these ingredients, we can define the relation 𝚫; 𝚪 ⊩ t : 𝝉 on open terms. This relation

accepts terms t which are in the term relation after appropriately closing their free variables and

type variables (Definition 2.4).

Definition 2.4 (Reynolds-style Logical Relation).

𝚫; 𝚪 ⊩ t : 𝝉 def
= ∀𝝆 ∈ D J𝚫K,∀𝜸 ∈ G J𝚪K𝝆, t𝜸 ∈ E J𝝉K𝝆

We rely on a few results for the RLR, which are listed below. The fundamental property (Theo-

rem 2.5) states that syntactically well-typed terms are in the relation (i.e., they are semantically
well-typed). We do not provide proofs of these lemmas as they are quite standard [Dreyer et al.

2011b].

Theorem 2.5 (Fundamental property for RLR). if 𝚫; 𝚪 ⊢ t : 𝝉 then 𝚫; 𝚪 ⊩ t : 𝝉

Proving the fundamental property relies on a number of standard lemmas. We only mention a

few which we will need in the rest of this paper.

First, we have an antireduction lemma (Lemma 2.6) which states that a term t is in the term

relation if a term t′ that it reduces to is.

Lemma 2.6 (Antireduction). If t ↩→* t′ and t′ ∈ E J𝝉K𝝆 , then t ∈ E J𝝉K𝝆 .

Next, we mention two compatibility lemmas: one for functions (Lemma 2.7) and one for applica-

tions (Lemma 2.8). Essentially, they state that lambdas and applications are in the logical relation if

their subterms are (at appropriate types).

Lemma 2.7 (Compatibility for functions).

If 𝚫; 𝚪, x : 𝝉 ′ ⊩ t : 𝝉 then 𝚫; 𝚪 ⊩ 𝝀x : 𝝉 ′ . t : 𝝉 ′→𝝉

Lemma 2.8 (Compatibility for applications).

If 𝚫; 𝚪 ⊩ t : 𝝉 ′→𝝉 and 𝚫; 𝚪 ⊩ t′ : 𝝉 ′ then 𝚫; 𝚪 ⊩ t t′ : 𝝉

We also mention the Boring lemma (Lemma 2.9)
8
, which states that the semantic type relation 𝜌

can be altered freely as long as the type variables mentioned in the type 𝜏 are left untouched.

Lemma 2.9 (Boring lemma). If 𝝆1 and 𝝆2 agree on the free type variables of 𝝉 , then

E J𝝉K𝝆1 = E J𝝉K𝝆2

8
For lack of a better name, we call this lemma as in Dreyer et al. [2011b]’s lecture notes. Neis et al. [2011] call this the

irrelevance lemma.
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Finally, it is worth mentioning that this logical relation can be easily adapted to the use of value

polymorphism, discussed in Section 2.1. This requires only a change to the case for polymorphic

types ∀X. 𝜏 , which then looks as follows:

V J∀X.𝝉K𝝆 =

{
𝚲X. v

����� oftype (𝚲X. v,∀X.𝝉 ) and
∀R ∈ Rel

(
𝝉 ′

)
. v

[
𝝉 ′/X

]
∈ V J𝝉K𝝆,X ↦→(𝝉 ′,R)

}
The change is limited: polymorphic function bodies are now restricted to values and the instantiated

bodies are now required to be in the value relation rather than the term relation, as one might

expect.

2.4 Kripke Logical Relations
For languages with additional features, particularly effects like higher-order state, we can replace

the basic logical relation from the previous section with a Kripke logical relation. The idea is to

index the logical relation with a form of possible worlds or Kripke worlds W which represent a set

of shared assumptions, often about shared state like the heap. Possible worlds are partially ordered

by a relation ⊑, where W′ ⊒ W expresses that W′
represents a stronger set of assumptions than

W. A Kripke version of the logical relation from before looks like the one below (as a notation

convention, we typeset elements of Kripke LRs with a grey background , to distinguish them from

elements of the RLR, which have no background). Note that we do not give a concrete definition of

worlds in this section, since the goal here is just to make the reader familiar with their treatment –

the next section will provide more concrete details about worlds.

V JXK𝝆 = 𝝆 (X) .𝑅

V JUnitK𝝆 = {(W, unit)}

V JBoolK𝝆 = {(W, true), (W, false)}

V J𝝉 → 𝝉 ′K𝝆 =

{
(W,𝝀x : 𝜌 (𝝉 ). t)

����� oftype
(
𝝀x : 𝜌 (𝝉 ). t,𝝉 → 𝝉 ′

)
and ∀W′ ⊒ W.∀v.

if (W′, v) ∈ V J𝝉K𝝆 then (W′, (𝝀x : 𝝉 . t) v) ∈ E J𝝉 ′K𝝆

}

V J𝝉 × 𝝉 ′K𝝆 =

{
(W, ⟨v, v′⟩)

����� oftype
(
⟨v, v′⟩,𝝉 × 𝝉 ′

)
and

(W, v) ∈ V J𝝉K𝝆 and (W, v′) ∈ V J𝝉 ′K𝝆

}

V J∀X.𝝉K𝝆 =

{
(W,𝚲X. t)

����� oftype (𝚲X. t,∀X.𝝉 ) and ∀W′ ⊒ W.∀𝝉 ′,R ∈ Rel
[
𝝉 ′

]
.

(W′, t[𝝉 ′/X]) ∈ E J𝝉K𝝆,X↦→(𝝉 ′,R)

}

V J∃X.𝝉K𝝆 =

(W, pack ⟨𝝉 ′, v⟩ as ∃X. 𝜌 (𝝉 ))

�������
oftype

(
pack

〈
𝝉 ′, v

〉
as ∃X. 𝜌 (𝝉 ), ∃X.𝝉

)
and ∃R ∈ Rel

[
𝝉 ′

]
.

(W, v) ∈ V J𝝉K𝝆,X↦→(𝝉 ′,R)


E J𝝉K𝝆 =

{
(W, t)

��� ∀v. if t ↩→* v then ∃W′ ⊒ W. (W′, v) ∈ V J𝝉K𝝆
}

G J∅K𝝆 = {∅}

G J𝚪, (x : 𝝉 )K𝝆 =

{
(W,𝜸 ; [v/x])

��� (W,𝜸 ) ∈ G J𝚪K𝝆 and (W, v) ∈ V J𝝉K𝝆
}
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The differences with before are that all cases of the logical relation now mention the world

W with respect to which values are related. Additionally, the expression relation existentially

quantifies over a future world in which resulting values will be related. This generally models the

fact that operational steps may introduce fresh assumptions, for example about freshly allocated

mutable variables, which the resulting values’ relation depends on. Finally, the value relation for

function types 𝝉 → 𝝉 ′ and ∀X.𝝉 is polymorphically quantified over an arbitrary world W′ ⊑ W
that extends the assumptions of the current world W. This represents the fact that these values

must be valid whenever they are invoked, including when additional assumptions may have been

introduced.

Again, the logical relation is easy to adapt to a value-polymorphic variant of System F, by

modifying only the case for polymorphic function types:

V J∀X.𝝉K𝝆 =

{
(W,𝚲X. v)

����� oftype (𝚲X. v,∀X.𝝉 ) and ∀W′ ⊒ W.∀𝝉 ′,R ∈ Rel
[
𝝉 ′

]
.

(W′, v[𝝉 ′/X]) ∈ V J𝝉K𝝆,X↦→(𝝉 ′,R)

}
As before, the instantiated function body is now required to be in the value relation rather than the

term relation.

2.5 Logical Relation with Type Worlds
In this paper, we are not so interested in general effects but we focus on non-lexically-scoped

type variables. For this reason, we are interested in a pattern in logical relation definitions that we

dub Type World Logical Relations (TWLRs) [Ahmed et al. 2017; Neis et al. 2009; New et al. 2019a;

Sumii and Pierce 2003; Toro et al. 2019]. Note that the term is not intended to denote a clearly

delineated subclass of logical relations but rather a design pattern that may be used and varied

upon in the definition of logical relations. A TWLR is a form of Kripke logical relation which uses

Kripke worlds W to represent the interpretations of type variables instead of (or in addition to)

the semantic type relations 𝝆. Additionally, when related polymorphic functions are instantiated

with related types, the resulting terms are only related in a world that stores the relation between

the applied types as the type interpretation for the instantiated type. This different treatment of

type environments removes the requirement to enforce the lexical scope of type quantifiers and

makes the logical relation compatible with universal types, as we will explain in Section 3.

In a TWLR, worlds are used to store the type 𝝉 and predicate R on values of type 𝝉 that are

bound to a type variable, i.e., the information that was stored in 𝝆 in the RLR (see Section 2.3).

Here, we present a TWLR variant of the logical relation from Section 2.3 which uses worlds that

contain types and relations for instantiated type variables. The future world relation ⊑ enforces

that once a binding is added to a world, it can never be removed (this is true for Kripke LRs too,

but in Section 2.4 we did not have to define what constitutes worlds).

World ∋ W = ∅ | (W; (X,𝝉 ,R))

W′ ⊒ W = W′ ⊇ W

W + (X,𝝉 ,R) = (W; (X,𝝉 ,R)) if X ∉ dom(W)

R ∈ Rel [𝝉 ]

Rel [𝝉 ] = {R ∈ P(World × Val) | ∀(W, v) ∈ R.∀W′ ⊒ W. (W′, v) ∈ R and ∅; ∅ ⊢ v : 𝝉 }

The attentive reader may notice that our definition of worlds is actually cyclic: worlds map type

variables to types and relations, and the relations are themselves world-indexed. As a result, the
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worlds presented here are not actually well-defined. Fortunately, this is a well-known problem and

a standard solution exists: step-indexing [Ahmed 2004; Ahmed et al. 2009a; Dreyer et al. 2011a].

Essentially, the idea is to solve the cyclicity by indexing worlds with a number of steps which

indicates up to which level they are defined. By carefully (and often tediously) ensuring that

all world-indexed definitions only depend on the world up to a suitable number of steps, cyclic

reasoning can be ruled out without otherwise changing the argumentation. Because step-indexing

tends to complicate the technicalities while otherwise contributing little insight to the reasoning,

we choose not to use it here. Instead, we simply ignore the problem in this text and stick to our

illegal but comprehensible definition. To readers who wish to understand how the cyclicity can be

solved without breaking the basic rules of mathematics, we recommend consulting Ahmed et al.

[2017].

Having defined worlds, we can present the TWLR, which follows the same intuition of the RLR

save for replacing 𝝆 with worlds W . As before, replacing all type variables X with their bindings

in W in type 𝝉 is denoted as W(𝝉 ).

V JXK = {(W, v) | (W, v) ∈ W(X).R}

V JUnitK = {(W, unit)}

V JBoolK = {(W, true), (W, false)}

V J𝝉 → 𝝉 ′K =

{
(W,𝝀x : W(𝝉 ). t)

����� oftype
(
𝝀x : W(𝝉 ). t,𝝉 → 𝝉 ′

)
and ∀W′ ⊒ W.∀v.

if (W′, v) ∈ V J𝝉K then (W′, (𝝀x : 𝝉 . t) v) ∈ E J𝝉 ′K

}

V J𝝉 × 𝝉 ′K =

{
(W, ⟨v, v′⟩)

����� oftype
(
⟨v, v′⟩,𝝉 × 𝝉 ′

)
and

(W, v) ∈ V J𝝉K and (W, v′) ∈ V J𝝉 ′K

}

V J∀X.𝝉K =

{
(W,𝚲X. t)

����� oftype (𝚲X. t,∀X.𝝉 ) and ∀W′ ⊒ W.∀𝝉 ′,R ∈ Rel
[
𝝉 ′

]
.

(W′ + (X,𝝉 ′,R), t[𝝉 ′/X]) ∈ E J𝝉K

}

V J∃X.𝝉K =

(W, pack ⟨𝝉 ′, v⟩ as ∃X.W(𝝉 ))

�������
oftype

(
pack

〈
𝝉 ′, v

〉
as ∃X.W(𝝉 ), ∃X.𝝉

)
and ∃R ∈ Rel

[
𝝉 ′

]
.

(W + (X,𝝉 ′,R), v) ∈ V J𝝉K


E J𝝉K =

{
(W, t)

��� ∀v. if t ↩→* v then ∃W′ ⊒ W. (W′, v) ∈ V J𝝉K
}

G J∅K = {∅}

G J𝚪, (x : 𝝉 )K =

{
(W,𝜸 ; [v/x])

��� (W,𝜸 ) ∈ G J𝚪K and (W, v) ∈ V J𝝉K
}

It is crucial to compare the case for V J∀X.𝝉K against the one from Section 2.3. Contrary to

there, the instantiated term t[𝝉 ′/X] is only required to be related in worlds W′ + (X,𝝉 ′,R) that
store the relation R as the semantic interpretation for the instantiated type variable X.

The last piece we need to formalise is what it means for a world W to agree with a type

environment 𝚫, which we denote with W ⊢ 𝚫 . This intuitively replaces the type environment

relation D J·K present in RLR. A world agrees with a type environment when it maps all the type

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: June 2022.



0:14 Dominique Devriese, Marco Patrignani, and Frank Piessens

variables of the latter to valid relations, formally:

∅ ⊢ ∅

W, (X,𝝉 ,R) ⊢ 𝚫,X if W ⊢ 𝚫 and R ∈ Rel [𝝉 ]

With these ingredients we can define our Type-World Logical Relation.

Definition 2.10 (Type-World Logical Relation).

𝚫; 𝚪 ⊨⊨ t : 𝝉 def
= ∀ W ⊢ 𝚫 ,∀ 𝜸 ∈ G J𝚪K , (W, t𝜸 ) ∈ E J𝝉K

The fundamental property of TWLRs is analogous to that for RLR. As in the previous section,

we do not provide proofs of these lemmas, which can be derived from similar (binary) statements

in the works of e.g., Ahmed et al. [2017]; Neis et al. [2009].

Theorem 2.11 (Fundamental property for TWLR). if 𝚫; 𝚪 ⊢ t : 𝝉 then 𝚫; 𝚪 ⊨⊨ t : 𝝉

The main result we need from this logical relation is an analogous to Lemma 2.9 (Boring lemma).

If we try to naively state such a result for this TWLR too we obtain the wrong statement below

(Lemma 2.12).

Lemma 2.12 (Wrong Boring lemma for TWLR). If W1 and W2 agree on the free type variables
of 𝝉 , then

(W1, t) ∈ V J𝝉K ⇐⇒ (W2, t) ∈ V J𝝉K

Contrary to the RLR, this lemma does not hold for our TWLR. If we were to try and prove it, we

would quickly get stuck in the cases for lambdas and big lambdas where we get a future world𝑊 ′

of, for example,𝑊1 but we have no way to relate it to world𝑊2.

The correct statement of Lemma 2.9 (Boring lemma) applied to the TWLR is the following one,

which respects world monotonicity.

Lemma 2.13 (Boring lemma for TWLR). If W2 ⊒ W1 , then, ∀𝝉 , v

if (W1, v) ∈ V J𝝉K then (W2, v) ∈ V J𝝉K

The premise has changed in this lemma, in fact we are only allowed to extend a world, but not

remove bindings from it.

The difference between the RLR of Section 2.3 and the TWLR of this section may appear technical.

However, we will see in the next section that this technical change from RLR to TWLR renders a

formulation of parametricity compatible with universal types. This fact is witnessed by several

TWLR-based parametricity proofs for languages with such types [Ahmed et al. 2011c, 2017; Neis

et al. 2009, 2011; New et al. 2019a; Sumii and Pierce 2003; Toro et al. 2019]. However, none of those

papers observed that using a TWLR reduced the set of equivalences that the LR implies and that

this reduction was necessary in the presence of non-lexically-scoped type variables.

Before concluding, it is again interesting to consider what our TWLR would look like for a

value-polymorphic language:

V J∀X.𝝉K =

{
(W,𝚲X. v)

����� oftype (𝚲X. v,∀X.𝝉 ) and ∀W′ ⊒ W.∀𝝉 ′,R ∈ Rel
[
𝝉 ′

]
.

(W′ + (X,𝝉 ′,R), v[𝝉 ′/X]) ∈ V J𝝉K

}
Observe that here, the instantiated body is still required to be related by the value relation and thus

not able to allocate additional assumptions. This makes sense, since the body cannot allocate, for
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example, fresh mutable heap locations. However, one particular assumption is still added to the

world in which the body is related: the instantiated of X to type 𝝉 ′ and relation R.
In the next Sections, we provide further insight into how the use of a TWLR underlines a

compatibility with the universal type in the language. We do this by demonstrating the degeneracy

of the universal type with LRLS and explaining why such a proof fails using a TWLR. Before

showing these technical proofs, we must define the universal type.

3 THE TYPE Univ
As mentioned, in this paper we rely heavily on the type Univ:

Univ def
= ∃Y.∀X. (X→Y)×(Y→X)

The type can be read as stating the existence of a universal type Y: a type that all other types can
be embedded into and extracted from.

In our non-terminating variant of 𝜆F
, Univ is clearly inhabited, for example by this value (recall

that 𝝎X is a diverging term of type X):

pack ⟨Unit,𝚲X. ⟨𝝀_ : X. unit,𝝀_ : Unit.𝝎X⟩⟩ as Univ

However, this value is degenerate in the sense that injecting a value into the packaged Y and

extracting it again diverges. Note that it is not necessarily the function of type Y→X that diverges.

For example, we can construct the following inhabitants:

pack ⟨(∀Z.Z),𝚲X. ⟨𝝀_ : X.𝝎∀Z.Z,𝝀y : (∀Z.Z). y X⟩⟩ as Univ
pack ⟨(∀Z.Z),𝚲X. ⟨𝝀_ : X.𝚲Z.𝝎Z,𝝀y : (∀Z.Z). y X⟩⟩ as Univ

These other inhabitants instantiate Y to ∀Z.Z and make the function of type Y→X simply use the

received value of type ∀Z.Z to obtain the required value of type X. It is now the function of type

X→Y that diverges, either directly or after being applied to a type Z.
A crucial observation for this paper is that all System F values of type Univ are degenerate in

the above sense. Intuitively, this is because a single type Y needs to be chosen, independently of

the types X that will be embedded into it. Because nothing is known upfront about these Xs and

nothing can be learnt about them after invocation (because X must be treated parametrically), no

viable choice for Y can be made.
9

From another perspective, the degeneracy results from the lexical scope of type variable X in the

polymorphic function of type ∀X. (X → Y) × (Y → X). In 𝜆F
, implementations of this function

are required to respect this lexical scope and importantly, the variable is not in scope at the point

where a choice for existential variable Y needs to be made. A non-degenerate implementation of

Univ essentially must somehow pass a value of type X as the result of the function of type X → Y
and recover it from the argument to the function of type Y → X. This would require that value

to survive exiting and reentering the lexical scope of type variable X, and degeneracy expresses

exactly the impossibility of this, i.e. 𝜆F
’s respect for the lexical scope of type variables like X.

Note that in this paper, lexical scoping of type variables in System F is regarded as an informal

property. Our best attempt to characterize it uses the degeneracy of Univ and the existence of a

universal type as a sufficient criterion.

9
Obviously, the situation is entirely different if we swap the quantifications in the type: Triv def

=

∀X. ∃Y. (X → Y) × (Y → X) .
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3.1 Two Contextually Equivalent Terms
This degeneracy of Univ implies the contextual equivalence of the following two terms of type

Univ→Unit.

tu
def
= 𝝀x : Univ. unpack x as ⟨Y, x′⟩ in

let x′′
: (Unit → Y) × (Y → Unit) = x′ Unit in x′′ .2 (x′′ .1 unit)

t𝝎
def
= 𝝀x : Univ.𝝎Unit

The reason that tu and t𝝎 are contextually equivalent is that both will diverge when applied to

any argument of type Univ. For tu, this follows from the degeneracy of the type Univ, as we
demonstrate below, while for t𝝎 , the term 𝝎Unit in the body ensures divergence. Note that the

degeneracy of Univ is essential: if the context were able to produce a non-degenerate value of type

Univ, then tu would not diverge when applied to it, so that the context could distinguish tu from t𝝎 .
Thus, we have the following theorem.

Theorem 3.1 (tu and t𝝎 are contextually eqivalent in 𝜆F
). ∅; ∅ ⊢ tu ≃ t𝝎 : Univ → Unit.

Note that we have chosen tu and t𝝎 because their equivalence is relatively easy to prove. However,

we could have taken many other equivalences which follow from the degeneracy of Univ and

particularly, we could have taken example terms which will both terminate with different results in

the presence of a non-degenerate universal type:

t1
def
= 𝝀x : Univ. unpack x as ⟨Y, x′⟩ in

let x′′
: (Unit → Y) × (Y → Unit) = x′ Unit in x′′ .2 (x′′ .1 unit); 1

t2
def
= 𝝀x : Univ. unpack x as ⟨Y, x′⟩ in

let x′′
: (Unit → Y) × (Y → Unit) = x′ Unit in x′′ .2 (x′′ .1 unit); 2

3.2 Univ in Other Settings
Before we look at proving Theorem 3.1, it is useful to build a better intuition of the meaning and

the cause of the degeneracy of Univ. To this end, it is useful to consider the type’s properties in

variants of System F.

For example, if we imagine a variant of System F with errors or exceptions, converting a function

of type X to Y and back, must no longer necessarily diverge, but can now also result in an error or

an exception. Intuitively, this is perhaps still a form of degeneracy, but formally, it is no longer true

that tu ≃ t𝝎 and thus, the two terms no longer form a counterexample to full abstraction. However,

while the concrete counterexample is broken, the more general observation remains: System F

implies properties about the type Univ that are no longer true in the languages we discuss in the

next sections, even when both languages are extended with errors or exceptions. Concretely, we

can easily adapt the counterexample by making t𝝎 not always diverge, but diverge after invoking

the two functions of the Univ value.

tu
def
= 𝝀x : Univ. unpack x as ⟨Y, x′⟩ in

let x′′
: (Unit → Y) × (Y → Unit) = x′ Unit in x′′ .2 (x′′ .1 unit)

t′𝝎
def
= 𝝀x : Univ. unpack x as ⟨Y, x′⟩ in

let x′′
: (Unit → Y) × (Y → Unit) = x′ Unit in x′′ .2 (x′′ .1 unit);𝝎Unit

Our results should not be interpreted as strictly related to the specific example terms tu and t𝝎
and not even to the type Univ. It appears clear at least that Univ is not the only type for which an
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RLR implies properties that do not follow from a TWLR (see Section 4). For example, it appears

clear that similar properties will hold for a variant of Univ with one component duplicated:

∃Y.∀X. (X→Y)×(X→Y)×(Y→X)
Our modified example shows that the phenomenon also manifests itself in the presence of effects

like errors and exceptions.

It is hard to identify a root cause for the phenomenon: some of the settings we consider feature

a form of type generativity, all feature a universal type, but it is hard to say whether these are

symptom or disease. The use of TWLRs suggests (at least to us) that it is essentially the lexical

scoping of type variables in System F which is not enforced in the different settings we consider.

However, as mentioned before, we don’t know how to formalize this intuitive property or argue

that it is the root cause.

Extending System F with ML-like references breaks the counterexample in a seemingly more

severe way. Concretely, consider extending System F in a standard way with types Ref 𝝉 for heap

references and constructs for allocating (ref𝜏 v), assigning (x := v) and dereferencing (!x) heap
variables), see, e.g., Pierce [2002]. In this case, the type Univ gains inhabitants like the following:

pack
〈
Unit,𝚲X.

let r : Ref (Maybe X) = refX None in
⟨𝝀x : X. r := Some x; unit,𝝀_ : Unit. !r⟩

〉
as Univ

Rather than attempting to store values of type X in an appropriately chosen Y in some way, this

inhabitant instantiates Y to the non-informative type Unit. Instead, it allocates a mutable variable

of type X, shared between the two functions. The first function then stores its argument in the

heap variable for the second function to retrieve.

The existence of this inhabitant shows that ML references break our results as well and in

this case, it is not as obvious how to recover equivalences that rely on lexical scoping of type

variables. One might interpret this to mean that the degeneracy of Univ is an artifact of the purity

of System F, and that it only holds in the absence of effects like mutable state. Perhaps what we

call non-lexically-scoped type variables should simply be interpreted as impurity of polymorphic

function applications and as such, not different from other effects?

We think it is not so simple and one way to see this is to consider what happens with the above

example in a value-polymorphic language. Interestingly, value polymorphism breaks the Univ
inhabitant mentioned above: it is no longer possible to allocate a reference cell that is shared by the

functions from X→Y and Y→X. In fact, we expect degeneracy of Univ to hold in value-polymorphic

variants of System F, even in the presence of ML references or other effects.

Nevertheless, it will be clear in Sections 5 to 7 that value polymorphism does not similarly

break the inhabitants of Univ we discuss there. This demonstrates that even if one interprets the

non-lexical scope of type variables in those languages as a form of effect, it is at least a form of

effect that behaves rather differently than other effects, as it does not disappear from polymorphic

functions with the introduction of value-polymorphism. From that point of view, we think our

results remain relevant in the presence of effects, although value polymorphism appears essential

when those effects can be used to create a communication channel for transmitting values of type

X between the two functions in Univ (as discussed for ML references).

4 PROVING DEGENERACY OF Univ
This section attempts to prove Theorem 3.1 (the contextual equivalence of tu and t𝝎 which we

recap below) using both the RLR and the TWLR and in doing so, it focusses on the key result for

this proof: showing that Univ is degenerate. This result is doable with the RLR (from Section 2.3),

highlighting why they are incompatible with non-lexically-scoped type variables but the same fact
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cannot be shown with the TWLR (from Section 2.5).

tu
def
= 𝝀x : Univ. unpack x as ⟨Y, x′⟩ in

let x′′
: (Unit → Y) × (Y → Unit) = x′ Unit in x′′ .2 (x′′ .1 unit)

t𝝎
def
= 𝝀x : Univ.𝝎Unit

The first step of the proof of Theorem 3.1 is captured by Lemma 4.1 (Diverging functions are

contextually equivalent to an omega function), which states that a function that diverges for every

argument is equivalent to a function whose body is the omega term.

Lemma 4.1 (Diverging functions are contextually eqivalent to an omega function).

If ∅; ∅ ⊢ 𝝀x : 𝝉 ′ . t : 𝝉 ′→Unit and (for all ∅; ∅ ⊢ v : 𝝉 ′ we have that (𝝀x : 𝝉 ′ . t) v⇑)
Then ∅; ∅ ⊢ 𝝀x : 𝝉 ′ . t≃𝝀x : 𝝉 ′ .𝝎Unit : 𝝉

′
→Unit

We do not think this lemma is very hard to believe. It can be proven using standard techniques,

either using an ad hoc simulation argument or by relying on existing binary logical relations for

System F, like the one by Dreyer et al. [2011a]. To avoid distracting from the main point of our

paper, we do not offer a proof here.

With Lemma 4.1, it suffices to prove that tu always diverges when supplied with a value of type

Univ in order to conclude Theorem 3.1. This result we derive from the “degeneracy” of Univ, i.e.,
from the fact that Univ is only inhabited by diverging terms. We show this can be proven with

the aid of the RLR in Lemma 4.2 below (Section 4.1) and also show that this is not provable with

the TWLR (Section 4.2). We then discuss how this proof is carried out with other kinds of LR

(Section 4.3).

4.1 Univ Degeneracy Using an RLR
Lemma 4.2 (Univ is degenerate). For all ∅; ∅ ⊢ v : Univ, we have that tu v⇑.

Proof. The proof proceeds largely in a standard way: we unfold the definition of value relation

for the value of universal type and we rely on antireduction and compatibility lemmas in order to

reason about terms after they evaluate. The goal is to show divergence of term tu v. This can be

achieved by showing that that term belongs to the term relation for a type variable whose set of

inhabitants is empty. Specifically, we will prove that it belongs to E JXK· · · ,X ↦→(Unit,∅)
. By definition

this means that the term must diverge or reduce to a value in V JXK· · · ,X ↦→(Unit,∅)
. Since that value

relation is empty, the latter is not possible, so tu v must diverge.

To prove that tu v is in E JXK· · · ,X↦→(Unit,∅)
, the main trick we use relies on having two relations

for X to inhabit. We will then instantiate the quantification over X with two different semantic

interpretations.

(1) the first one RU = {unit};
(2) the second one RE = ∅.
Now take ∅; ∅ ⊢ v : Univ. By Theorem 2.5 (Fundamental property for RLR) with ∅; ∅ ⊢ v : Univ,

we have (HLR)
10 ∅; ∅ ⊩ v : Univ. By Definition 2.4 (Reynolds-style Logical Relation) with HLR

(taking 𝝆 = ∅ and 𝜸 = ∅), we have v ∈ E JUnivK∅ . Because v is a value, we have v ∈ V JUnivK∅ .
By unfolding the definition of Univ and the value relation of the related type(s), it follows for

some 𝝉Y, v′
and RY ∈ Rel (𝝉Y), that

10
For ease of discussion, we use this notation to give names to hypotheses as they become available during the proof and

use the name later in the proof when we use the hypothesis.
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• v = pack ⟨𝝉Y, v′⟩ as Univ
• (HPVP) v′ ∈ V J∀X. (X→Y)×(Y→X)K∅,Y↦→(𝝉Y,RY )

.

Let us now consider the reductions of tu v:

tu v

≡

�������
(𝝀𝑥 : Univ. unpack 𝑥 as ⟨Y, x′⟩ in
let x′′

: (Unit → Y) × (Y → Unit) = x′ Unit in

x′′ .2 (x′′ .1 unit)) v

↩→ unpack v as ⟨Y, x′⟩ in let x′′
: (Unit → Y) × (Y → Unit) = x′ Unit in x′′ .2 (x′′ .1 unit)

≡

�������
unpack (pack ⟨𝝉Y, v′⟩ as Univ) as ⟨Y, x′⟩ in
let x′′

: (Unit → Y) × (Y → Unit) = x′ Unit in

x′′ .2 (x′′ .1 unit)
↩→ let x′′

: (Unit → 𝝉Y) × (𝝉Y → Unit) = v′ Unit in x′′ .2 (x′′ .1 unit)
By Lemma 2.6 (Antireduction) and Lemma 2.9 (Boring lemma), to conclude our thesis (tu v ∈
E JXK∅,X↦→(Unit,RE)

) it is sufficient to show that:

let x′′
: (Unit → 𝝉Y) × (𝝉Y → Unit) = v′ Unit in x′′ .2 (x′′ .1 unit) ∈ E JXK∅,Y ↦→(𝝉Y,RY ),X↦→(Unit,RE)

Now assume that the term

let x′′
: (Unit → 𝝉Y) × (𝝉Y → Unit) = v′ Unit in x′′ .2 (x′′ .1 unit)

terminates to a value vr. By definition of the term relation, it suffices to prove that

vr ∈ V JXK∅,Y ↦→(𝝉Y,RY ),X↦→(Unit,RE)

It is easy to see that there must be an intermediate value vU such that v′ Unit ↩→* vU and

let x′′
: (Unit → 𝝉Y) × (𝝉Y → Unit) = vU in x′′ .2 (x′′ .1 unit) ↩→* vr

From HPVP, we know that

v′ Unit ∈ E JX→Y × Y→XK∅,Y↦→(𝝉Y,RY ),X↦→(Unit,RE)

By definition of the term relation, we have that (HPVU) vU ∈ V JX→Y × Y→XK∅,Y↦→(𝝉Y,RY ),X↦→(Unit,RE)
.

It will be useful later that the same property holds if we replace RE with RU (HPVU2).

By definition of the term relation, it suffices to prove that

vU .2 (vU.1 unit) ∈ E JXK∅,Y↦→(𝝉Y,RY ),X↦→(Unit,RE)

This is a top-level application, so by Lemma 2.8 (Compatibility for applications), it suffices to prove

the following (recall that RE = ∅):
(1) vU.2 ∈ E JY→XK∅,Y↦→(𝝉Y,RY ),X↦→(Unit,RE)

(2) vU.1 unit ∈ E JYK∅,Y↦→(𝝉Y,RY ),X↦→(Unit,RE)

The former follows easily from HPVU by unfolding the definition of the value relation for pairs.

To prove Item 2 we apply our main trick. By Lemma 2.9 (Boring lemma), we can replace the

relation with an equivalent one. We first drop the first relation for X in the term relation for Y
(since variable X is not mentioned in type Y), then add the second relation and all the term relations

are equivalent:

E JYK∅,Y↦→(𝝉Y,RY ),X↦→(Unit,RE)
= E JYK∅,Y↦→(𝝉Y,RY ) = E JYK∅,Y ↦→(𝝉Y,RY ),X↦→(Unit,RU)
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So instead of proving:

vU.1 unit ∈ E JYK∅,Y↦→(𝝉Y,RY ),X↦→(Unit,RE)

we can just prove (notice the change in the semantic interpretation for X):

vU.1 unit ∈ E JYK∅,Y ↦→(𝝉Y,RY ),X↦→(Unit,RU)

This is necessary in order to reason about the function application within this term, as we explain

below.

Again, we apply Lemma 2.8 (Compatibility for applications) and it suffices to prove the following:

(3) vU.1 ∈ E JX→YK∅,Y↦→(𝝉Y,RY ),X↦→(Unit,RU)

(4) unit ∈ E JXK∅,Y↦→(𝝉Y,RY ),X↦→(Unit,RU)

Similarly to howwe derived HPVU fromHPVP and the definition of the term relation, Item 3 follows

from the fact that vU ∈ V JX→Y × Y→XK∅,Y ↦→(𝝉Y,RY ),X↦→(Unit,RU)
(HPVU2) and then unfolding the

definition of the value relation for pairs.

Proving Item 4 is not hard either. The term relation includes the value relation, so it suffices to

prove:

unit ∈ V JXK∅,Y↦→(𝝉Y,RY ),X↦→(Unit,RU)

By definition of the value relation for type variables, this holds if unit inhabits the semantic

interpretation for X, i.e., RU = {unit}. □

If we had not performed our main trick, all other proof obligations would hold, but proving

Item 4 would not be possible. In fact, there we would have had to prove that:

unit ∈ V JXK∅,Y↦→(𝝉Y,RY ),X↦→(Unit,RE)

i.e., (according to the value relation for type variables) that unit is in the current semantic interpre-

tation for X, i.e., ∅, which is not possible.

4.2 Why Universal Types Require Type Worlds
The proof from Section 3.1 shows that Reynolds-style or lexically-scoped logical relations are

incompatible with a universal type. But to thoroughly understand what is going on, it is useful to

take a closer look at the counterexample.

Recall the definition of the type Univ.

Univ def
= ∃Y.∀X. (X→Y)×(Y→X)

According to the RLR, any value of this type is of the form pack ⟨𝝉𝒀 , v⟩ as Univ and comes with a

predicate RY ∈ Rel (𝝉Y), i.e., a predicate on values of type 𝝉Y. Importantly, this predicate needs to

be chosen independently of choices that are made later, particularly the choice of the type Unit for
X and the predicate RX ∈ Rel (Unit) which the universal quantification will be instantiated with.

It is this independence (of the choice of RY) that is fundamentally incompatible with the existence

of a universal type. Imagine there were a universal type U in System F with total injection and

extraction functions inZ : Z → U and outZ : U → Z for arbitrary types Z. Then we could define a

value of type Univ by taking Y = U and constructing a pair with inX and outX:

pack ⟨U,𝚲X. ⟨inX, outX⟩⟩ as Univ

Now, to make a choice for the predicate RU, one thing to decide is whether or not the predicate

should accept the result of inX unit when X is later instantiated to Unit (as in the counterexample).

However, whether or not this value can be legally embedded in U fundamentally depends on the

choice for RX ∈ Rel (Unit). Particularly, if RX = ∅, then it should be rejected, but if RX = {unit}
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then it should be accepted. Clearly, this is impossible if we need to choose RY before we know what

RX will be instantiated with.

So how do type-worlds fit into this picture? In a TWLR like that of Section 2.5, we still need to

make a choice for RY before a choice is made for RX . However, the type of RY is different now:

RY ∈ P(World × Val) with

∀ (W, v) ∈ R .∀ W′ ⊒ W . (W′, v) ∈ R and ∅; ∅ ⊢ v : 𝝉Y

Another way to think of this set is as World
𝑚𝑜𝑛−−−→ P(Val) : the set of monotone functions from

World to sets of values. In other words, RY is now a family of relations, and can decide which

values to accept based on the current type world W . This world W will contain choices of

predicates for other type variables, particularly the choice for RX . In each of the TWLRs where a

universal type is at play, the logical relation will accept different values depending on the world

W , thus solving the conundrum outlined above.

It is also interesting to consider what this means in practice, when proving theorems using

a formulation of parametricity. Many proofs go through with TWLRs as they do with RLRs, as

demonstrated, for example, by Ahmed et al. [2017]. However, this is not the case for all proofs and

Lemma 4.2 (Univ is degenerate) from Section 3.1 is a perfect example. To see this, let us try to adapt

the proof to use the TWLR from Section 2.5 instead of the RLR from Section 2.3, and see where

this fails. Interestingly, the place we get stuck is at the application of Lemma 2.9 (Boring lemma),

suggesting the theorem is not as boring as the name suggests.

When we look at how Lemma 2.9 (Boring lemma) was applied in the proof of Lemma 4.2, we see

that we were able to prove the following:

vU.1 unit ∈ E JYK∅,Y ↦→(𝝉Y,RY ),X↦→(Unit,RU)

Then, we used Lemma 2.9 (Boring lemma) twice, the first time to forget a binding for X, and the

second time to add a different binding for the same X:

E JYK∅,Y↦→(𝝉Y,RY ),X↦→(Unit,RU)
= E JYK∅,Y↦→(𝝉Y,RY ) = E JYK∅,Y↦→(𝝉Y,RY ),X↦→(Unit,RE)

We could then conclude that

vU.1 unit ∈ E JYK∅,Y ↦→(𝝉Y,RY ),X↦→(Unit,RE)

With the TWLR, these applications of the lemma cannot be replicated. Consider the following

worlds:

• Wyx1 = ((Y,𝝉Y,RY); (X,Unit,RU))
• Wyx2 = ((Y,𝝉Y,RY); (X,Unit,RE))

Clearly, Wyx2 AWyx1 (HPNF).

We can replicate the first steps of the proof until we have the following relation:

(Wyx1, vU).1 unit) ∈ E JYK

but the step to Wyx2 no longer holds:

(Wyx2, vU).1 unit) ∉ E JYK

We cannot use Lemma 2.13 (Boring lemma for TWLR) because of (HPNF).
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In other words, the use of a TWLR means that different terms may be valid at type Y in world

Wyx1 than in Wyx2 . This dependence of the relation for Y on the world is precisely what a

TWLR purposefully allows. As a result, it is impossible to transfer the result about v′ [Unit] from
the world Wyx1 (with the permissive predicate RU for X) to the world Wyx2 (with the more

restrictive predicate RE for X).

4.3 Degeneracy and Other Variants of Logical Relations
If we consider the other variants of the logical relation discussed in Section 2.4, our expectations

are essentially confirmed. We have seen in Section 3.2 that the degeneracy of Univ does not hold

in the presence of higher-order effects and indeed, the above proof fails if we use the Kripke logical

relation from Section 2.4, for a similar reason as for the TWLR.

For some W , we would be able to obtain the following two facts:

(W, v′ Unit) ∈ E JX→Y × Y→XK∅,Y↦→(𝝉Y,RY ),X↦→(Unit,RE)

(W, v′ Unit) ∈ E JX→Y × Y→XK∅,Y↦→(𝝉Y,RY ),X↦→(Unit,RU)

Combined with v′ Unit ↩→* vU, this gives us some W′
, for which

(W′, vU) ∈ V JX→Y × Y→XK∅,Y↦→(𝝉Y,RY ),X↦→(Unit,RE)

From the second expression relation above, we also get a W′′
such that

(W′′, vU) ∈ V JX→Y × Y→XK∅,Y↦→(𝝉Y,RY ),X ↦→(Unit,RU)

However, these two worlds W′
and W′′

are potentially distinct and one is not (necessarily) a

future world of the other, which will later prevent us from combining both facts later in the proof.

In Section 3.2, we have also seen that the value-polymorphic version of the same calculus with

higher-order state should preserve degeneracy of Univ. And indeed, using the value-polymorphic

KLR, we can proceed differently and deduce that v′ = ΛX. v′′
and

(W, v′′ [Unit/X]) ∈ V JX→Y × Y→XK∅,Y↦→(𝝉Y,RY ),X↦→(Unit,RE)

(W, v′′ [Unit/X]) ∈ V JX→Y × Y→XK∅,Y↦→(𝝉Y,RY ),X↦→(Unit,RU)

In other words, value polymorphism gives us these two facts immediately in the same world and

as a result, contrary to above, we can combine them in the remainder of the proof.

Thus, the different logical relation variants that we have discussed in Section 2 either prevent or

allow the proof of degeneracy of Univ, as appropriate for the language variant they are intended

for. In addition to confirming our analysis of the universal type in Section 3, this also provides more

insight into how the different logical relation variants influence the particular proof techniques

used in the proof outlined here.

In addition to clarifying the relation between TWLRs and non-lexically-scoped type variables,

this paper also discusses some consequences that follow from these insights. Particularly, the

example from Section 3.1 can be used to disprove two open conjectures and expose a previously

unmentioned deficiency of polymorphic blame calculi. In the next three sections, we discuss these

three topics in turn, starting with the secure compilation of System F in the cryptographic 𝜆-calculus,

a conjecture by Pierce and Sumii [2000]; Sumii and Pierce [2004].
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5 ENFORCING PARAMETRICITY IN AN UNTYPED TARGET LANGUAGE
Sumii and Pierce’s conjecture is about a compiler from 𝜆F

to an untyped lambda calculus with

sealing (idealised encryption) called 𝜆𝜎 . In this section, we first introduce the target language 𝜆𝜎

(Section 5.1) and the compiler from 𝜆F
to 𝜆𝜎 (Section 5.2). We then prove that the compiler is not

fully-abstract: there exist two terms that are contextually-equivalent in 𝜆F
but whose compilation

is inequivalent in 𝜆𝜎 (Section 5.3).

Remark. Sumii and Pierce have presented both a typed [Pierce and Sumii 2000] as well as an

untyped [Sumii and Pierce 2004] version of 𝜆𝜎 . We use the untyped version because it is quite

a bit simpler.
11
However, the typed version suffers from the same problem, as we show in detail

in the technical report. Essentially, both settings break degeneracy of Univ because they feature

a universal type: the unitype of all values in the untyped target language and the type bits of
ciphertexts produced by encryption (sealing) in the typed target language.

5.1 The Cryptographic Lambda Calculus 𝜆𝜎

𝜆𝜎 (Figure 2) is an untyped 𝜆-calculus, extended with sealing, which models a dynamic protection
mechanism such as (idealized) symmetric encryption [Sumii and Pierce 2004].

Syntax:

t ::= v | x | t t | t.1 | t.2 | ⟨t, t⟩ | if t then t else t

| 𝜈x.t | {t}t | 𝜎 | let {x}t = t in t else t | roll t | unroll t | wrong
v ::= unit | true | false | 𝜆x. t | ⟨v, v⟩ | {v}𝜎 | 𝜎 | roll v

Evaluation rules (excerpts):

𝜎 ∉ dom(h)
(h, E[𝜈x.t]) ↩→(h;𝜎, E[t[𝜎/x]])

𝜎 ≡ 𝜎 ′

let {x}𝜎 = {v}𝜎 ′ in t else t′ ↩→0 t[v/x]

𝜎 . 𝜎 ′

let {x}𝜎 = {v}𝜎 ′ in t else t′ ↩→0 t′
�v′, 𝜎 ′ . v ≡ {v′}𝜎 ′

let {x}𝜎 = v in t else t′ ↩→0 wrong

�𝜎. v ≡ 𝜎

let {x}v = v′ in t else t′ ↩→0 wrong

�𝜎. v′ ≡ 𝜎

{v}v′ ↩→0 wrong

t ↩→0 t′

(h, E[t]) ↩→(h, E[t′])

Fig. 2. 𝜆𝜎 syntax and evaluation rules (excerpts). A 𝜆𝜎 program state is a pair h; t where h is the list of
allocated seals. The semantics relation ↩→ relies on the beta reductions indicated as ↩→0, which do not require
a list of allocated seals to reduce.

Most syntactic constructs are standard for an untyped 𝜆-calculus. The term wrong models run-

time errors and is a stuck term. Sealing introduces four new syntactic constructs in the calculus:

11
The extra complexity in the typed version comes from the difficulty of erasing a polymorphic function to a simply typed

language, and from the fact that the compiler protects all type variables in a separate pass rather than using a single pass

for all type variables.
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𝜈x.t creates a fresh seal (symmetric encryption key) and then evaluates t with x bound to the newly
created seal. There is no surface syntax for seals, but the internal syntax 𝜎 represents run-time seal

values created with 𝜈x.t. The construct {t1}t2 first evaluates t1 and t2 to values v1 and v2 and then

creates the sealed value {v1}v2 (or leads to a run-time error if v2 is not a seal). One can think of

such a sealed value as v1 encrypted under v2. The final construct let {x}t1 = t2 in t3 else t4 is for
unsealing or decrypting. It first evaluates t1 to a seal 𝜎1 and t2 to {v2}𝜎2 (or produces a run-time

error if either result is not of that form). If 𝜎1 and 𝜎2 are equal, t3 is evaluated with x bound to the

decrypted value v2, otherwise t4 is evaluated.
Program contexts in 𝜆𝜎 are defined as for 𝜆F

and are denoted with C. Contextual equivalence in
𝜆𝜎 , indicated with ≃, is defined analogously to Definition 2.1. Note that the quantified contexts are

not allowed to contain literal seals (as they are internal syntax), but they are allowed to allocate

and use fresh seals of their own.

Sealing is the main information hiding mechanism in 𝜆𝜎 : by creating a new seal 𝜎 and making

sure it does not leak to the context, a term can create values {v}𝜎 that are opaque to the context.

Pierce and Sumii [2000] explain how one can use this information hiding mechanism to implement

a protection similar to that offered by parametric polymorphism. For instance, the following

implementation of Z3 from Example 2.2 in terms of pairs of booleans, uses sealing to protect the

abstraction.

Example 5.1 (Z3 in 𝜆𝜎 ). First, we introduce two helper functions:

seal𝜎
def
= 𝜆y. {y}𝜎 unseal𝜎

def
= 𝜆y. let {x}𝜎 = y in x else wrong

Then, we can define a 𝜆𝜎 correspondent of z3 as:

z3 =𝜈s. ⟨⟨zero, succ⟩ , zero?⟩

where


zero = seals ⟨false, false⟩
succ = 𝜆p. if (unseals p).2 then seals ⟨false, false⟩ else

if (unseals p) .1 then seals ⟨false, true⟩ else seals ⟨true, false⟩
zero? = 𝜆p. if (unseals p).1 then false else if (unsealsp).2 then false else true

Whenever values of the abstract type leave the scope of the abstract type definition, they are

encrypted, and when they are passed back in they are decrypted before use. Intuitively, one can see

that this protects against a context looking into or tampering with representation values, similarly

to the protection offered by type checking of parametric polymorphism.

Also the protection required for the dual case, where a term calls a universally quantified function

provided by the context, can be implemented in 𝜆𝜎 . Consider for instance the 𝜆F
term:

𝝀f : ∀X.X×X → X. if f Bool ⟨true, true⟩ then true else false

The polymorphic function f that will be passed in by the context, can only return one of its

arguments (or diverge), and hence the invocation in the term above will necessarily return true (or

diverge).

We can implement a similar protection in 𝜆𝜎 . To enforce parametric behaviour of a polymorphic

function received from the context, we create a new seal for every invocation, and we encrypt all

parameters of the quantified type with that seal. For instance, the term above could be implemented

in 𝜆𝜎 as follows:

𝜆f . if 𝜈s.unseals (f ⟨seals true, seals true⟩) then true else false
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Before calling f, its arguments are encrypted with a new seal, and the return value gets decrypted

with that seal, hence all that f can do is either return one of its arguments or diverge (doing anything

else would lead to a run-time error).

Again, this gives us a dynamic guarantee that a function has to treat its arguments opaquely,

where parametric polymorphism gives us this guarantee statically by type checking. This technique
of dynamically protecting values with appropriately scoped seals is the essence of the idea behind

Sumii and Pierce’s compiler for 𝜆F
.

5.2 Sumii and Pierce’s Compiler

The compiler J·K𝜆
F

𝜆𝜎 first performs standard type erasure (function erase (·)) and then wraps it with

a dynamic check (protect𝜂;𝜏 ) that will insert dynamic applications of sealing and unsealing:

if ∅; ∅ ⊢ t : 𝝉 , then JtK𝜆
F

𝜆𝜎
def
= let x = erase (t) in protect∅;𝜏 x

Note that we restrict the compiler to closed terms here. Lifting this limitation is quite straightforward,

as presented by Devriese et al. [2017].

We now present these steps and discuss their meaning. These definitions are taken from Sumii

and Pierce [2004], except that we make some notational changes and some minor technical changes.

Type erasure. This pass is mostly straightforward, the only non-trivial aspect is how to deal with

the quantified types. Type abstraction and application are erased to a dummy lambda abstraction

and an application to a unit parameter, and unpacking is erased to a let-binding.12

erase (x) def
= x erase (t 𝜏 ′) def

= erase (t) unit

erase (𝚲X. t) def
= 𝜆_. erase (t) erase (pack ⟨𝝉 ′, t⟩ as ∃X.𝝉 ) def

= erase (t)

erase (𝝀x : 𝝉 . t) def
= 𝜆x. erase (t) erase (unpack t as ⟨X, x⟩ in t′) def

= let x = erase (t) in erase (t′)

Dynamic wrappers. The second phase of the compiler wraps compiled terms with dynamic

wrappers. These are formalised as the function protect𝜂;𝝉 , which is defined in Figure 3, together

with its dual confine𝜂;𝝉 by mutual induction on 𝝉 . We use the names protect and confine (following
Devriese et al. [2016]) to refer to the wrappers that Sumii and Pierce call E+

and E−
respectively

[Sumii and Pierce 2004].

Intuitively, applying protect𝜂;𝝉 to a value v ensures that v cannot be used in ways that are not

allowed by type 𝝉 . Dually, applying confine𝜂;𝝉 to a value v prevents v from behaving in a way

that is not allowed by type 𝝉 . For any free type variables X in 𝝉 , 𝜂 tells us how to protect/confine

values of type X. Concretely, 𝜂 (X) = (tp, tc) where tp and tc are untyped terms that should be

applied to protect/confine (respectively) values of type X. Formally, 𝜂 has the following syntax:

𝜂 ::= ∅ | 𝜂,X ↦→ (t, t).
For defining protect; and confine; we rely on the following seal𝜎 and unseal𝜎 functions, which

seal and unseal values with a given seal 𝜎 .

seal𝜎
def
= 𝜆y. {y}𝜎 unseal𝜎

def
= 𝜆y. let {x}𝜎 = y in x else wrong

Protecting at a function type confines the argument and protects the result with the same polarity,

and similarly for confining at a function type. Confining at ground type inserts a dynamic check

that the confined value is indeed of the expected type (unit or true/false). If any of these checks

fail, the term reduces to wrong. Protecting at a ground type does nothing, because there is no way

for the context to use such values that is not allowed by the type.

12
We are assuming a standard desugaring of let expressions to function applications.
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protect𝜂;Unit x
def
= x

protect𝜂;Bool x
def
= x

protect𝜂;𝝉1×𝝉2 x
def
= let x1 = x.1 in let x2 = x.2 in

〈
protect𝜂;𝝉1 x1, protect𝜂;𝝉2 x2

〉
protect𝜂;𝝉1→𝝉2 x

def
= 𝜆y. let z = x (confine𝜂;𝝉1 y) in protect𝜂;𝝉2 z

protect𝜂;∀X.𝝉 x
def
= 𝜆_. let y = x unit in protect𝜂,X↦→(𝜆x.x,𝜆x.x) ;𝝉 y

protect𝜂;∃X.𝝉 x
def
=𝜈s. protect𝜂,X↦→(seals,unseals ) ;𝝉 x

protect𝜂;X x
def
= tp x where 𝜂 (X) = (tp, _)

confine𝜂;Unit x
def
= x; unit

confine𝜂;Bool x
def
= if x then true else false

confine𝜂;𝝉1×𝝉2 x
def
= let x1 = x.1 in let x2 = x.2 in

〈
confine𝜂;𝝉1 x1, confine𝜂;𝝉2 x2

〉
confine𝜂;𝝉1→𝝉2 x

def
= 𝜆y. let z = x (protect𝜂;𝝉1 y) in confine𝜂;𝝉2 z

confine𝜂;∀X.𝝉 x
def
= 𝜆_. 𝜈s. let x′ = x unit in confine𝜂,X↦→(seals,unseals ) ;𝝉 x′

confine𝜂;∃X.𝝉 x
def
= confine𝜂,X↦→(𝜆x.x,𝜆x.x) ;𝝉 x

confine𝜂;X x
def
= tc x where 𝜂 (X) = (_, tc)

Fig. 3. The dynamic wrappers of Sumii and Pierce’s compiler.

Protecting at type ∀X.𝝉 does nothing but forward the dummy unit application and recursively

protect at type 𝝉 . This is because there is nothing to protect: intuitively, the context cannot use a

term of type ∀X.𝝉 in a way that is not allowed by the type. Similarly, confining at an existential

type ∃X.𝝉 just recurses over type 𝝉 without doing anything special for values of type X, because

there is intuitively no way for a value of type ∃X.𝝉 to behave that is not allowed by the type.

Finally, when protecting a term of type ∃X.𝝉 , we want to make sure that the context treats the

type X opaquely, so values of type X are sealed (encrypted) with a fresh seal 𝜎 . Similarly, confining

at type ∀X.𝝉 generates a fresh seal for every invocation to protect values of type X with. This is

the idea we have explained before in Section 5.1.

Applying the compiler to z3 from Example 5.1 results in the 𝜆𝜎 term z3 from Example 2.2 (modulo

some additional 𝛽-reductions).

5.3 Disproving the Sumii-Pierce Conjecture

Sumii and Pierce conjectured that their compiler J·K𝜆
F

𝜆𝜎 is fully abstract. In other words, two 𝜆F

terms are contextually equivalent if and only if they are compiled to equivalent 𝜆𝜎 terms.

Conjecture 5.2 (Sumii and Pierce). ∅; ∅ ⊢ t1 ≃ t2 : 𝝉 if and only if ∅ ⊢ Jt1K𝜆
F

𝜆𝜎 ≃ Jt2K𝜆
F

𝜆𝜎

However, we can now prove that this conjecture is false. A counterexample is given by the terms

tu and t𝝎 which we proved contextually equivalent in Theorem 3.1. Compiling tu and t𝝎 does not

produce contextually equivalent 𝜆𝜎 terms:

Theorem 5.3 (tu and t𝝎 are not eqivalent after compilation to 𝜆𝜎 ). ∅ ⊢ JtuK𝜆
F

𝜆𝜎 ; Jt𝝎K𝜆
F

𝜆𝜎
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Proof Sketch. A full proof with all details can be found in the supplementary material.

The terms JtuK𝜆
F

𝜆𝜎 and Jt𝝎K𝜆
F

𝜆𝜎 can be discriminated by the following context:

C
def
= [·] (𝜆_. ⟨𝜆x. x, 𝜆x. x⟩)

To understand the role of this context, recall that the contextual equivalence of tu and td relies on

the degeneracy of type Univ. The context C breaks this assumption by invoking the terms with

a non-degenerate value of type Univ, which is constructed by using the unitype of all untyped

values as a universal type.

By unfolding definitions and executing the operational semantics, it is easy to check that we get

the following behaviour.

C
[
JtuK𝜆

F

𝜆𝜎

]
↩→* unit C

[
Jt𝝎K𝜆

F

𝜆𝜎

]
↩→* (𝜆r. r) 𝜔 ↩→* (𝜆r. r) 𝜔 ↩→* · · · ⇑

We spell out the reductions in full detail in the supplementary material. From this behaviour, it

follows immediately that the terms are not contextually equivalent. 2

We can thus prove that Sumii and Pierce’s conjecture is false as follows.

Theorem 5.4 (J·K𝜆
F

𝜆𝜎 is not fully abstract). It is not true that

∀t1, t2.t1 ≃ t2 ⇐⇒ Jt1K𝜆
F

𝜆𝜎 ≃ Jt2K𝜆
F

𝜆𝜎

Proof. Follows easily from Theorem 3.1 and the counterexample in Theorem 5.3. □

The problem is in the easy case. It is worth noticing that most of the work in Sumii and Pierce’s

compiler (see Fig. 3) is in enforcing that existentially quantified types passed to the context are

treated opaquely and, dually, that polymorphic functions received from the context are forced

to treat their argument type opaquely. However, it is not in these cases that the counterexample

highlights a problem.

Instead, it goes wrong in the cases where we receive an existential type from the context (and

dually when we pass a polymorphic function to the context). For these seemingly simple cases,

the dynamic wrappers from Fig. 3 do not perform any specific kind of enforcement (except for

recursing on their body type). However, it is there that our counterexample uncovers a problem: the

value that it provides as a value of Univ = ∃Y.∀X. (X→Y)×(Y→X) does not correspond to any

legal choice of Y, but the dynamic type wrappers have no way to detect this. In fact, an alternative

way to understand what goes wrong is that the value 𝜆_. ⟨𝜆x. x, 𝜆x. x⟩ provided by the context,

behaves as if it can choose Y equal to X. However, this is not possible in 𝜆F
because X is not in

scope at the moment when Y needs to be chosen.

In other words, what seems to be missing in Sumii and Pierce’s dynamic enforcement is an

enforcement of the type variable scope of existentially quantified types. To see this, consider the

following type Triv, which is identical to Univ, except for the order of the quantifiers:

Univ def
= ∃Y.∀X. (X→Y)×(Y→X) Triv def

= ∀X. ∃Y. (X→Y)×(Y→X)

Even though the type Triv is more liberal, as it allows to instantiate Y with X, the wrappers of

Fig. 3 treat the types essentially the same. From this perspective, it is no surprise that the value

𝜆_. ⟨𝜆x. x, 𝜆x. x⟩ is accepted as a value of type Univ, because it does in fact correspond to a legal 𝜆F

value of type Triv:

𝚲X. pack ⟨X, ⟨𝝀x : X. x,𝝀x : X. x⟩⟩ as ∃Y. (X→Y)×(Y→X)

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: June 2022.



0:28 Dominique Devriese, Marco Patrignani, and Frank Piessens

6 ENFORCING PARAMETRICITY IN THE PRESENCE OF TYPE CASTS
The second conjecture we disprove is by Neis et al. [2009, 2011]. These authors study a form

of runtime type generation to protect parametrically polymorphic functions when interacting

with code that can use a type cast primitive. They prove a parametricity result that applies to

appropriately wrapped System F values once embedded in G, a language with a type cast primitive.

They conjecture [Neis et al. 2009, section 10] that this wrapping is fully abstract, andwhile they prove

equivalence reflection, they only conjecture equivalence preservation due to a lack of sophistication

of the proof techniques available at the time.
13

It turns out that our results may be adapted to this setting, as in such a non-parametrically

polymorphic setting, the type ∀X. X can be used as a universal type (that every other type can be

embedded into or out from). In other words, we disprove this conjecture too: embedding System F

into G à la Neis-Dreyer-Rossberg (NDR, in the sequel) is not fully abstract.

We first present G (Section 6.1) and the wrapper for protecting polymorphic functions from

interacting with G terms (Section 6.2). Then we demonstrate how ∀Z. Z is a universal type in G
(Section 6.3) and prove that due to that type, the wrapper does not preserve contextual equivalence

(Section 6.4).

6.1 The G Language
G extends System F with two primitives (Figure 4). The first one casts values of type 𝜏1 to values

of type 𝜏2. The second one generates a fresh type name X that is registered to be an equivalent

classifier to a type 𝜏 although data of the two types is not equivalent (so casting between X and 𝜏
will not succeed).

6.2 Enforcing Parametricity in G

To avoid much code repetition, we use the same notation for the wrapper as that used by Neis

et al. [2009]. Instead of writing two recursive functions such as protect; and confine;, we annotate
the wrapper with a polarity: positive polarity (+) is analogous to protect;, negative polarity (−) is
analogous to confine;. When the other function is invoked, the polarity is switched (i.e., from ±
to ∓).

W
±
𝝉 (t) = let x = t inWrap

±
𝝉 (x)

Wrap
±
X (v) = v

Wrap
±
Bool (v) = v

Wrap
±
𝝉→𝝉 ′ (v) = 𝜆x : 𝜏 .W±

𝝉 ′
(
(v Wrap

∓
𝝉 (x))

)
Wrap

±
𝝉×𝝉 ′ (v) =

〈
W

±
𝝉 (v.1),W±

𝝉 ′ (v.2)
〉

Wrap
±
∀X.𝝉 (v) = ˜X.NewTy∓X in W

±
𝝉 ((v X))

Wrap
±
∃X.𝝉 (v) = unpack v as ⟨X, x⟩ in NewTy

±X in pack
〈
X,Wrap

±
𝝉 (x)

〉
as ∃X. 𝜏

NewTy
+X in t = new Y ≈ X in t[Y/X]

NewTy
−X in t = t

The wrapper consists of three parts. The first one, W
±
𝝉 (t), is the term wrapper, it reduces a term t

of source type 𝝉 to a value and applies the value wrapper. The second one, Wrap
±
𝝉 (v), is the value

wrapper, it is responsible for generating the fresh type variables for outgoing universal values and

13
A claim that was indeed true, since much of the research in proof techniques for fully abstract compilation postdates that

paper [Abate et al. 2019; Ahmed and Blume 2011; Devriese et al. 2016; Fournet et al. 2013; New et al. 2016b; Patrignani and

Garg 2019; Schmidt-Schauß et al. 2015]. An exception is the work by Ahmed and Blume [2008] on typed closure conversion.
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Syntax:

t ::= · · · | cast 𝜏1 𝜏2 | new X ≈ 𝜏 in t

´ ::= ∅ | ´, X | ´, X ≈ 𝜏

˚ ::= ∅ | ˚, X ≈ 𝜏

Typing rules (excerpts):

´ ⊢ 𝜏1 ´ ⊢ 𝜏2
´; ` ⊢ cast 𝜏1 𝜏2 : 𝜏1 → 𝜏2 → 𝜏2

´, X ≈ 𝜏 ; ` ⊢ t : 𝜏 ′

´; ` ⊢ new X ≈ 𝜏 in t : 𝜏 ′

´; ` ⊢ t : 𝜏 ′ ´ ⊢ 𝜏 ≈ 𝜏 ′

´; ` ⊢ t : 𝜏

𝜏 ≈ 𝜏 ′ ∈ ´

´ ⊢ 𝜏 ≈ 𝜏 ′

Evaluation rules (excerpts):

𝜏1 = 𝜏2

˚ ⊲ cast 𝜏1 𝜏2 ↩→0 ˚ ⊲ 𝜆x1 : 𝜏1 . 𝜆x2 : 𝜏2 . x1

𝜏1 ≠ 𝜏2

˚ ⊲ cast 𝜏1 𝜏2 ↩→0 ˚ ⊲ 𝜆x1 : 𝜏1 . 𝜆x2 : 𝜏2 . x2 ˚ ⊲ new X ≈ 𝜏 in t ↩→0 ˚, (X ≈ 𝜏) ⊲ t

Fig. 4. The G language: syntax, typing rules and evaluation rules (excerpts). The semantics relation ↩→ relies
on the primitive reductions indicated as ↩→0 and it relates configurations of the form ˚ ⊲ t

incoming existential packages. The third one, NewTy
±X in t is the code that effectively generates

the fresh type variables, depending on the polarity of the invocation. As the authors themselves

note, the wrapper functions in a way analogous to the dynamic checks inserted by the Sumii-Pierce

compiler.

The compiler from 𝜆F
to G, denoted with H·I, leaves the term untouched (which we indicate with

≡) and wraps it with a wrapper of the appropriate type.

HtI def
=W

+
𝝉 (t) if ∅; ∅ ⊢ t : 𝝉 and t ≡ t

The NDR conjecture (Conjecture 6.1) states that this wrapper is fully abstract. Contextual

equivalence in G, indicated with ≃, is defined analogously to Definition 2.1.

Conjecture 6.1 (NDR Conjecture). ∀t1, t2.t1 ≃ t2 ⇐⇒ Ht1I≃ Ht2I

We will prove that this statement is not true (Theorem 6.3).

6.3 G has an Instance of an Universal Type: ∀Z. Z
To explain how we disprove the NDR conjecture, we need to explain that G indeed has a universal

type (unlike System F). This type is ∀Z. Z and it functions as a universal type because we can take

any other type X and (i) embed a value v of type X into ∀Z. Z, (ii) extract the same value v from ∀Z. Z
at type X. It is possible to do this while remaining parametric in the type X that these functions

work with, i.e., keeping type variable X free in these terms and binding it in a larger term using

both these functions.

These two functionalities will be key for building a distinguishing context for Gwhich is analogous
to the distinguishing contexts of for 𝜆𝜎 and 𝜆B

(the latter will be presented later). A value v of an
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©«
©«ΛX. 𝜆x : X.

©«
(𝜆x2 : ∀X0 . X0 . x2 X)((
𝜆x : X. ˜Y.

(
cast (Unit → X) (Unit → Y)
(𝜆_ : Unit. x) (𝜆_ : Unit. 𝜔X)

)
unit

)
x

)ª®®¬
ª®®¬ Bool

ª®®¬ true

↩→
©«𝜆x : Bool.

©«
(𝜆x2 : ∀X0 . X0 . x2 Bool)((
𝜆x : Bool. ˜Y.

(
cast (Unit → Bool) (Unit → Y)
(𝜆_ : Unit. x) (𝜆_ : Unit. 𝜔X)

)
unit

)
x

)ª®®¬
ª®®¬ true

↩→
©«
(𝜆x2 : ∀X0 . X0 . x2 Bool)((
𝜆x : Bool. ˜Y.

(
cast (Unit → Bool) (Unit → Y)
(𝜆_ : Unit. x) (𝜆_ : Unit. 𝜔X)

)
unit

)
true

)ª®®¬
↩→

(
(𝜆x2 : ∀X0 . X0 . x2 Bool)(
˜Y.

(
cast (Unit → Bool) (Unit → Y) (𝜆_ : Unit. true) (𝜆_ : Unit. 𝜔X)

)
unit

))
↩→

( (
˜Y.

(
cast (Unit → Bool) (Unit → Y) (𝜆_ : Unit. true) (𝜆_ : Unit. 𝜔X)

)
unit

)
Bool

)
↩→ (cast (Unit → Bool) (Unit → Bool) (𝜆_ : Unit. true) (𝜆_ : Unit. 𝜔X)) unit

↩→ ((𝜆y1 : (Unit → Bool). 𝜆y2 : (Unit → Bool). y1) (𝜆_ : Unit. true) (𝜆_ : Unit. 𝜔X)) unit

↩→* (𝜆_ : Unit. true) unit
↩→ true

Fig. 5. Reductions of the combination of the two functionalities.

arbitrary type 𝜏 is represented as a value of type ∀Z. Z. The cast operator in G allows us to make

this function behave differently when it is applied to type 𝜏 than when it is applied to other types.

In the former case, we will make the function return v itself, while in the latter case, we simply

make the function diverge.

Concretely, to extract a value from ∀Z. Z into X, we simply apply the polymorphic function to

type X:

𝜆z : (∀Z. Z). z X

Injecting a value of type from X into ∀Z. Z is a bit more complex. What we would like to write is

the following:

𝜆x : X. ˜Z. cast X Z x 𝜔Z

This term uses the cast · · primitive to cast a value of type X into ∀Z. Z. If everything goes well,
the requested type Z is the same as the type X of the value contained, and the constructed function

returns x. Otherwise, it diverges by calling 𝜔Z.

Unfortunately, the above does not work as intended because we are in a call-by-value setting, so

𝜔Z is evaluated before checking the type equality and the whole term always diverges. Fortunately,

this can be resolved by the standard trick of “thunking” the term and the expected value x into

lambdas that expect a Unit value, and pass unit to them after the cast:

𝜆x : X. ˜Z. (cast (Unit → X) (Unit → Z) (𝜆_ : Unit. x) (𝜆_ : Unit. 𝜔Z)) unit

To see how these functions work in practice in our counterexample, we build a term that uses

them in order to inject true of type Bool into ∀Z. Z and extract true back. The term and its

reductions are in Figure 5.
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6.4 Disproving the NDR Conjecture
We now have all the technical machinery to disprove the NDR conjecture.

Compiling tu to G results in a complex term that is equivalent to the following one, where,

for simplicity, we have elided some redundant sub-terms that do not alter the semantics of the

overall-term. As a convention we name variables and type variables from the wrapper with y. The
first line is the tu term ported to G, the second and third lines (as well as the wrapping lambda)

are wrapper-generated code. This code will take the parameter that needs to be passed to tu and

perform a series of unpacking and type renaming which are intended to preserve parametricity.

𝜆x1 : Univ.

©«
(𝜆x : Univ. unpack x as ⟨Y, x′⟩ in let x′′ = x′ Unit in x′′ .2 (x′′ .1 unit))

©«
unpack x1 as ⟨X1, x4⟩ in

pack

〈
X1, ˜X2 . new X3 ≈ X2 in

〈
𝜆x5 : X3 .(x4 X3).1 x5,

𝜆x6 : X1 .(x4 X3).2 x6

〉〉
as Univ

ª®®¬
ª®®®®¬

The distinguishing context for G passes a parameter of type Univ to the term in the hole (which

will be either HtuI or Ht𝝎I). The goal of this parameter is to make HtuI terminate and Ht𝝎I diverge.
Let us discuss the passed parameter. Since Univ is an existential type at the top level, the parameter

is a pack ⟨·⟩ as ·. The packed type is the universal type that exists in G: ∀Z. Z. After the existential,
Univ has a universal quantification, and thus the body of the existential package contains a ˜Z. ·.
Then comes the pair of functions for projecting into and extracting from the universal type ∀Z. Z,
as explained in Section 6.3. As a convention, we name variables and type variables from the context

with z:

CG
def
= [·]

©«pack
〈
∀Z. Z, ˜Z1.

〈
𝜆z1 : Z1.ΛZ2.

(
cast (Unit → Z1) (Unit → Z2)
(𝜆_ : Unit. z1) (𝜆_ : Unit. 𝜔Z2)

)
unit,

𝜆z2 : (∀Z. Z). z2 Z1

〉〉
as Univ

ª®®¬
Theorem 6.2 (HtuI and Ht𝝎I are not eqivalent in G). HtuI ; Ht𝝎I

Proof. We have that CG
[
HtuI

]
↩→* unit while CG

[
Ht𝝎I

]
⇑. □

Theorem 6.3 (Embedding 𝜆F
into G is not fully abstract). It is not true that

∀t1, t2.t1 ≃ t2 ⇐⇒ Ht1I≃ Ht2I

Proof. Follows directly from Theorem 6.2 and Theorem 3.1. □

Additional instances of universal types in G. ∀Z. Z is not the only universal type in G. The type ∃X.X
works just as well and might be more intuitive to some readers. The context below is analogous to

the one above and can also differentiate between the compilation of tu and of t𝝎 .

CG
def
= [·]

(
pack ⟨∃X.X, ˜Z. ⟨inj, ext⟩⟩ as Univ

)
inj

def
= 𝜆z : Z. pack ⟨Z, z⟩ as ∃X.X

ext
def
= 𝜆z : (∃X.X). unpack z as ⟨U, u⟩ in

(
cast (Unit → U) (Unit → Z)
(𝜆_ : Unit. u) (𝜆_ : Unit. 𝜔Z)

)
unit

7 SYSTEM F EQUIVALENCES VS. GRADUAL TYPES
After discussing these conjectures, we turn our attention to polymorphic gradual calculi: gradually

typed languages featuring parametric polymorphism. As explained in the introduction, gradually-

typed languages provide a path for migrating codebases of untyped code to typed code. From this
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high-level idea, a number of natural design goals follow and the literature contains a number of

correctness properties that formally express these objectives.

First, gradual languages are intended to preserve the semantics of existing typed and untyped

code. Additionally, turning untyped programs into typed ones by adding correct (!) type signatures

should not modify the semantics of programs. Without going into detail (because it is not relevant

for our discussion), Siek et al. [2015] formalise these objectives as a number of formal criteria for

gradually-typed languages, which include the gradual guarantee.
Another high-level design goal of gradually-typed languages is that the typed components

continue to enjoy the benefits of well-typedness in the presence of untyped other components.

Wadler and Findler [2009] have proposed the Blame Theorem that expresses this property when

it comes to one such benefit: the absence of type errors at runtime. Gradual languages rely on

dynamic casts (which can fail at runtime) to coerce untyped values into typed ones. Wadler and

Findler add a notion of blame, which is essentially a way to identify the type cast that caused a

runtime type error. The Blame Theorem then expresses that well-typed components are never to

blame for such failures, i.e., the property that well-typed components never cause runtime type

errors remains valid in the gradual language.

Jacobs et al. [2021] have recently argued the importance of on another benefit of well-typedness

that has received less attention so far: the benefits that well-typedness provides in terms of reasoning.

Many type systems allow us to deduce properties of components from their types, for example, the

function 𝝀x : Unit. x is easily seen to be equivalent to 𝝀x : Unit. unit, based on the terms’ types.

Formulations of System F parametricity similarly allows us to deduce properties from programs’

types.

Jacobs et al. propose a criterion that requires gradual type systems to preserve the validity of

such reasoning in the original typed language. Specifically, the criterion requires that contextual

equivalences between typed terms continue to hold when these terms are considered in the gradual

language. Formally, there is an embedding of 𝜆F
terms t into 𝜆B

terms that we will denote as ⌊t⌋. The
criterion then becomes: if t1 ≃ t2, do we have that ⌊t1⌋ ≃ ⌊t2⌋, or, in other words, is the embedding

of the typed language into the gradual language fully abstract? Based on this view, Jacobs et al.

refer to their criterion as the Fully Abstract Embedding (FAE) criterion.

In this section, we show that the criterion fails for the polymorphic blame calculus, which extends

System F into a gradually typed language. We first present Ahmed et al.’s 𝜆B
, a gradually-typed,

polymorphic lambda-calculus (Section 7.1). Next, we reconsider tu and t𝝎 from Theorem 3.1 in 𝜆B

and present a 𝜆B
context that differentiates them (Section 7.2). This shows that the embedding of

𝜆F
into 𝜆B

is not fully abstract.
14

7.1 The 𝜆B Calculus
There exist several versions of polymorphic gradual languages in the literature [Ahmed et al. 2011b,

2017; Igarashi et al. 2017; New et al. 2019a; Toro et al. 2019; Xie et al. 2018]. We take 𝜆B
to be the

polymorphic blame calculus as described by Ahmed et al. [2017]. This version modifies certain

behaviour that was “topsy turvy” in the original version [Ahmed et al. 2011b]: a peculiar operational

semantics that performs evaluation under type and value abstractions and an ad hoc postponing of

run-time type generation in certain situations.

The syntax of 𝜆B
is presented in Fig. 6. The calculus contains all terms and types of 𝜆F

except

for existentials. However, we can use a standard encoding of existentials in terms of universals as

14
As mentioned, to the best of our knowledge this is not an existing conjecture that we disprove.
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Syntax:

Terms t ::= v | if t then t else t | x | t t | t 𝜏 | t .1 | t .2 | ⟨t, t⟩

| t : 𝜏
p
=⇒ 𝜏 | t : 𝜏

𝜙
=⇒ 𝜏 | blame p

Values v ::= unit | true | false | 𝜆x : 𝜏 . t | ΛX . v | ⟨v, v⟩

| v : 𝜏 → 𝜏
𝜙
=⇒ 𝜏 → 𝜏 | v : ∀X . 𝜏

𝜙
=⇒ ∀X . 𝜏 | v : 𝜏

¬𝛼
===⇒ 𝛼

| v : 𝜏 → 𝜏
p
=⇒ 𝜏 → 𝜏 | v : 𝜏

p
=⇒ ∀X . 𝜏 | v : 𝛾

p
=⇒ ★

Types 𝜏 ::= Unit | Bool | 𝜏 × 𝜏 | 𝜏 → 𝜏 | ∀X .𝜏 | X | 𝛼 | ★
Ground types 𝛾 ::= Unit | Bool | 𝛼 | ★×★ | ★→ ★

Convertibility labels 𝜙 ::= 𝛼 | ¬𝛼
Compatibility labels p ::= l | ¬l

Fig. 6. The polymorphic blame calculus [Ahmed et al. 2017]. Note: we have adapted notations, added the
Unit type and removed the int type to align more closely with other calculi in this paper.

follows [Pierce 2002, §24.3, pp. 377-379]:

∃X . 𝜏
def
= ∀Y . (∀X . 𝜏 → Y ) → Y

pack ⟨𝜏 ′, t⟩ as ∃X . 𝜏
def
= ΛY . 𝜆f : (∀X . 𝜏 → Y ). f [𝜏 ′] t

unpack t1 as ⟨X , x⟩ in t2
def
= t1 [𝜏2] (ΛX . 𝜆x : 𝜏1. t2) where t1 : ∃X . 𝜏1 and t2 : 𝜏2

Even though existentials under this encoding are not entirely equivalent to regular existentials

in our non-terminating calculus (because they contain a kind of bottom value), we can adapt our

counterexample without trouble.

Then, 𝜆B
contains a number of constructs to let typed and untyped code coexist. First we have the

type ★: the type of untyped values. Untyped code can be typed with respect to the single, universal

type ★. 𝜆B
provides both a notion of casts (t : 𝜏

p
=⇒ 𝜏 ′) and a notion of conversions (t : 𝜏

𝜙
=⇒ 𝜏).

Casts (t : 𝜏
p
=⇒ 𝜏 ′) represent a form of dynamic casts from 𝜏 to 𝜏 ′ that can potentially fail at

runtime (in which case blame p is raised). Casts can be used to inject types 𝜏 into the universal

type ★ and also to extract those types out of ★ again. More generally, they can be used to convert

between any types 𝜏 and 𝜏 ′ that satisfy a compatibility judgement Σ;∆ ⊢ 𝜏 ≺ 𝜏 ′, but we omit details

for this because they are not relevant for our discussion. As part of the design that solves certain

topsy-turvy aspects of the operational semantics in previous versions, 𝜆B
carefully defines some

casts as values: those where the term being cast is a value and the cast is either (1) between function

types, (2) towards a polymorphic function type or (3) from a ground type 𝛾 into ★.

Polymorphic function application in 𝜆B
does not use type substitution like in System F, but uses

a notion of runtime type generation instead. Full details are not relevant for our discussion, but

essentially, a polymorphic function application (ΛX . 𝜆x : X . x) Unit does not reduce to 𝜆x : Unit . x
but to 𝜆x : 𝛼. x for a fresh runtime type label 𝛼 , where the assignment 𝛼 := Unit is remembered

in a type-name store Σ. Conversions (t : 𝜏
𝜙
=⇒ 𝜏 ′) represent a notion of static casts for converting
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between such a runtime type label 𝛼 and the type that is assigned to it in the store Σ. More

generally, a convertibility judgement Σ;∆ ⊢ 𝜏 ≺𝜙 𝜏 ′ defines when 𝜏 can be legally converted into 𝜏 ′

by expanding (+𝛼 ∈ 𝜙) or reducing (−𝛼 ∈ 𝜙) runtime type labels’ definitions.

7.2 Embedding of 𝜆F into 𝜆B is not Fully Abstract
To embed 𝜆F

(defined in Section 2.1) into 𝜆B
, most constructs can simply be mapped to the corre-

sponding construct in 𝜆B
. However, there is a discrepancy between type abstractions in 𝜆B

and 𝜆F
.

The difference is that 𝜆B
uses value polymorphism: the bodies of type abstractions are required to

be values. This choice has some desirable consequences, particularly that type abstractions and

applications can be removed entirely during type erasure.

The difference is essentially orthogonal to the topics of this paper, but we are unable to standardise

on using value polymorphism or not, because the non-parametrically polymorphic language G from
the previous section and the polymorphic blame calculus 𝜆B

make different choices and would both

be non-trivial to modify.

Therefore, we embed polymorphic functions from 𝜆F
into 𝜆B

by introducing a form of thunking

for polymorphic functions: the type ∀X.𝝉 is mapped to ⌊∀X.𝝉⌋ def
= ∀X .Unit → ⌊𝝉⌋ and type

abstractions 𝚲X. t are mapped to ⌊𝚲X. t⌋ def
= ΛX . 𝜆_. ⌊t⌋.

Our two contextually equivalent System F terms tu and t𝝎 embed into 𝜆B
as ⌊tu⌋ and ⌊t𝝎⌋. In

this section, we show that they do not remain contextually equivalent, showing that the embedding

is not fully abstract. Similarly to before, we can construct a 𝜆B
context CB

that differentiates them.

As before, the context simply applies the terms to a non-degenerate value of type Univ, which we

can construct thanks to the existence of the universal type ★:

CB def
= [·]

(
pack

〈
★,ΛX .

〈
𝜆x : X . x : X

p
=⇒ ★, 𝜆x : ★. x : ★

p′
==⇒ X

〉〉
as Univ

)
The constructed Univ value simply takes ★ as the existentially quantified universal type and uses

casts to implement the functions from an arbitrary X into ★ and back.

In the following, contextual equivalence in 𝜆B
, indicated with ≃, is defined analogously to

Definition 2.1.

Theorem 7.1 (⌊tu⌋ and ⌊t𝝎⌋ are not eqivalent in 𝜆B
). ⌊tu⌋ ; ⌊t𝝎⌋.

Proof. We have that CB
[
⌊tu⌋

]
↩→* unit while CB

[
⌊t𝝎⌋

]
⇑. We have verified this on paper and

using the interpreter provided by Jamner and Siek to support Ahmed et al. [2017]’s results.
15

16
We provide the literal encoding of CB

[
⌊tu⌋

]
and CB

[
⌊t𝝎⌋

]
for use in the interpreter in the

supplementary material. □

Theorem 7.2 (Embedding 𝜆F
into 𝜆B

is not fully abstract). It is not true that

∀t1, t2.t1 ≃ t2 ⇐⇒ ⌊t1⌋ ≃ ⌊t2⌋

Proof. Follows directly from Theorem 7.1 and Theorem 3.1. □

Although the above discussion looks just at 𝜆B
by Ahmed et al. [2017], our results also apply to

the more recent polymorphic gradual languages proposed by Toro et al. [2019], New et al. [2019a]

and Xie et al. [2018].

15
Available at http://www.ccs.neu.edu/home/dijamner/paramblame/artifact/

16
Thanks to Jeremy Siek and others, for their kind support in doing this.
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8 DISCUSSION
So Sumii and Pierce’s compiler is not fully abstract, the polymorphic blame calculus breaks contex-

tual equivalences in System F and enforcing parametricity in a non-parametric calculus also breaks

contextual equivalence. But what to conclude from this? Should we start looking for alternative

ways to dynamically enforce parametricity or were we wrong to hope for these properties to hold

in the first place? In this section we present some thoughts on the different possible options.

First, it is interesting to investigate whether full abstraction could be recovered by fixing Sumii

and Pierce’s compiler or the polymorphic blame calculus. We discuss in the sections below some

possible paths to explore, but we believe there are no straightforward solutions.

Second, another possible conclusion from our negative results is that full abstraction is perhaps

too strong a property to aim for when doing secure compilation or gradual typing. We still think the

Sumii-Pierce compiler is a useful secure compiler, even if it is not fully abstract. Hence we discuss

how to weaken the requirements that full abstraction imposes on a translation from System F, by

modifying System F in a way that weakens its contextual equivalences.

8.1 Fixing Sumii and Pierce’s Compiler?
One of the attractive features of Sumii and Pierce’s original conjecture is that it relies only on

encryption (or at least, an idealised version of encryption in the form of seals). Because it required

only encryption, this suggested that System F types could even be enforced as the contract for

an untrusted adversary, running at the other end of a communication channel, on an untrusted

computer. However, if we analyse the counterexample, this ambition of using just encryption seems

hard to maintain.

Imagine that a compiled System F term (e.g., tu or t𝝎 ) is communicating with such an adversary

over a communication channel and we want to enforce that the adversary respects the contract

represented by System F type Univ. What happens is the following:

(1) The compiled term transmits the value unit of type Unit, encrypted as {unit}𝜎 of type X that

is kept opaque from the adversary. The seal 𝜎 represents a fresh cryptographic key that we

take care not to disclose to the adversary.

(2) The adversary replies with a value of the unknown type Y (chosen by the adversary). The

actual value transmitted back in our counterexample, is simply the encrypted value {unit}𝜎
received in step 1.

(3) The compiled term does not inspect the received value but simply transmits it back to the

adversary as a value of type Y.
(4) The adversary now takes the received value {unit}𝜎 and sends it back as a value of type X.

(5) The compiled term receives this value, decrypts it using the private cryptographic key 𝜎 and

uses the result as a value of type Unit.

What goes wrong in the above communication is that the value {unit}𝜎 sent back by the adversary

in step 2 is essentially illegal. The adversary should have chosen a Y independently of X and values

of such a type should intuitively not be able to contain values of type X (unless they are themselves

packed in an existential package somehow). Let us try to think of what we could change in the

communication protocol to enforce this.

In a pure cryptographic setting, we believe there is little hope to fix the compiler. To understand

this, consider how, in the cryptography setting, the value {unit}𝜎 , that we send to the adversary in

step 1, simply represents a sequence of bits that is the result of some encryption algorithm applied

to value unit. On the other hand, the value sent back by the adversary in step 2 is another sequence

of bits that represents a value of an unknown type Y. We want to prevent this second value from

somehow including the first value {unit}𝜎 , but since the type Y is unknown and the adversary is
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running on an untrusted computer, there seems to be little the compiler can check. Any sequence

of bits received from the adversary could in principle be a cleverly-encoded version of {unit}𝜎 :
they could have XORed the value with an arbitary other bitsequence and still be able to retrieve

the original afterwards.

This (informal) argument suggests that the Sumii-Pierce compiler cannot be fixed in any way, as

long as the target language contains only features that can be interpreted as a form of (idealised)

cryptography. This would include the original sealing primitives (whatever way they are used), but

also possible extensions that model a form of idealised signing (rather than encryption) (a track we

were initially exploring).

To fix the compiler, it seems like we need to add some kind of feature that takes us beyond a

pure-cryptography setting. We believe such a feature could take the form of a primitive that checks

whether a value directly or indirectly contains values sealed with a certain seal. Such a primitive

could perhaps allow to perform the required check on the value received from the adversary in step

2. Such a primitive does not correspond to a form of idealised encryption: noticing, for example, that

a value like {{v}𝜎1 }𝜎2 contains a value sealed with 𝜎1 would break the cryptographic interpretation

of 𝜆𝜎 , as it requires looking inside an encrypted value without access to the key (𝜎2) and requires

detecting, for example, arbitrarily XORed versions of a ciphertext. However, the primitive could

still be implementable in non-cryptographic settings, like the hardware-enforced seals that are

present in capability machines: a form of processor with native support for capabilities and sealing

that has been developed recently [Watson et al. 2015]. Note that the attacker model in this setting

is a bit different: we assume that the untrusted attacker is now running on trusted hardware.

8.2 Polymorphic Blame Calculus Without a Universal Type?
Whether or not it is feasible to construct a gradual polymorphic language that fully abstractly

embeds System F is unclear. In fact, even simply reconciling type safety results like the Blame

Theorem (see Section 7) or the Dynamic Gradual Guarantee (which expresses that removing type

annotations from a term should never cause the term to fail at runtime) with parametricity is the

topic of ongoing research. In fact,in the design of their GSF calculus, Toro et al. [2019] explicitly

abandon the dynamic gradual guarantee in order to salvage parametricity, formulated using a

TWLR. New et al. [2019a] have recently reconciled (a TWLR-based form of) parametricity with the

dynamic gradual guarantee, by requiring explicit sealing annotations in the source.

All published gradual polymorphic calculi make use of dynamic sealing and as such, do not satisfy

the FAE criterion, except perhaps for one. Labrada et al. [2022] have investigated an alternative

design, based on a form of lexically-scoped sealing (in addition to some other new ideas like

plausible sealing). It would lead us too far to expain the details here, but the design replaces the

type ★with a family of types ★{X̄ } , indexed by a set of type variables X̄ . The type ★X̄ is only legal

(i.e., well-formed) when the type variables X̄ are in scope. Injecting values of type X ′
into ★X̄ is

only legal if X ′
is in the set X̄ . For our FAE counterexample, the effect is that the context can no

longer produce a non-degenerate value of type Univ, as there would no longer be a viable choice

for Y. Any instance ★{X̄ } of the universal type we could choose, could not have X as part of {X̄ },
as X is not yet in scope at the moment where Y needs to be produced.

Although the new design still has some restrictions, it satisfies a form of RLR-based parametricity.

As such, the jury is still out, but we believe the FAE criterion may not be out of reach in the context

of gradual parametricity.
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8.3 Adjusting our Expectations
For us, the solutions suggested above look like they might work, but they are not without downsides.

The modified Sumii-Pierce compiler could no longer be used in a purely-cryptographic setting and

the family of universal types ★{X̄ } might be harder to use than the original ★. As such, we might

consider alternative ways to address the lack of full abstraction.

One alternative is to abandon the choice of fully abstract compilation and rely on other notions.

More concretely, perhaps a secure compiler or gradually typed language should not preserve

arbitrary System F equivalences but only some of them, namely those that follow from a TWLR-

based formulation of parametricity?

Another alternative is to keep relying on fully abstract compilation and decide to simply adjust

our expectations: perhaps preserving all System F equivalences is overly ambitious and we should

find a way to eat what is on the table instead. Both in the case of Sumii and Pierce’s compiler and

the gradual lambda calculus, it seems like something non-trivial is being enforced, even though it

is not the preservation of arbitrary System F contextual equivalences. A way to formalise this is

to recover full abstraction by modifying the source language System F: weakening its contextual

equivalences in order to make them easier to preserve.

In fact, our counterexample suggests a way to accomplish this: the problem is essentially that the

type Univ is degenerate in System F, but not in the target language. So what if we modify System F

to remove that degeneracy in the source language too? Specifically, what if we add a primitive type

that all other types can be embedded into and extracted from? Interestingly, it seems like what

we end up here is a simple version of the gradual type ★, together with injection and extraction

functions.

Without working this out in more detail, we find it plausible that we can recover full abstraction

with such a modification, both for Sumii and Pierce’s compiler and the embedding into the poly-

morphic blame calculus. Ahmed et al. [2017], Toro et al. [2019] and New et al. [2019a] have shown

that such a variant of System F still satisfies useful (TWLR-based) parametricity results and that

useful free theorems follow from it, suggesting it is a suitable language for programmers to work

in.

9 RELATEDWORK
System F and parametricity. Parametric polymorphism was first introduced 50 years ago as an

informal concept by Strachey [2000]. A few years later, System F was independently discovered by

Reynolds [1974] and Girard [1972]. Reynolds [1983] later formalised Strachey’s informal concept

of parametricity using a logical relation for System F, as explained in Example 2.2 and Wadler

[1989] popularised the property using the slogan “Theorems for Free”. The property was further

developed by many different researchers over the years but for space reasons, we refer to Atkey

et al. [2014]; Wadler [2007] for an overview of related work.

Enforcing parametricity using dynamic sealing. Dynamic sealing/unsealing was (informally)

proposed more than 40 years ago by Morris [1973a,b] as a way for dynamically enforcing type

abstractions. Much later, Pierce and Sumii [2000] developed this idea into a compiler that uses sealing

to enforce System F’s parametricity and conjectured full abstraction of the proposed compiler. The

target language in this work is a simply typed cryptographic 𝜆-calculus. They already mention that

the dynamic enforcement of parametricity may also be useful to combine parametric polymorphism

and untyped languages, foreshadowing the work on parametrically polymorphic gradual type

systems that we discuss next.

A few years later, the same authors report further on the simply typed cryptographic 𝜆-calculus

and construct a logical relation for proving contextual equivalences for it [Sumii and Pierce 2003].
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Another year later, they report on a bisimulation that can be used to prove contextual equivalence in

𝜆𝜎 , which they originally constructed for proving the conjectured full abstraction [Sumii and Pierce

2004]. In this last paper, the compiler is presented for an untyped version of the cryptographic

𝜆-calculus (as in this text), which renders it significantly simpler.

Sealing was also used to enforce polymorphic contracts in PLT Scheme by Guha et al. [2007].

While technically similar, the assumptions in that work are somewhat different than in the above,

as contracts are about protecting the context from misbehaving terms, while Sumii and Pierce’s

compiler protects trusted terms from a misbehaving context. Like other work discussed in this

paper, Guha et al.’s polymorphic contracts fail to enforce the degeneracy of Univ, so if they satisfy

a form of parametricity, it would have to be TWLR-based.

Gradual typing. Gradual typing is a specific way of combining dynamic and static typing in a

single language, intended to create a gradual migration path from untyped to typed codebases.

Since it was originally proposed by Siek and Taha [2006] and Tobin-Hochstadt and Felleisen [2006],

gradual typing has received a lot of attention: gradual extensions have been constructed for many

different type systems, the notion of blame was adapted from the world of contracts [Findler and

Felleisen 2002] to track the origin of a dynamic cast failure [Wadler and Findler 2009], correctness

criteria were studied [Siek et al. 2015], the process of constructing a gradually-typed version of

a pre-existing type system was to some extent automated [Cimini and Siek 2016; Garcia et al.

2016] and last but not least, the entire approach has also been declared dead because of severe

performance issues [Takikawa et al. 2016].

Prior to the work on gradual typing, calculi which combined statically-typed languages with

a universal type for interacting with untyped code, have been proposed by Henglein [1994] and

Abadi et al. [1991].

As mentioned in Section 7, formal criteria for gradual type systems have been proposed by Siek

et al. [2015], including the gradual guarantee. Garcia and Tanter [2020] have later argued that

gradually typed languages should additionally preserve reasoning principles of the static type

system. Jacobs et al. [2021] have proposed that this can be formulated in a standard way in the

form of the Fully Abstract Embedding (FAE) criterion and have established the criterion for the

GTLC, a basic gradual type system.

Gradual typing and parametric polymorphism. As an instance of a multi-language (as proposed by

Matthews and Findler [2009]), Matthews and Ahmed [2008] construct a language that can embed

both Scheme (i.e., an untyped lambda calculus) and ML (i.e., a parametrically polymorphic typed

lambda calculus) using a notion of dynamic casts from one to the other. They enforce parametric

polymorphism using a notion of run-time type generation
17
and prove a parametricity result. An

error in the proof was later corrected [Ahmed et al. 2011c].

Next, Ahmed et al. [2009b, 2011b] present the first version of the polymorphic blame calculus, a

gradually-typed extension of System F that includes a notion of blame. The authors prove a number

of correctness results, but Perconti found an incorrectible error in one of the proofs later [Ahmed

et al. 2011a]. However, they do not consider parametricity or preservation of System F contextual

equivalences (i.e., fully abstract embedding).

Ahmed et al. [2017] present 𝜆𝐵 : a new version of the polymorphic blame calculus rectifying

certain “topsy-turvy” aspects of its operational semantics (see Section 7). Additionally, they prove a

parametricity result for this calculus, which we have discussed from the perspective of our results

in Section 8.3.

17
They call this sealing, but since their seals have no run-time representation, we prefer the term run-time type generation.
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Igarashi et al. [2017] also present a new version of the polymorphic blame calculus, as an internal

runtime representation for System 𝐹𝐺 a new gradually-typed extension of System F. They make

certain special restrictions to the consistency and precision relation of the system (later criticised by

others [Toro et al. 2019]), which allow them to prove a version of the gradual guarantee. However,

it does not seem to prevent our counterexample to the fully abstract embedding of System F.

In an unpublished draft, Siek and Wadler [2016] study and interrelate three ways to achieve

relational parametricity: universal types, runtime type generation and cryptographic sealing.

They show translations from the polymorphic blame calculus from [Ahmed et al. 2017] into the

cryptographic lambda calculus and back that they show to be simulations. They also study a calculus

𝜆𝐺 , obtained by removing the universal type ★ and casts from the polymorphic blame calculus,

but keeping runtime type generation. They show that embedding System F into 𝜆𝐺 is also fully

abstract. Both of these full abstraction results tally with our observations: both System F and 𝜆𝐺
lack a universal type (making Univ degenerate) while both the polymorphic blame calculus and the

cryptographic lambda calculus feature a universal type (making Univ non-degenerate). As such,

the embedding of 𝜆𝐺 into the polymorphic blame calculus will not be fully abstract, supplementing

their results.

Xie et al. [2018] present a gradually typed language with parametric polymorphism, focusing on

the interplay of gradual typing with the subtyping relation in the presence of implicit polymorphism.

The result of their work is a source language that elaborates to 𝜆𝐵 , which we discussed before. As

such, the language provides the same form of parametricity than 𝜆𝐵 and we think our results apply

to it as well.

More recently, Toro et al. [2019] proposed a new gradually typed calculus with explicit polymor-

phism, based on the AGT methodology by Garcia et al. [2016]. The methodology allows them to

construct a system that satisfies the refined criteria by Siek et al. [2015], except for the Dynamic

Gradual Guarantee. They show that this property is in conflict with parametricity in their system,

but they demonstrate a weaker property which they do satisfy. The gradual type is also a universal

type in their system and they prove a TWLR-based parametricity.

Finally, New et al. [2019a] have developed PolyG
𝜈
, the first gradual language to support both

parametricity and the dynamic gradual guarantee (which they refer to as graduality) at the same

time. The syntax of PolyG
𝜈
departs from System F, requiring programmers to write explicit sealing

and unsealing annotations. Like previous work, New et al. use dynamic sealing and they prove a

form of parametricity based on a TWLR logical relation, although it is closer to standard System F

logical relations in some other respects.

Universal types. Universal types have been studied by Longley [2003]. Our observation and proof

that System F’s parametricity excludes a universal type is, to the best of our knowledge, novel.

Alternatives for full abstraction. The property of full abstraction was proposed by Abadi [1998].

Abate et al. [2019] provide a lattice of secure compilation criteria (dubbed robust compilation) that

preserve classes of hyperproperties [Clarkson and Schneider 2010], i.e., arbitrary behaviours. The

general nature of the framework makes it hard to make precise statements, but we believe our

counterexamples would also disprove most of these alternative properties.

10 CONCLUSION
This work started out years ago as an effort to prove Sumii and Pierce’s conjecture, discussed in

Section 5. Our failure to do so has perhaps proven more interesting than a success might have been.

Specifically, we disprove the conjecture rather than proving it, we disprove another conjecture for

languages with non-parametric parametricity and we identify what we see as an important problem

in current parametrically polymorphic gradual languages: programmers reasoning about System F
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programs cannot trust contextual equivalences to remain valid in the gradually typed extended

language. In addition to highlighting these problems, we discuss in Section 8 some ideas about how

the issues might be solved. None of them seem easy to solve and the solutions we propose have

downsides of their own, but we do believe they might be worth exploring further.

During the work on the Sumii-Pierce conjecture, we also gained some more high-level insights

about variations of parametricity (type-world LRs versus lexically-scoped LRs) and their relation to

the lexical scope of type variables and the existence of universal types. These insights were not

mentioned explicitly in the previous version of this paper [Devriese et al. 2018] and in discussions

with experts in the field, we found that these insights were unclear. For this reason, this paper

focuses very clearly on these more high-level insights and we hope theymay improve understanding

of the issues involved.
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