
Blame-Preserving Secure Compilation
Marco Patrignani
University of Trento

Matthis Kruse
CISPA Helmholz Center for Information Security

1 Introduction
Let𝐶 be a component (i.e., a partial program), 𝑃 be a (security)
property, and 𝐾 be a program (often called program context)
that𝐶 can be linked against.We say that𝐶 respects 𝑃 robustly
if 𝐶 linked with any 𝐾 upholds 𝑃 . Secure compilation can
be stated as the robust preservation of a security property
from a source component C into its compiled counterpart
JCK [4]. That is: a compiler is secure for 𝑃 , if for any source
component C, if C robustly preserves property 𝑃 , then JCK
also robustly preserves 𝑃 .

To allow the development of such secure compilers, it is of-
ten the case that the language targeted by the compiler must
be enriched with security primitives [19]. A number of exist-
ing works define such target-level security primitives (e.g.,
coarse- [1, 18] and fine-grained [11, 12, 17, 20, 21] memory
isolation, cryptographic constant-time [8], cryptography [2],
types [9, 16], control-flow integrity [3] and more).

Sometimes, however, we may be interested in determining
whether a compiler is secure but the problem does not lie
in the target language (which we assume to be one such
suitably-secure one), but in the source. Let us now consider
C as the source language, Rust as the target language, and a
compiler between the two that aims at preserving temporal
memory safety (TMS [7]), as done by Nagarakatte et al. [15].
Unfortunately, in C, the proposition ‘any source component
C robustly preserves TMS’ is trivially false. This is because to
uphold a property robustly, onemust prove that a component
C has that property when interoperating with any larger
program context K (which is still a C program in this case).
Alas, this proposition is false, because in C several of those
larger program simply do pointer arithmetic and violate TMS
of any C. Thus, any compiler from C to Rust can be proven
to be secure according to the definition of secure compilation
above: the premise of the implication is false!
One may be tempted to say that the problem lies with

the definition of robustness, which forces us to consider any
larger program 𝐾 , and if we considered a subset of all 𝐾 we
may be able to prove that a C program satisfies TMS almost-
robustly. But we disagree. The strong security benefits of
using such secure compilation statements come precisely
from considering any 𝐾 , i.e., any possible attacker to the
program, not just a subset of them.
Then, we may be looking for an alternative criterion to

indicate security of our compiler, and thus we may want to
show that the compiler robustly enforces TMS. To prove a
compiler enforces a property 𝑃 robustly, one must prove that
any code produced by the compiler respects 𝑃 even when
linked with any arbitrary target context K . Unfortunately,

such a definition is also problematic. Consider the same
C-toRust setting as before, the compiler that produces a
random well-typed safe Rust program trivially respects it:
any well-typed safe Rust program has TMS by virtue of
the Rust type system. Alas, such a compiler has completely
messed up the behaviour of the original source component.
Thus, both with secure compilation stated as the robust

preservation of a property, and with secure compilation
stated as a robust enforcement property, we are left with an
unsatisfactory statement about the security of our compiler.
In this paper we investigate a novel secure compilation

criterion to be used in case one wants to prove that the
compiled code has some property 𝑃 robustly, but the source
language does not uphold 𝑃 robustly. We call this criterion
Blame-Preserving Compilation (BPC), since it builds on the
existing notion of blame [6, 22].

Blame is a notion that arises in the context of mixing typed
and untyped programs and being able to show that if the
execution ‘goes wrong’, then it went wrong in the untyped
program, i.e., the untyped program must be blamed. In this
work, we rely on a parallelism between secure compilation
and blame work:

Secure compilation has: Blame calculi have:
component of interest 𝐶 ↔ typed programs

program contexts 𝐾 ↔ untyped programs
property to be upheld 𝑃 ↔ execution going wrong

So we leverage the notion of blame in order to relax the
notion of robust property satisfaction into robust blame prop-
erty satisfaction. A component (not a compiler) 𝐶 satisfies a
property 𝑃 in the robust-blame fashion if either it robustly
preserves 𝑃 , or if the behaviour of𝐶 when linkedwith an arbi-
trary program context 𝐾 violates 𝑃 , then the violation of the
property lies in 𝐾 . With this intuition in mind, we informally
say that a compiler attains Blame-Preserving Compilation if
it preserves a property in the robust-blame fashion. That is:

• either the compiler robustly preserves property 𝑃 ;
• or, if the source execution violated 𝑃 ,
– the violation of 𝑃 was done by the source program
context K (and not by the source component C),

– and the compilation of C still upholds 𝑃 robustly (i.e.,
against any target K) until the violation point.

WithBPC, the only case where secure compilation cannot
be applied is when a violation of 𝑃 happens in the source
component being compiled. We believe it would be the duty
of a (static) analysis tool to prevent that component from
running. A compiler should not change the behaviour of

Conference’17, July 2017, Washington, DC, USA Marco Patrignani and Matthis Kruse

components through compilation, even if it means turning
an insecure component into a secure one, lest source-level
reasoning be lost, and source programmers are left confused.

1.1 Blame-Preserving Compilation
We now give the formal preliminaries that lead to the defini-
tion of BPC (Definition 1.1).

In the following we write 𝐾 [𝐶] to indicate the whole pro-
gram resulting from the linking of component 𝐶 with pro-
gram context 𝐾 . Then, we write 𝐾 [𝐶] ⇝ 𝛼 to indicate that
running the whole program 𝐾 [𝐶] according to the language
semantics generates trace 𝛼 . We assume both source and
target languages of the compiler have the same trace model,
as commonly done in compilation work [4], and leave lifting
this limitation for future work [5]. Since many security prop-
erties (namely all safety and all hypersafety properties such
as non-interference [10]) can be stated with finite traces only,
we consider a trace model where traces 𝛼 are finite sequences
of actions 𝛼 (the empty trace being ∅). In common trace jar-
gon, all traces in our model really are prefixes, so we focus
on properties that belong to the safety class (though the
hypersafety class could also work). Additionally, we assume
that any action that appears on a trace can be unequivocally
identified as being done by either the program context or
by the component; this is a feature that is common in all
secure compilation works using traces [3, 11, 12, 17, 18]. We
indicate an action 𝛼 done by the program context as 𝛼 ∈ 𝐾
and an action 𝛼 done by the component as 𝛼 ∈ 𝐶 . Finally, we
write blame(𝛼, 𝑃) = 𝛼1 | 𝛼2 to indicate that trace 𝛼 can be
split into two traces 𝛼1 and 𝛼2 such that 𝛼1 upholds 𝑃 and
the violating action (at the beginning of 𝛼2) is done by 𝐾 .
Formally:

blame(∅, 𝑃) = ∅ | ∅
blame(𝛼𝛼, 𝑃) = 𝛼1 | 𝛼2𝛼 if blame(𝛼, 𝑃) = 𝛼1 | 𝛼2

and 𝛼2 ≠ ∅
blame(𝛼𝛼, 𝑃) = 𝛼1 | 𝛼 if blame(𝛼, 𝑃) = 𝛼1 | ∅

and 𝛼 ∈ 𝐾 and 𝛼1𝛼 ∉ 𝑃

blame(𝛼𝛼, 𝑃) = 𝛼1𝛼 | ∅ if blame(𝛼, 𝑃) = 𝛼1 | ∅
and 𝛼1𝛼 ∈ 𝑃

We now have all the ingredients to formally define when
a compiler attains Blame-Preserving Compilation of 𝑃 (de-
noted as ⊢ J·K : BPC[𝑃]).

Definition 1.1 (Blame-Preserving Compilation).

⊢ J·K : BPC def
= ∀𝑃 ∈ Safety. ∀C.

if ∀K.∀𝛼, 𝛼1, 𝛼2 . if K[C] ⇝ 𝛼

then blame(𝛼, 𝑃) = 𝛼1 | 𝛼2
then ∀K .∀𝛼, 𝛼1, 𝛼2 . if K [JCK] ⇝ 𝛼1

then blame(𝛼, 𝑃) = 𝛼1 | 𝛼2

When looking at the premise of BPC, note that in case 𝛼
does not violate 𝑃 , blame(𝛼, 𝑃) returns 𝛼 | ∅. So, for traces
where a program robustly satisfies 𝑃 , BPC is equivalent to
the robust preservation of 𝑃 .

The conclusion of BPC is equivalent to the secure compi-
lation criterion for the preservation of any safety property,
since the target codemust emit the𝛼1 trace. This ensures that
we can compose any BPC compiler with other secure com-
pilers that preserve safety properties and still prove security
of the composed compiler [13].

1.2 Proving BPC

Proving that a compiler attains BPC in the sense of Defini-
tion 1.1 may be overly complicated, as it requires reasoning
about arbitrary target contexts K . For this, modern secure
compilation criteria often comewith an equivalent statement
that is simpler to prove. We do not have one such criterion,
but we know what “shape” it should have, so we conjecture
it below (and we indicate it as ⊢ J·K : PF-BPC).

Definition 1.2 (Sketch: Desired Criterion).

⊢ J·K : PF-BPC def
= ∀C.∀K .∀𝛼1, 𝛼2 .

if K [JCK] ⇝ 𝛼1 and 𝛼1 ∼ 𝛼2
then ∃K.K[C] ⇝ 𝛼2

We want a criterion with this kind of shape in order to
reuse existing proof techniques called trace-based backtrans-
lation that let us build the existentially-quantified source
context K from the target trace 𝛼1 (and 𝛼2 in this case).

Ideally, we need to find a trace relation ∼ (or any property
linking the two traces) that lets us prove at least that ⊢ J·K :
PF-BPC implies ⊢ J·K : BPC.

1.3 Applying BPC

We believe BPC would be best applied to settings with a
weak source language, such as C. Recently, Michael et al.
[14] have developed a compiler for C to MSWasm, an exten-
sion of WebAssembly with Cheri-like capabilities. MSWasm is
proven to have language-level robust spatial and temporal
memory safety (MS). Alas, the compiler of Michael et al. [14]
is only proven correct, and its correctness entails some form
of security, but not in the presence of any active adversary.

We believe we can phrase BPC for memory safety (which
can be phrased as a safety property) and prove that the
compiler from C to MSWasm upholds BPC, giving a stronger
and more precise characterisation of the security guarantees
provided by that compiler.
Similarly, we can apply BPC to reason about a compiler

from Rust to MSWasm, where the source component being
compiled is safe, but it may link against unsafe Rust. Proving
the compiler attains BPC for temporal memory safety would
let us prove that the compiled Rust code is protected from
MSWasm-level attackers, and violations of TMS always belong
to the attacker context.

Blame-Preserving Secure Compilation Conference’17, July 2017, Washington, DC, USA

Acknowledgements: This work was partially supported by:
the Italian Ministry of Education through funding for the Rita Levi
Montalcini grant (call of 2019); the German Federal Ministry of
Education and Research (BMBF) through funding for the CISPA-
Stanford Center for Cybersecurity (FKZ: 13N1S0762).

References
[1] Martín Abadi and Gordon D. Plotkin. On protection by layout ran-

domization. ACM Transactions on Information and System Security, 15:
8:1–8:29, July 2012. ISSN 1094-9224.

[2] Martín Abadi, Cédric Fournet, and Georges Gonthier. Secure imple-
mentation of channel abstractions. In IEEE Symposium on Logic in
Computer Science, pages 105–116, 1998.

[3] Carmine Abate, Arthur Azevedo de Amorim, Roberto Blanco,
Ana Nora Evans, Guglielmo Fachini, Catalin Hritcu, Théo Laurent, Ben-
jamin C. Pierce, Marco Stronati, and Andrew Tolmach. When good
components go bad: Formally secure compilation despite dynamic
compromise. CCS ’18, 2018.

[4] Carmine Abate, Roberto Blanco, Deepak Garg, Cătălin Hriţcu, Marco
Patrignani, and Jérémy Thibault. Journey beyond full abstraction:
Exploring robust property preservation for secure compilation. In
2019 IEEE 32th Computer Security Foundations Symposium, CSF 2019,
June 2019.

[5] Carmine Abate, Roberto Blanco, Ştefan Ciobâcă, Adrien Durier, Deepak
Garg, Cătălin Hriţcu, Marco Patrignani, Éric Tanter, and Jérémy
Thibault. An extended account of trace-relating compiler correct-
ness and secure compilation. ACM Trans. Program. Lang. Syst., 43
(4), nov 2021. ISSN 0164-0925. doi: 10.1145/3460860. URL https:
//doi.org/10.1145/3460860.

[6] Amal Ahmed, Robert Bruce Findler, Jeremy G. Siek, and Philip Wadler.
Blame for all. SIGPLAN Not., 46(1):201–214, jan 2011. ISSN 0362-1340.
doi: 10.1145/1925844.1926409. URL https://doi.org/10.1145/1925844.
1926409.

[7] Arthur Azevedo de Amorim, Cătălin Hriţcu, and Benjamin C. Pierce.
The meaning of memory safety. In Lujo Bauer and Ralf Küsters, editors,
Principles of Security and Trust, pages 79–105, Cham, 2018. Springer
International Publishing. ISBN 978-3-319-89722-6.

[8] Gilles Barthe, Benjamin Grégoire, and Vincent Laporte. Secure com-
pilation of side-channel countermeasures: The case of cryptographic
“constant-time”. In 2018 IEEE 31st Computer Security Foundations Sym-
posium (CSF), pages 328–343, 2018. doi: 10.1109/CSF.2018.00031.

[9] William J. Bowman and Amal Ahmed. Noninterference for free. SIG-
PLAN Not., 50(9):101–113, aug 2015. ISSN 0362-1340. doi: 10.1145/
2858949.2784733. URL https://doi.org/10.1145/2858949.2784733.

[10] Michael R. Clarkson and Fred B. Schneider. Hyperproperties. Jour-
nal of Computer Security, 18(6):1157–1210, 2010. doi: 10.3233/
JCS-2009-0393. URL https://www.cs.cornell.edu/~clarkson/papers/
clarkson_hyperproperties_journal.pdf.

[11] Akram El-Korashy, Stelios Tsampas, Marco Patrignani, Dominique
Devriese, Deepak Garg, and Frank Piessens. Capableptrs: Securely
compiling partial programs using the pointers-as-capabilities prin-
ciple. In 34th IEEE Computer Security Foundations Symposium, CSF
2021, Dubrovnik, Croatia, June 21-25, 2021, pages 1–16, 2021. doi:
10.1109/CSF51468.2021.00036. URL https://doi.org/10.1109/CSF51468.
2021.00036.

[12] Akram El-Korashy, Roberto Blanco, Jérémy Thibault, Adrien Durier,
Deepak Garg, and Catalin Hritcu. Secureptrs: Proving secure com-
pilation with data-flow back-translation and turn-taking simulation,
2022.

[13] Matthis Kruse and Marco Patrignani. Composing secure compilers.
January 2022. in ACM SIGPLAN Workshop on Principles of Secure
Compilation (Prisc’22).

[14] AlexandraMichael, Anitha Gollamudi, Jay Bosamiya, Craig Disselkoen,
Aidan Denlinger, Conrad Watt, Bryan Parno, Marco Patrignani, Marco
Vassena, and Deian Stefan. Mswasm: Soundly enforcing memory-safe
execution of unsafe code. Proc. ACM Program. Lang., (POPL), jan 2023.

[15] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve
Zdancewic. Cets: Compiler enforced temporal safety for c. SIGPLAN
Not., 45(8):31–40, June 2010. ISSN 0362-1340. doi: 10.1145/1837855.
1806657. URL http://doi.acm.org/10.1145/1837855.1806657.

[16] Max S. New, William J. Bowman, and Amal Ahmed. Fully abstract
compilation via universal embedding. In Jacques Garrigue, Gabriele
Keller, and Eijiro Sumii, editors, Proceedings of the 21st ACM SIGPLAN
International Conference on Functional Programming, ICFP 2016, Nara,
Japan, September 18-22, 2016, pages 103–116. ACM, 2016. doi: 10.1145/
2951913.2951941. URL https://doi.org/10.1145/2951913.2951941.

[17] Marco Patrignani and Deepak Garg. Robustly safe compilation, an
efficient form of secure compilation. ACM Trans. Program. Lang. Syst.,
43(1), feb 2021. ISSN 0164-0925. doi: 10.1145/3436809. URL https:
//doi.org/10.1145/3436809.

[18] Marco Patrignani, Pieter Agten, Raoul Strackx, Bart Jacobs, Dave
Clarke, and Frank Piessens. Secure compilation to protected mod-
ule architectures. ACM Trans. Program. Lang. Syst., 37:6:1–6:50, April
2015. ISSN 0164-0925.

[19] Marco Patrignani, Amal Ahmed, and Dave Clarke. Formal approaches
to secure compilation a survey of fully abstract compilation and related
work. ACM Comput. Surv., 51(6):125:1–125:36, January 2019.

[20] Lau Skorstengaard, Dominique Devriese, and Lars Birkedal. Stkto-
kens: Enforcing well-bracketed control flow and stack encapsulation
using linear capabilities. J. Funct. Program., 31:e9, 2021. doi: 10.1017/
S095679682100006X. URL https://doi.org/10.1017/S095679682100006X.

[21] Thomas Van Strydonck, Frank Piessens, and Dominique Devriese.
Linear capabilities for fully abstract compilation of separation-
logic-verified code. J. Funct. Program., 31:e6, 2021. doi: 10.1017/
S0956796821000022. URL https://doi.org/10.1017/S0956796821000022.

[22] Philip Wadler and Robert Bruce Findler. Well-typed programs can’t
be blamed. In Proceedings of the 18th European Symposium on Pro-
gramming Languages and Systems: Held as Part of the Joint Euro-
pean Conferences on Theory and Practice of Software, ETAPS 2009,
ESOP ’09, page 1–16, Berlin, Heidelberg, 2009. Springer-Verlag. ISBN
9783642005893. doi: 10.1007/978-3-642-00590-9_1. URL https://doi.
org/10.1007/978-3-642-00590-9_1.

https://doi.org/10.1145/3460860
https://doi.org/10.1145/3460860
https://doi.org/10.1145/1925844.1926409
https://doi.org/10.1145/1925844.1926409
https://doi.org/10.1145/2858949.2784733
https://www.cs.cornell.edu/~clarkson/papers/clarkson_hyperproperties_journal.pdf
https://www.cs.cornell.edu/~clarkson/papers/clarkson_hyperproperties_journal.pdf
https://doi.org/10.1109/CSF51468.2021.00036
https://doi.org/10.1109/CSF51468.2021.00036
http://doi.acm.org/10.1145/1837855.1806657
https://doi.org/10.1145/2951913.2951941
https://doi.org/10.1145/3436809
https://doi.org/10.1145/3436809
https://doi.org/10.1017/S095679682100006X
https://doi.org/10.1017/S0956796821000022
https://doi.org/10.1007/978-3-642-00590-9_1
https://doi.org/10.1007/978-3-642-00590-9_1

	1 Introduction
	1.1 Blame-Preserving Compilation
	1.2 Proving BPC
	1.3 Applying BPC

	References

