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1 Introduction
Let𝐶 be a component (i.e., a partial program), 𝑃 be a (security)
property, and 𝐾 be a program (often called program context)
that𝐶 can be linked against.We say that𝐶 respects 𝑃 robustly
if 𝐶 linked with any 𝐾 upholds 𝑃 . Secure compilation can
be stated as the robust preservation of a security property
from a source component C into its compiled counterpart
JCK [4]. That is: a compiler is secure for 𝑃 , if for any source
component C, if C robustly preserves property 𝑃 , then JCK
also robustly preserves 𝑃 .

To allow the development of such secure compilers, it is of-
ten the case that the language targeted by the compiler must
be enriched with security primitives [19]. A number of exist-
ing works define such target-level security primitives (e.g.,
coarse- [1, 18] and fine-grained [11, 12, 17, 20, 21] memory
isolation, cryptographic constant-time [8], cryptography [2],
types [9, 16], control-flow integrity [3] and more).

Sometimes, however, we may be interested in determining
whether a compiler is secure but the problem does not lie
in the target language (which we assume to be one such
suitably-secure one), but in the source. Let us now consider
C as the source language, Rust as the target language, and a
compiler between the two that aims at preserving temporal
memory safety (TMS [7]), as done by Nagarakatte et al. [15].
Unfortunately, in C, the proposition ‘any source component
C robustly preserves TMS’ is trivially false. This is because to
uphold a property robustly, onemust prove that a component
C has that property when interoperating with any larger
program context K (which is still a C program in this case).
Alas, this proposition is false, because in C several of those
larger program simply do pointer arithmetic and violate TMS
of any C. Thus, any compiler from C to Rust can be proven
to be secure according to the definition of secure compilation
above: the premise of the implication is false!
One may be tempted to say that the problem lies with

the definition of robustness, which forces us to consider any
larger program 𝐾 , and if we considered a subset of all 𝐾 we
may be able to prove that a C program satisfies TMS almost-
robustly. But we disagree. The strong security benefits of
using such secure compilation statements come precisely
from considering any 𝐾 , i.e., any possible attacker to the
program, not just a subset of them.
Then, we may be looking for an alternative criterion to

indicate security of our compiler, and thus we may want to
show that the compiler robustly enforces TMS. To prove a
compiler enforces a property 𝑃 robustly, one must prove that
any code produced by the compiler respects 𝑃 even when
linked with any arbitrary target context K . Unfortunately,

such a definition is also problematic. Consider the same
C-toRust setting as before, the compiler that produces a
random well-typed safe Rust program trivially respects it:
any well-typed safe Rust program has TMS by virtue of
the Rust type system. Alas, such a compiler has completely
messed up the behaviour of the original source component.
Thus, both with secure compilation stated as the robust

preservation of a property, and with secure compilation
stated as a robust enforcement property, we are left with an
unsatisfactory statement about the security of our compiler.
In this paper we investigate a novel secure compilation

criterion to be used in case one wants to prove that the
compiled code has some property 𝑃 robustly, but the source
language does not uphold 𝑃 robustly. We call this criterion
Blame-Preserving Compilation (BPC), since it builds on the
existing notion of blame [6, 22].

Blame is a notion that arises in the context of mixing typed
and untyped programs and being able to show that if the
execution ‘goes wrong’, then it went wrong in the untyped
program, i.e., the untyped program must be blamed. In this
work, we rely on a parallelism between secure compilation
and blame work:

Secure compilation has: Blame calculi have:
component of interest 𝐶 ↔ typed programs

program contexts 𝐾 ↔ untyped programs
property to be upheld 𝑃 ↔ execution going wrong

So we leverage the notion of blame in order to relax the
notion of robust property satisfaction into robust blame prop-
erty satisfaction. A component (not a compiler) 𝐶 satisfies a
property 𝑃 in the robust-blame fashion if either it robustly
preserves 𝑃 , or if the behaviour of𝐶 when linkedwith an arbi-
trary program context 𝐾 violates 𝑃 , then the violation of the
property lies in 𝐾 . With this intuition in mind, we informally
say that a compiler attains Blame-Preserving Compilation if
it preserves a property in the robust-blame fashion. That is:

• either the compiler robustly preserves property 𝑃 ;
• or, if the source execution violated 𝑃 ,
– the violation of 𝑃 was done by the source program
context K (and not by the source component C),

– and the compilation of C still upholds 𝑃 robustly (i.e.,
against any target K) until the violation point.

WithBPC, the only case where secure compilation cannot
be applied is when a violation of 𝑃 happens in the source
component being compiled. We believe it would be the duty
of a (static) analysis tool to prevent that component from
running. A compiler should not change the behaviour of
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components through compilation, even if it means turning
an insecure component into a secure one, lest source-level
reasoning be lost, and source programmers are left confused.

1.1 Blame-Preserving Compilation
We now give the formal preliminaries that lead to the defini-
tion of BPC (Definition 1.1).

In the following we write 𝐾 [𝐶] to indicate the whole pro-
gram resulting from the linking of component 𝐶 with pro-
gram context 𝐾 . Then, we write 𝐾 [𝐶] ⇝ 𝛼 to indicate that
running the whole program 𝐾 [𝐶] according to the language
semantics generates trace 𝛼 . We assume both source and
target languages of the compiler have the same trace model,
as commonly done in compilation work [4], and leave lifting
this limitation for future work [5]. Since many security prop-
erties (namely all safety and all hypersafety properties such
as non-interference [10]) can be stated with finite traces only,
we consider a trace model where traces 𝛼 are finite sequences
of actions 𝛼 (the empty trace being ∅). In common trace jar-
gon, all traces in our model really are prefixes, so we focus
on properties that belong to the safety class (though the
hypersafety class could also work). Additionally, we assume
that any action that appears on a trace can be unequivocally
identified as being done by either the program context or
by the component; this is a feature that is common in all
secure compilation works using traces [3, 11, 12, 17, 18]. We
indicate an action 𝛼 done by the program context as 𝛼 ∈ 𝐾
and an action 𝛼 done by the component as 𝛼 ∈ 𝐶 . Finally, we
write blame(𝛼, 𝑃) = 𝛼1 | 𝛼2 to indicate that trace 𝛼 can be
split into two traces 𝛼1 and 𝛼2 such that 𝛼1 upholds 𝑃 and
the violating action (at the beginning of 𝛼2) is done by 𝐾 .
Formally:

blame(∅, 𝑃) = ∅ | ∅
blame(𝛼𝛼, 𝑃) = 𝛼1 | 𝛼2𝛼 if blame(𝛼, 𝑃) = 𝛼1 | 𝛼2

and 𝛼2 ≠ ∅
blame(𝛼𝛼, 𝑃) = 𝛼1 | 𝛼 if blame(𝛼, 𝑃) = 𝛼1 | ∅

and 𝛼 ∈ 𝐾 and 𝛼1𝛼 ∉ 𝑃

blame(𝛼𝛼, 𝑃) = 𝛼1𝛼 | ∅ if blame(𝛼, 𝑃) = 𝛼1 | ∅
and 𝛼1𝛼 ∈ 𝑃

We now have all the ingredients to formally define when
a compiler attains Blame-Preserving Compilation of 𝑃 (de-
noted as ⊢ J·K : BPC[𝑃]).

Definition 1.1 (Blame-Preserving Compilation).

⊢ J·K : BPC def
= ∀𝑃 ∈ Safety. ∀C.

if ∀K.∀𝛼, 𝛼1, 𝛼2 . if K[C] ⇝ 𝛼

then blame(𝛼, 𝑃) = 𝛼1 | 𝛼2
then ∀K .∀𝛼, 𝛼1, 𝛼2 . if K [JCK] ⇝ 𝛼1

then blame(𝛼, 𝑃) = 𝛼1 | 𝛼2

When looking at the premise of BPC, note that in case 𝛼
does not violate 𝑃 , blame(𝛼, 𝑃) returns 𝛼 | ∅. So, for traces
where a program robustly satisfies 𝑃 , BPC is equivalent to
the robust preservation of 𝑃 .

The conclusion of BPC is equivalent to the secure compi-
lation criterion for the preservation of any safety property,
since the target codemust emit the𝛼1 trace. This ensures that
we can compose any BPC compiler with other secure com-
pilers that preserve safety properties and still prove security
of the composed compiler [13].

1.2 Proving BPC

Proving that a compiler attains BPC in the sense of Defini-
tion 1.1 may be overly complicated, as it requires reasoning
about arbitrary target contexts K . For this, modern secure
compilation criteria often comewith an equivalent statement
that is simpler to prove. We do not have one such criterion,
but we know what “shape” it should have, so we conjecture
it below (and we indicate it as ⊢ J·K : PF-BPC).

Definition 1.2 (Sketch: Desired Criterion).

⊢ J·K : PF-BPC def
= ∀C.∀K .∀𝛼1, 𝛼2 .

if K [JCK] ⇝ 𝛼1 and 𝛼1 ∼ 𝛼2
then ∃K.K[C] ⇝ 𝛼2

We want a criterion with this kind of shape in order to
reuse existing proof techniques called trace-based backtrans-
lation that let us build the existentially-quantified source
context K from the target trace 𝛼1 (and 𝛼2 in this case).

Ideally, we need to find a trace relation ∼ (or any property
linking the two traces) that lets us prove at least that ⊢ J·K :
PF-BPC implies ⊢ J·K : BPC.

1.3 Applying BPC

We believe BPC would be best applied to settings with a
weak source language, such as C. Recently, Michael et al.
[14] have developed a compiler for C to MSWasm, an exten-
sion of WebAssembly with Cheri-like capabilities. MSWasm is
proven to have language-level robust spatial and temporal
memory safety (MS). Alas, the compiler of Michael et al. [14]
is only proven correct, and its correctness entails some form
of security, but not in the presence of any active adversary.

We believe we can phrase BPC for memory safety (which
can be phrased as a safety property) and prove that the
compiler from C to MSWasm upholds BPC, giving a stronger
and more precise characterisation of the security guarantees
provided by that compiler.
Similarly, we can apply BPC to reason about a compiler

from Rust to MSWasm, where the source component being
compiled is safe, but it may link against unsafe Rust. Proving
the compiler attains BPC for temporal memory safety would
let us prove that the compiled Rust code is protected from
MSWasm-level attackers, and violations of TMS always belong
to the attacker context.
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