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Security-preserving compilers generate compiled code that withstands target-level attacks such as alteration of

control flow, data leaks or memory corruption. Many existing security-preserving compilers are proven to be

fully abstract, meaning that they reflect and preserve observational equivalence. Fully abstract compilation is

strong and useful but, in certain cases, comes at the cost of requiring expensive runtime constructs in compiled

code. These constructs may have no relevance for security, but are needed to accommodate differences between

the source and target languages that fully abstract compilation necessarily needs.

As an alternative to fully abstract compilation, this paper explores a different criterion for secure compilation

called robustly safe compilation or RSC. Briefly, this criterion means that the compiled code preserves relevant

safety properties of the source program against all adversarial contexts interacting with the compiled program.

We show that RSC can be proved more easily than fully abstract compilation and also often results in more

efficient code. We also present two different proof techniques for establishing that a compiler attains RSC
and, to illustrate them, develop three illustrative robustly-safe compilers that rely on different target-level

protection mechanisms. We then proceed to turn one of our compilers into a fully abstract one and through

this example argue that proving RSC can be simpler than proving fully abstraction.
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1 INTRODUCTION
Low-level adversaries, such as those written in C or assembly can attack co-linked code written in a

high-level language in ways that may not be feasible in the high-level language itself. For example,

such an adversary may manipulate or hijack control flow, cause buffer overflows, or directly

access private memory, all in contravention to the abstractions of the high-level language. Specific

countermeasures such as Control Flow Integrity [3] or Code Pointer Integrity [44] have been

devised to address some of these attacks individually. An alternative approach is to devise a security-
preserving compiler, which seeks to defend against entire classes of such attacks. Security-preserving
compilers often achieve security by relying on different protection mechanisms, e.g., cryptographic

primitives [4, 5, 24, 28], types [11, 12], address space layout randomisation [6, 40], protected module

architectures [10, 59, 61, 63] (also know as enclaves [49]), tagged architectures [7, 42], etc. Once

designed, the question researchers face is how to formalise that such a compiler is indeed secure, and

how to prove this. Basically, we want a criterion that specifies secure compilation. A widely-used

criterion for compiler security is fully abstract compilation (FAC) [1, 38, 56], which has been shown

to preserve many interesting security properties like confidentiality, integrity, invariant definitions,

well-bracketed control flow and hiding of local state [10, 40, 59, 60].

Informally, a compiler is fully abstract if it preserves and reflects observational equivalence

of source-level components (i.e., partial programs) in their compiled counterparts. Most existing

work instantiates observational equivalence with contextual equivalence: co-divergence of two

components in any larger context they interact with. Fully abstract compilation is a very strong

property, which preserves all source-level abstractions.
Unfortunately, preserving all source-level abstractions also has downsides. In fact, while FAC

preserves many relevant security properties, it also preserves a plethora of other non-security

ones, and the latter may force inefficient checks in the compiled code. For example, when the

target is assembly, two observationally equivalent components must compile to code of the same

size [10, 59], else full abstraction is trivially violated. This requirement is security-irrelevant in

most cases. Additionally, FAC is not well-suited for source languages with undefined behaviour

(e.g., C and LLVM) [42] and, if used naïvely, it can fail to preserve even simple safety properties [64]

(though, fortunately, no existing work falls prey to this naïvety).

Motivated by this, recent work started investigating alternative secure compilation criteria

that overcome these limitations. These security-focussed criteria take the form of preservation of

hyperproperties or classes of hyperproperties, such as hypersafety properties or safety properties [9,

36]. This paper investigates one of these criteria, namely, Robustly Safe Compilation (RSC) which
has clear security guarantees and, as we show, can often be attained more efficiently than FAC.

Informally, a compiler attains RSC if it is correct and it preserves robust safety of source compo-

nents in the target components it produces. Robust safety is an important security notion that has

been widely adopted to formalise security, e.g., of communication protocols [15, 19, 37]. Before

explaining RSC, we explain robust safety as a language property.

Robust Safety as a Language Property. Informally, a program property is a safety property if it

encodes that “bad” sequences of events do not happen when the program executes [14, 69]. A

program is robustly safe if it has relevant (specified) safety properties despite active attacks from
adversaries [15, 68, 76]. As the name suggests, robust safety relies on the notions of safety and

robustness which we now explain.

Safety. As mentioned, safety asserts that “no bad sequence of events happens”, so we can specify

a safety property by the set of finite observations which characterise all bad sequences of events.

A whole program has a safety property if its behaviours exclude these bad observations. Many
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security properties can be encoded as safety, including integrity, weak secrecy and functional

correctness.

Example 1.1 (Integrity). Integrity ensures that an attacker does not tamper with invariants on

state. For example, consider the function charge_account( amount ) in the snippet below, which

deducts amount from an account as part of an electronic card payment. A card PIN is required if

amount is larger than 10 euros. So the function checks whether amount > 10, requests the PIN if

this is the case, and then changes the account balance. We expect this function to have a safety

(integrity) property on the account balance: a reduction of more than 10 euros to the account balance

must be preceded by a call to request_pin(). Here, the relevant observation is a trace (sequence)

of account balances and calls to request_pin(). Bad observations for this safety property are

those where an account balance is at least 10 euros less than the previous one, without a call to

request_pin() in between. Note that this function seems to have this safety property, but it may

not have the safety property robustly: a target-level adversary may transfer control directly to the

“else” branch of the check amount > 10 after setting amount to more than 10, to violate the safety

property.

1 function charge_account( amount : Int ){
2 if amount > 10 { request_pin(); }
3 charge_account(amount);
4 return;
5 }

�

Example 1.2 (Weak Secrecy). Weak secrecy asserts that a program secret never flows explicitly to

the attacker. For example, consider code that manages network_h, a handler (socket descriptor)
for a sensitive network interface. This code does not expose network_h directly to external code

but it provides an API to use it. This API makes some security checks internally. If the handler is

directly accessible to outer code, then it can be misused in insecure ways (since the security checks

may not be made). If the code has weak secrecy with respect to network_h then we know that the

handler is never passed to an attacker. In this case we can define bad observations as those where

network_h is passed to external code (e.g., as a parameter, as a return value on or on the heap). �

Example 1.3 (Partial Correctness). Program correctness can also be formalised as a safety property.

Consider a program that computes the nth Fibonacci number. The program reads n from an input

source and writes its output to an output source. Correctness of this program is a safety property.

Observations here are pairs of an input (read by the program) and the corresponding output

(produced by the program) so, for example, outputting 13 is only allowed if 7 were passed as input.

A bad observation is one where the input is n (for some n) but the output is different from the nth
Fibonacci number, e.g., input 4 and output 5 as well as input 3 and output 6 are bad observations. �

These examples not only illustrate the expressiveness of safety properties, but also show that

safety properties as we capture here are quite coarse-grained, since they are only concerned with (se-

quences of) relevant events like calls to specific functions, changes to specific heap variables, inputs,

and outputs. In the model of observable events that we use, we can see that safety properties do

not specify or constrain how the program computes between these events, leaving the programmer

and the compiler considerable flexibility in optimizations. This gives us confidence in the model of

events we choose. However, safety properties are not a panacea for security, and there are security

properties that are not safety. For example, noninterference [80, 82], the standard information flow

property, is not safety. Nonetheless, many interesting security properties are safety. In fact, many

non-safety properties including noninterference can be conservatively approximated as safety

properties [22]. Hence, safety properties are a meaningful goal to pursue for secure compilation.

ACM Trans. Graph., Vol. 37, No. 4, Article 111. Publication date: August 2019.



111:4 Marco Patrignani and Deepak Garg

Robustness.We often want to reason about properties of a component of interest that hold irre-

spective of any other components the component interacts with. These other components may be

the libraries the component is linked against, or the language runtime. Often, these surrounding

components are modelled as the program context whose hole the component of interest fills. When

the component of interest links to a context, we have a whole program that can run. A property

holds robustly for a component if it holds in any context that the component of interest can be

linked to.

From a security perspective, the context represents the attacker in the threat model we consider.

The implications of this fact are that the attacker’s power is limited to what can be expressed by

the language semantics. Concretely, all of the attackers we consider have no control over the code

section of the component and they cannot tamper with the protection mechanisms the compiler

uses.

Robust Safety Preservation as a Compiler Property. A compiler attains robustly safe compilation or

RSC if it maps any source component that has a safety property robustly to a compiled component

that has the same safety property robustly. Thus, safety has to hold robustly in the target language,

which often does not have the powerful abstractions (e.g., typing) that the source language has.

Hence, the compiler must insert enough defensive runtime checks into the compiled code to

prevent the more powerful target contexts from launching attacks (violations of safety properties)

that source contexts could not launch. This is unlike correct compilation, which either considers

only those target contexts that behave like source contexts [43, 53, 73] or considers only whole

programs [46].

As mentioned, safety properties are usually quite coarse-grained. This means that RSC still

allows the compiler to optimise code internally, as long as the sequence of observable events is

not affected. For example, when compiling the fibonacci function of Example 1.3, the compiler

can do any internal optimisation such as caching intermediate results, as long as the end result is

correct. Crucially, however, cached results must be protected from tampering by a (target-level)

attacker, else the output can be incorrect, breaking RSC.
A RSC-attaining compiler focuses only on preserving security (as captured by robust safety)

instead of contextual equivalence (typically captured by full abstraction). So, such a compiler can

produce code that is more efficient than code compiled with a fully abstract compiler as it does not

have to preserve all source abstractions (we illustrate this later).
Finally, robust safety scales naturally to thread-based concurrency [2, 37, 62]. Thus RSC also

scales naturally to thread-based concurrency (we demonstrate this too). This is unlike FAC, where
thread-based concurrency can introduce additional undesired observations that also need to be

preserved.

RSC is a very recently proposed criterion for security-preserving compilers. Recent work [8, 9, 36]

defines RSC abstractly in terms of preservation of program behaviours, but the development is

limited to the definition only. Other recent work [7] defines a form of RSC for source languages with

undefined behaviour and where attackers are components that become compromised as execution

progresses. Our goal in this paper is to examine how RSC can be realized and established, and to

show that in certain cases it leads to compiled code that is more efficient than what FAC leads

to. To this end, we consider a specific setting where observations are values in specific (sensitive)

heap locations at cross-component calls. We define robust safety and RSC for this specific setting

(Section 2). Unlike previous work [9, 15, 36] which assumed that the domain of traces (behaviours)

is the same in the source and target languages, our RSC definition allows for different trace domains

in the source and target languages, as long as they can be suitably related. This relation is analogous

to that found in recent work [8] that studied the necessary properties of trace relations in order
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to preserve security through compilation. The second contribution of our paper is two proof

techniques to establish RSC.

• The first technique is an adaption of trace-based backtranslation, an existing technique for

proving FAC [7, 10, 63]. To illustrate this technique, we build a compiler from an untyped

source language to an untyped target language with support for fine-grained memory protec-

tion via so-called capabilities [25, 81] (Section 3). Here, we guarantee that if a source program

is robustly safe, then so is its compilation.

• The second proof technique shows that if source programs are verified for robust safety,

then one can simplify the proof of RSC so that no backtranslation is needed. In this case, we

develop a compiler from a typed source language where the types already enforce robust

safety, to a target language similar to that of the first compiler (Section 4). In this instance, both

languages also support shared-memory concurrency. Here, we guarantee that all compiled

target programs are robustly safe.

To argue that RSC is general and is not limited to compilation targets based on capabilities, we also

develop a third compiler.

• This compiler starts from the same source language as our second compiler but targets an

untyped concurrent language with support for coarse-grained memory isolation, modelling

recent hardware extensions such as Intel’s SGX [49] (Section 5).

The final contribution of this paper is a comparison between RSC and FAC (Section 6). For this,

• We first introduce FAC and discuss its advantages and limitations.

• Then, we present a series of code examples that describe different ways in which a fully

abstract compiler introduces inefficiencies in compiled code in order to attain FAC. We then

sketch a fourth compiler by turning the first one into a fully abstract one and show how the

changes introduced to attain FAC make compiled code inefficient.

• Finally, we argue that this compiler attains FAC and highlight how the proof is significantly

more complex than before.

Finally, the paper discusses related work (Section 7) and concludes (Section 8).

This paper supersedes and extends the work of Patrignani and Garg [66] by providing full details

of the languages and compilers formalisations. Additionally, it describes how the RSC theory scales

to different protection mechanisms (Section 5) and it presents in much more detail the comparison

with FAC. For the sake of brevity and clarity, we limit proofs to sketches, the interested reader will

find full proofs and additional lemmas in the companion technical report [65].

2 ROBUSTLY SAFE COMPILATION
This section first discusses robust safety as a language (not a compiler) property (Section 2.1) and

then presents RSC as a compiler property along with an informal discussion of techniques to prove

it (Section 2.2).

2.1 Safety and Robust Safety
To explain robust safety, we first describe a general imperative programming model that we use.

Programmers write components on which they want to enforce safety properties robustly. A

component is a list of function definitions that can be linked with other components (the context)

in order to obtain a runnable whole program (functions in “other” components are like extern
functions in C). Additionally, every component declares a set of “sensitive” locations that contain

all the data that is safety-relevant. For instance, in Example 1.1 this set may contain the account
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balance and in Example 1.3 it may contain the I/O buffers. We explain the relevance of this set after

we define safety properties.

We want safety properties to specify that a component never executes a “bad” sequence of

events. For this, we first need to fix a notion of events. We have several choices here, e.g., our

events could be inputs and outputs, all syscalls, all changes to the heap (as in CompCert [47]),

etc. Here, we make a specific choice motivated by our interest in robustness: we define events

as calls/returns that cross a component boundary, together with the state of the heap at that

point. Consequently, our safety properties can constrain the contents of the heap at component

boundaries. This choice of component boundaries as the point of observation is meaningful because,

in our programming model, control transfers to/from an adversary happen only at component

boundaries (more precisely, they happen at cross-component function call and returns). This allows

the compiler complete flexibility in optimizing code within a component, while not reducing the

ability of safety properties to constrain observations of the adversary. In turn, safety properties

regarding these kinds of boundary-crossing events are the only one that our criterion can preserve

through compilers upholding our criterion.

Concretely, a component behaviour is a trace, i.e., a sequence of actions recording component

boundary interactions and, in particular, the heap at these points. Actions, the items on a trace,

have the following grammar (notation-wise, we mainly indicate actions as α , though to further

disambiguate when source and target actions are mentioned, we will also use the ω notation):

Actions α ,ω ::= call f v H? | call f v H ! | ret H ! | ret H?

These actions respectively capture call and callback to a function f with parameter v when the

heap is H as well as return and returnback with a certain heap H . More precisely, a callback is a

call from the component to the context, so it generates label call f v H ! while a returnback is a

return from such a callback, i.e., the context returning to the component, and it generates the label

ret H?. We use ? and ! decorations to indicate whether the control flow of the action goes from the

context to the component (?) or from the component to the context (!). Well-formed traces have

alternations of ? and ! decorated actions, starting with ? since execution starts in the context. For

a sequence of actions α , relevant(α ) is the list of heaps H mentioned in the actions of α . In the

sequent, we separate list elements with ·, so H · H indicates a non-empty list of heaps with at least

one element (H ).

Next, we need a representation of safety properties. Generally, properties are sets of traces, but

safety properties specifically can be specified as automata (or monitors in the sequel) [69]. We

choose this representation since monitors are less abstract than sets of traces and they are closer

to enforcement mechanisms used for safety properties, e.g., runtime monitors. Briefly, a safety

property is a monitor that transitions states in response to events of the program trace. At any point,

the monitor may refuse to transition (it gets stuck), which encodes property violation. While a

monitor can transition, the property has not been violated. Schneider [69] argues that all properties

codable this way are safety properties and that all enforceable safety properties can be coded this

way.

Formally, a monitor M in our setting consists of a set of abstract states {σ · · · }, the transition
relation⇝, an initial state σ0 , the set of heap locations that matter for the monitor, {l · · · }, and the

current state σc (we indicate a set of elements of class e as {e · · · }). The transition relation⇝ is

a set of triples of the form (σs,H ,σf ) consisting of a starting state σs, a final state σf and a heap

H . The transition (σs,H ,σf ) is interpreted as “state σs transitions to σf when the heap is H”. When

determining the monitor transition in response to a program action, we restrict the program’s heap

to the location set {l · · · }, i.e., to the set of locations the monitor cares about. This heap restriction
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is written H ���{l · · · } . We assume determinism of the transition relation: for any σs and (restricted

heap) H , there is at most one σf such that (σs,H ,σf ) ∈⇝.

Given the behaviour of a program as a trace α and a monitor M specifying a safety property,

M ⊢ α denotes that the trace satisfies the safety property. Intuitively, to satisfy a safety property,

the sequence of heaps in the actions of a trace, restricted to the locations that the monitor cares about,
must never get the monitor stuck (Rule Valid trace). Every single restricted heap must allow the

monitor to step according to its transition relation (Rule Monitor Step). Note that we overload the

⇝ notation here to also denote an auxiliary relation, themonitor small-step semantics (Rule Monitor

Step-base and Rule Monitor Step-ind).

(Valid trace)

M; relevant(α ) ⇝ M ′

M ⊢ α

(Monitor Step-base)

M;∅⇝ M

(Monitor Step-ind)

M;H ⇝ M ′′ M ′′;H ⇝ M ′

M;H · H ⇝ M ′
(Monitor Step)

(σc,H
���{l · · · },σf ) ∈⇝

({σ · · · } ,⇝,σ0, {l · · · } ,σc );H ⇝ ({σ · · · } ,⇝,σ0, {l · · · } ,σf )
With this setup in place, we can formalise safety, attackers and robust safety. In defining (robust)

safety for a component, we only admit monitors (safety properties) whose {l · · · } agrees with the

sensitive locations declared by the component. Making the set of safety-relevant locations explicit

in the component and the monitor gives the compiler more flexibility by telling it precisely which

locations need to be protected against target-level attacks (the compiler may choose to not protect

the rest). At the same time, it allows for expressive modelling. For instance, in Example 1.3, the

safety-relevant locations could be the I/O buffers from which the program performs inputs and

outputs, and the safety property can constrain the input and output buffers at corresponding call

and return actions involving the Fibonacci function. A whole program C is safe for a monitor M ,

written M ⊢ C : safe, if the monitor accepts any trace the program generates from its initial state

(Ω0 (C )).
An attacker A is valid for a component C, written C ⊢ A : atk, if A’s free locations (denoted

locs(A)) are disjoint from the locations that the component cares about (denoted C.locs). This is
a basic sanity check: if we allow an attacker to mention heap locations that the component cares

about, the attacker will be able to modify those locations, causing all but trivial safety properties to

not hold robustly.

A component C is robustly safe with respect to monitor M , written M ⊢ C : rs, if C composed

with any attacker is safe with respect toM . As mentioned, for this setup to make sense, the monitor

and the component must agree on the locations that are safety-relevant. This agreement is denoted

M⌢C.

Definition 2.1 (Safety, attacker and robust safety).

M ⊢ C : safe def
= if ⊢ C : whole then if Ω0 (C)

α
==⇒ _ thenM ⊢ α

C ⊢ A : atk def
= C.locs = {l · · · } and {l · · · } ∩ locs(A) = ∅

M ⊢ C : rs def
= ∀A. ifM⌢C and C ⊢ A : atk then M ⊢ A [C] : safe

2.2 Robustly Safe Compilation
Robustly-safe compilation ensures that robust safety properties and their meanings are preserved
across compilation. But what does it means to preserve meanings across languages? If a source

safety property says never write 3 to a location, and we compile to an assembly language by
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mapping numbers to binary, the corresponding target property should say never write 0x11 to an
address.
In order to relate properties across languages, we assume a relation ≈ : v × v between source

and target values that is total in the first component, so it maps any source value v to a target

value v: ∀v.∃v.v≈ v. This value relation is used to define a relation between heaps: H≈H, which
intuitively holds when related locations point to related values. This is then used to define a

relation between actions: α ≈ω, which holds when the two actions are the “same” modulo this

relation, i.e., call · · · ? only relates to call · · · ? and the arguments of the action (values and

heap) are related. Next, we require a relationM≈M between source and target monitors, which

means that the source monitor M and the target monitor M enforce the same safety property,

modulo the relation ≈ on actions (and thus on locations and values too) assumed above. The precise

definition of this relation depends on the source and target languages; specific instances are shown

in Sections 3.3.1 and 4.3.
2

We denote a compiler from language S to language T by J·KST. A compiler J·KST attains RSC, if it
maps any component C that is robustly safe with respect toM to a component C that is robustly

safe with respect to M, provided that M≈M.

Definition 2.2 (Robustly Safe Compilation).

⊢ J·KST : RSC def
= ∀C,M,M. if M ⊢ C : rs andM≈M then M ⊢ JCKST : rs

A consequence of the universal quantification over monitors here is that the compiler cannot

be property-sensitive. A robustly-safe compiler preserves all robust safety properties, not just a

specific one, e.g., it does not just enforce that fibonacci is correct. This seemingly strong goal is

sensible as compiler writers will likely not know what safety properties individual programmers

will want to preserve.

Remark #1: Safety Through Assertions. Some readers may wonder why we do not follow existing

work and specify safety as “programmer-written assertions never fail” [34, 37, 48, 76]. Unfortunately,

this approach does not yield a meaningful criterion for specifying a compiler, since assertions in

the compiled program (if any) are generated by the compiler itself. Thus a compiler could just erase

all assertions and the compiled code it generates would be trivially (robustly) safe – no assertion

can fail if there are no assertions in the first place!

Remark #2: Compiling Monitors. In our development, we assume that a source and a target

monitor are related and do not actually compile a source monitor to obtain a related target monitor.

While such compilation is feasible, it is at odds with our view of monitors as specifications of safety
properties. Compiling monitors and, in particular, compiling monitors with the same compiler that

we want to prove security of, leads to a circularity—we must understand the compiler to understand

the target safety property, which, in turn, acts as the specification for the compiler! Consequently,

we choose not to compile monitors and talk only of an abstract, compiler-independent relation

between source and target monitors.

2.2.1 Proving RSC. Proving that a compiler attains RSC can be done either by proving that a

compiler satisfies Definition 2.2 or by proving something equivalent. To this end, Definition 2.3

below presents an alternative, equivalent formulation of RSC. We call this characterisation property-
free as it does not mention monitors explicitly (it mentions the relevant( · ) function for reasons

we explain below).

2
Accounting for the difference in the representation of safety properties sets us apart from recent work [9, 36], which

assumes that the source and target languages have the same trace alphabet. The latter works only in some settings.
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Definition 2.3 (Property-Free RSC).

⊢ J·KST : PF-RSC def
= ∀C,A,ω.

if JCKST ⊢ A : atk and ⊢ A
[
JCKST

]
: whole and Ω0

(
A

[
JCKST

] ) ω
==⇒ _

then ∃A,α . C ⊢ A : atk and ⊢ A [C] : whole and Ω0 (A [C])
α
==⇒ _

and relevant(α ) ≈ relevant(ω)

PF-RSC states that if the compiled code produces a behaviour in a target context, then the source

code also produces a related behaviour in some source context. In other words, target contexts

cannot induce more (bad) behaviours in the compiled code than source contexts can in the source

code.

PF-RSC and RSC should, in general, be equivalent (Proposition 2.4).

Proposition 2.4 (PF-RSC and RSC are eqivalent).

∀J·KST, ⊢ J·KST : PF-RSC ⇐⇒ ⊢ J·KST : RSC

As mentioned in Section 1, a property is safety if it asserts that “no bad sequence of events

happens”, so a safety property specifies the set of bad prefixes (i.e., finite traces) which characterise

all bad sequences of events. As such, a safety property implies that programs do not have any

trace prefix from the set of bad prefixes. Hence, not having a safety property robustly amounts

to some context being able to induce a bad prefix. Consequently, preserving all robust safety
properties (RSC) amounts to ensuring that all target prefixes can be generated (by some context) in

the source too (PF-RSC). Formally, since Definition 2.2 relies on the monitor relation, we can prove

Proposition 2.4 only after such a relation is finalised. We give such a monitor relation and proof in

Section 3.3 (see Theorem 3.7). However, in general this result should hold for any cross-language

monitor relation that correctly relates safety properties. If the proposition does not hold, then the

relation does not capture how safety in one language is represented in the other.

Assuming Proposition 2.4, we can prove PF-RSC for a compiler in place of RSC. PF-RSC can

be proved with a backtranslation technique. This technique has been often used to prove full

abstraction [7, 9, 10, 36, 42, 54, 59, 60, 63] and it aims at building a source context starting from a

target one. In fact PF-RSC, leads directly to a backtranslation-based proof technique since it can be

rewritten (eliding irrelevant details) as:

∀ω if ∃A. Ω0
(
A

[
JCKST

] ) ω
==⇒ _

then ∃A,α . Ω0 (A [C])
α
==⇒ _ and relevant(α ) ≈ relevant(ω)

Essentially, given a target context A, a compiled program JCKST and a target traceω that A causes

JCKST to have, we need to construct, or backtranslate to, a source context A that will cause the source

program C to simulateω. Such backtranslation based proofs can be quite difficult, depending on

the features of the languages and the compiler. However, backtranslation for RSC (as we show in

Section 3.3.1) is not as complex as backtranslation for FAC (Section 6.3).

A simpler proof strategy is also viable for RSC when we compile only those source programs

that have been verified to be robustly safe (e.g., using a type system). The idea is this: from the

verification of the source program, we can find an invariant which is always maintained by the

target code, and which, in turn, implies the robust safety of the target code. For example, if the

safety property is that values in the heap always have their expected types, then the invariant can

simply be that values in the target heap are always related to the source ones (which have their
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expected types). This is tantamount to proving type preservation in the target in the presence of an

active adversary. This is harder than standard type preservation (because of the active adversary)

but is still much easier than backtranslation as there is no need to map target constructs to source

contexts syntactically. We illustrate this proof technique in Section 4.

2.2.2 RSC Implies Compiler Correctness. As stated in Section 1, RSC implies (a form of) compiler

correctness. While this may not be apparent from Definition 2.2, it is more apparent from its

equivalent characterization in Definition 2.3. We elaborate this here.

Whether concerned with whole programs or partial programs, compiler correctness states that

the behaviour of compiled programs refines the behaviour of source programs [20, 39, 43, 47, 53, 73].

So, if

{
ω · · ·

}
and {α · · · } are the sets of compiled and source behaviours, then a compiler should

force

{
ω · · ·

}
⊂∼ {α · · · }, where ⊂∼ is the composition of ⊆ and of the relation ≈−1.

If we consider a source component C that is whole, then it can only link against empty contexts,

both in the source and in the target. Hence, in this special case, PF-RSC simplifies to standard

refinement of traces, i.e., whole program compiler correctness. Hence, assuming that the correctness

criterion for a compiler is concerned with the same observations as safety properties (values in

safety-relevant heap locations at component crossings in our illustrative setting), PF-RSC implies

whole program compiler correctness.

However, PF-RSC (or, equivalently, RSC) does not imply, nor is implied by, any form of com-
positional compiler correctness (CCC) [43, 53, 73]. CCC requires that the behaviours produced by

a compiled component linked against a target context that is related (in behaviour) to a source

context can also be produced by the source component linked against the related source context.

In contrast, PF-RSC allows picking any source context to simulate the behaviours. Hence, PF-RSC
does not imply CCC. On the other hand, PF-RSC universally quantifies over all target contexts,

while CCC only quantifies over target contexts related to a source context, so CCC does not imply

PF-RSC either. Hence, compositional compiler correctness, if desirable, must be imposed in addition

to PF-RSC.
We could remedy this and generalise our criterion even more by adding an additional parameter,

a relation between source and target contexts that binds the quantified target and source contexts.

Our criterion chooses the weakest of these relations, where all source contexts are related to

all target ones, in order to not impose any constraints on A thus making the attackers in our

threat model as powerful as possible. Existing compositional compiler correctness criteria would

instantiate this relation e.g., between a source context and its compilation [43, 73] or between a

source context and something that behaves like its compilation [53]. As we focus on security, we

choose not to pollute our definition with an additional parameter and leave this relation out.

Note that the lack of implications between PF-RSC and CCC is unsurprising: the two criteria

capture two very different aspects of compilation: security (against all contexts) and compositional

preservation of behaviour (against well-behaved contexts).

Remark. Compiler correctness composes ‘vertically’, that is, given two compilers (or, compiler

passes) one from a source language to an intermediate one, and one from the intermediate to a

target language, the compiler resulting of the composition of the two passes is still correct. Like

compiler correctness, PF-RSC also composes vertically, i.e., if several compiler passes are all PF-RSC,
then the compiler resulting of the composition of those passes is also PF-RSC. Studying how PF-RSC
compiler passes interact with other passes (e.g., compiler passes that may be FAC or any other

criterion from [9]) is an open research question.
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3 RSC VIA TRACE-BASED BACKTRANSLATION
This section illustrates how to prove that a compiler attains RSC by means of a trace-based back-

translation technique [7, 59, 63]. To present such a proof, we first introduce our source language

LU, an untyped, first-order imperative language with abstract references and hidden local state

(Section 3.1). Then, we present our target language LP, an untyped imperative target language with

a concrete heap, whose locations are natural numbers that the context can compute. LP provides
hidden local state via a fine-grained capability mechanism on heap accesses (Section 3.2). Finally,

we present the compiler J·KL
U

LP and prove that it attains RSC (Section 3.3) by means of a trace-based

backtranslation. The section concludes with an example detailing why RSC preserves security

(Example 3.8).

To avoid focussing on mundane details, we deliberately use source and target languages that

are fairly similar. However, they differ substantially in one key point: the heap model. This affords

the target-level adversary attacks like guessing private locations and writing to them that do not

obviously exist in the source (and makes our proofs nontrivial). We believe that (with due effort)

the ideas here will generalize to languages with larger gaps and more features.

3.1 The Source Language LU

Components C ::= ℓroot; F; I Contexts A ::= H; F [·]

Interfaces I ::= f Functions F ::= f (x) 7→ s; return;

Heaps H ::= ∅ | H; ℓ 7→ v Values v ::= unit | true | false | n ∈ N | ⟨v, v⟩ | ℓ

Expressions e ::= x | v | e ⊕ e | e ⊗ e | ⟨e, e⟩ | e.1 | e.2 | !e

Statements s ::= skip | s; s | let x = e in s | if e then s else s | call f e | let x = new e in s | x := e

Eval. Ctxs. E ::= [·] | n ⊕ E | E ⊕ e | n ⊗ E | E ⊗ e | ⟨v, E⟩ | ⟨E, e⟩ | E.1 | E.2 | !E

Mon. States σ ∈ S Monitors M ::= ({σ · · · } ,⇝,σ0, ℓroot,σc)

Mon. Reds.⇝ ::= ∅ | ⇝; (s,H, s) Prog. States Ω ::= C,H ▷ (s)f
Labels λ ::= ϵ | α Actions α ::= call f v H? | call f v H! | ret H! | ret H?

Fig. 1. Syntax of LU. We indicate a list of elements e1, · · · , en as e .

LU is an untyped imperative while language [55]. Its syntax is presented in Figure 1. Components

C are triples of function definitions, interfaces and a special location written ℓroot, which defines the

locations that are monitored for safety, as explained below. We use a mnemonic ‘dot’ notation to

access sub-parts of elements that are tuples (such as components), so when accessing the functions

sub-part of a component C, we will write C.funs. Each function definition maps a function name

and a formal argument to a body s. An interface is a list of functions that the component relies

on the context to provide (similar to C’s extern declarations). Attackers A (program contexts) are

function definitions (and their heap) that represent untrusted code that a component interacts

with. A function body is a statement. Statements s are rather standard but their treatment is not.

For example, statements define local variables but these are substitute and not looked up in an

environment as in while languages [79]. Additionally, statements manipulate the heap, do recursive

function calls and branch conditionally. Statements use effect-free expressions e, which contain

arithmetic and comparison operations, pairing and projections, and location dereference. Heaps H
are maps from abstract locations ℓ to values v.
We use a number of auxiliary functions to access parts of LU that we now explain. Function

locs( · ) returns the set of locations that are free in the argument of the function; that argument
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can be an expression, a list of functions or an attacker. Function names( · ) returns the names of the

functions defined in the argument, which can be a list of functions or a list of interfaces. Function

fv(F) returns the free variables in the bodies of the list of functions supplied as argument.

As explained in Section 2.1, safety properties are specified by monitors. Note that in place of the

set {l · · · } of safety-relevant locations, the description of a monitor here (as well as a component

above) contains a single location ℓroot. The interpretation is that any location reachable in the heap

starting from ℓroot is relevant for safety. This set of locations can change as the program executes,

and hence this is more flexible than statically specifying all of {l · · · } upfront. This representation
of the set by a single location is made explicit in the following monitor rule:

(LU-Monitor Step)

M = ({σ · · · } ,⇝,σ0, ℓroot,σc) M′ = ({σ · · · } ,⇝,σ0, ℓroot,σf )
(σc,H′,σf ) ∈⇝ H′ ⊆ H dom(H′) = reach(ℓroot,H)

M;H⇝ M′

reach(ℓ′,H) =
{
ℓ �� ∃e. H ▷ e ↪→→ ℓ ∧ ℓ ∈ dom(H) ∧ locs(e) = ℓ′

}
Other than this small point, monitors, safety, robust safety and RSC are defined as in Section 2. In

particular, a monitor and a component agree if they mention the same ℓroot and an attacker is valid

for a component C if its code and heap do not mention the ℓroot location of C. Note that checking
this condition is sufficient because whether A is a valid attacker is a static condition, checked before
programs run. At this stage, ℓroot does not point to any other location, so the check is sufficient.

ℓroot may grow to point to other locations, but these will be dynamically-generated, and thus the

attacker cannot possibly mention them statically in its code.

M⌢C
def
= (M = ({σ · · · } ,⇝,σ0, ℓroot,σc)) and (C = (ℓroot; F; I))

C ⊢ A : atk
def
= C = (ℓroot; F; I),A = H; F′ and ℓroot < (locs(A))

The semantics of LU relies on some auxiliary functions that we present in Figure 2 before

presenting the semantics itself.

(LU-Jump-Internal)

((f ′ ∈ I ∧ f ∈ I) ∨ (f ′ < I ∧ f < I))

I ⊢ f, f ′ : internal

(LU-Jump-IN)

f ∈ I ∧ f ′ < I

I ⊢ f, f ′ : in

(LU-Jump-OUT)

f < I ∧ f ′ ∈ I

I ⊢ f, f ′ : out

(LU-Plug)

A ≡ H; F [·] C ≡ ℓroot; F′; I
⊢ C, F : whole main ∈ names(F)

A [C] = ℓroot;H; ℓroot 7→ 0; F; F′; I

(LU-Whole)

C ≡ ℓroot; F′; I fv(F) ∪ fv(F′) = ∅
names(F) ∩ names(F′) = ∅

names(I) ⊆ names(F) ∪ names(F′)

⊢ C, F : whole
(LU-Initial State)

P ≡ ℓroot;H; F; I C ≡ ℓroot; F; I main(x) 7→ s; return; ∈ F

Ω0 (P) = C;H, ℓroot 7→ 0 ▷ (s[0 / x])main

Fig. 2. Auxiliary rules. The first batch determines the direction of calls and returns. The second batch defines
plugging a component with an attacker, when a whole program is whole and how to calculate the starting
state of a program, which starts computing from the main function.

A program state Ω includes the function bodies C, the heap H, a statement s being executed

and a stack of function calls f (often omitted in the semantics rules for simplicity and explained in
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Example 3.1). The initial state of a whole program is generated according to Rule LU-Initial State. A
program consisting of a component C and attacker-provided functions F is whole (as defined by

Rule LU-Whole) if no function definition has free variables, if no function names is duplicated and

if all import functions of the components are resolved. Whole programs are typically the result of

plugging a component and an attacker together as in Rule LU-Plug. The stack of function calls is

used to populate judgements of the form I ⊢ f, f ′ : internal/in/out (Figure 2, top). These judgements

determine whether calls and returns are internal (within the attacker or within the component),

directed from the attacker to the component (in) or directed from the component to the attacker

(out). This information is used to determine whether the semantics should generate a label (as in

Rules ELU-call to ELU-retback) or no label (as in Rules ELU-call-internal and ELU-ret-internal) since
internal calls should not be observable.

LU has a big-step semantics for expressions that relies on evaluation contexts, a small-step

semantics for statements that has labels λ and a semantics that accumulates labels in traces by

omitting silent actions ϵ and concatenating the rest. These semantics follow the judgements below.

The rules defining these judgments are presented in Figure 3:

Expressions H ▷ e ↪→→ v Statements Ω
λ
−−→ Ω′ Traces Ω

α
==⇒ Ω′

Unlike existing work on compositional compiler correctness which only relies on having the

component [43], our semantics relies on having both the component and the context (i.e., a whole

program).

Example 3.1 (Call semantics). To provide further insights on the semantics of this (and the

following) language, this example shows the reduction for component Cbase below plugged with

an attacker Abase defining only function main (still below).

Cbase = ℓroot; skipten(x) 7→if x >= 10 then skip else call skipten x + 1; return; main

Abase = ∅;main(x) 7→call skipten 9; return;

In the following, we indicate with C the component resulting by adding function main to the list

of functions of Cbase and leaving the rest unmodified (as according to Rule LU-Plug).

C;∅; ℓroot ▷ (call skipten 9; return;)main

call skipten 9 ∅?

−−−−−−−−−−−−−−−−→ C;∅; ℓroot ▷ (if 9 >= 10 then skip else call skipten 9 + 1; return;return;)main·skipten

since ∅ ▷ 9 >= 10 ↪→→ false

−→ C;∅; ℓroot ▷ (call skipten 9 + 1; return;return;)main·skipten

since ∅ ▷ 9 + 1 ↪→→ 10

(this call is internal to the component, so there is no label)

−→ C;∅; ℓroot ▷

( if 10 >= 10 then skip else call skipten 10 + 1;

return;return;return;

)
main·skipten·skipten

since ∅ ▷ 10 >= 10 ↪→→ true

−→ C;∅; ℓroot ▷ (skip; return;return;return;)main·skipten·skipten

−→ C;∅; ℓroot ▷ (return;return;return;)main·skipten·skipten

(this return is internal to the component, so there is no label)

−→ C;∅; ℓroot ▷ (skip; return;return;)main·skipten

−→ C;∅; ℓroot ▷ (return;return;)main·skipten
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(ELU-ctx)

H ▷ e ↪→→ e′

H ▷ E [e] ↪→→ E [e′]

(ELU-val)

H ▷ v ↪→→ v

(ELU-dereference)
ℓ 7→ v ∈ H
H▷!ℓ ↪→→ v

(ELU-op)

n ⊕ n′ = n′′

H ▷ n ⊕ n′ ↪→→ n′′
(ELU-comp)

n ⊗ n′ = b

H ▷ n ⊗ n′ ↪→→ b

(ELU-p1)

H ▷ ⟨v, v′⟩ .1 ↪→→ v

(ELU-p2)

H ▷ ⟨v, v′⟩ .2 ↪→→ v′

(ELU-sequence)

C,H ▷ skip; s
ϵ
−−→ C,H ▷ s

(ELU-step)

C,H ▷ s
λ
−−→ C,H′ ▷ s′

C,H ▷ s; s′′
λ
−−→ C,H′ ▷ s′; s′′

(ELU-if)
H ▷ e ↪→→ v

v ≡ true⇒ s′′ = s v ≡ false⇒ s′′ = s′

C,H ▷ if e then s else s′
ϵ
−−→ C,H ▷ s′′

(ELU-letin)
H ▷ e ↪→→ v

C,H ▷ let x = e in s
ϵ
−−→ C,H ▷ s[v / x]

(ELU-update)
H ▷ e ↪→→ v

H = H1; ℓ 7→ v′;H2 H′ = H1; ℓ 7→ v;H2

C,H ▷ ℓ := e
ϵ
−−→ C,H′ ▷ skip

(ELU-alloc)

H ▷ e ↪→→ v ℓ < dom(H)

C,H ▷ let x = new e in s −→
C,H; ℓ 7→ v ▷ s[ℓ

/
x]

(ELU-call)

f ′ = f ′′; f ′ f (x) 7→ s; return; ∈ C.funs
C.intfs ⊢ f ′, f : in H ▷ e ↪→→ v

C,H ▷ (call f e)f′
call f v H?
−−−−−−−−−−−→

C,H ▷ (s; return;[v / x])f′;f

(ELU-callback)

f ′ = f ′′; f ′ f (x) 7→ s; return; ∈ F
C.intfs ⊢ f ′, f : out H ▷ e ↪→→ v

C,H ▷ (call f e)f′
call f v H!
−−−−−−−−−−−→

C,H ▷ (s; return;[v / x])f′;f
(ELU-return)

f ′ = f ′′; f ′ C.intfs ⊢ f, f ′ : out

C,H ▷ (return;)f′;f
ret H!
−−−−−−→ C,H ▷ (skip)f′

(ELU-retback)

f ′ = f ′′; f ′ C.intfs ⊢ f, f ′ : in

C,H ▷ (return;)f′;f
ret H?
−−−−−−−→ C,H ▷ (skip)f′

(ELU-call-internal)

C.intfs ⊢ f, f ′ : internal f ′ = f ′′; f ′

f (x) 7→ s; return; ∈ C.funs H ▷ e ↪→→ v

C,H ▷ (call f e)f′
ϵ
−−→

C,H ▷ (s; return;[v / x])f′;f

(ELU-ret-internal)

f ′ = f ′′; f ′ C.intfs ⊢ f, f ′ : internal

C,H ▷ (return;)f′;f
ϵ
−−→ C,H ▷ (skip)f′

(ELU-single)

Ω
α
−−→ Ω′

Ω
α
==⇒ Ω′

(ELU-silent)

Ω
ϵ
−−→ Ω′

Ω =⇒ Ω′

(ELU-transitive)

Ω
α
==⇒ Ω′′ Ω′′

α ′
==⇒ Ω′

Ω
α ·α ′
====⇒ Ω′

Fig. 3. Semantics of LU. ⊕ includes +,−,×. ⊗ includes ==, <, > etc; [v / x] substitutes value v for variable x.

ret ∅!

−−−−−−→ C;∅; ℓroot ▷ (skip; return;)main

−→ C;∅; ℓroot ▷ (return;)main

−→ C;∅; ℓroot ▷ skip;

�
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3.2 The Target Language LP

Components C ::= kroot; F; I Heaps H ::= ∅ | H;n 7→ v : η | H; k
Expressions e ::= · · · | !e with e Values v ::= n ∈ N | ⟨v, v⟩ | k

Statements s ::= · · · | let x = hide e in s | ifz e then s else s | x := e with e
Monitors M ::= ({σ · · · },⇝,σ 0, kroot,σ c) Tags η ::= ⊥ | k

Actions ω ::= call f v H? | call f v H! | ret H! | ret H?

Fig. 4. Syntax of LP. Elided bits (· · · ) and omitted ones are the same as in LU (Figure 1).

LP is an untyped, imperative language that follows the structure of LU and it has similar expres-

sions and statements (Figure 4). However, there are critical differences (that make the compiler

interesting). The main difference is that heap locations in LP are concrete natural numbers. Upfront,

an adversarial context can guess locations used as private state by a component and clobber them. To

support hidden local state, a location can be “hidden” explicitly via the statement let x = hide e in s,
which allocates a new capability k, an abstract token that grants access to the location n to which

e points [72]. Subsequently, all reads and writes to n must be authenticated with the capabil-

ity, so reading and writing a location take another parameter, the capability, as in !e with e and
x := e with e. In both cases, the e after the with is the capability. Unlike locations, capabilities

cannot be guessed. To make a location private, the compiler can make the capability of the location

private. To bootstrap this hiding process, we assume that a component has one location that can

only be accessed by it, a priori in the semantics (in our formalisation, we always focus on only one

component and we assume that, for this component, this special location is at address 0).
LP stores capabilities on the heap alongside locations, so a heap H contain both capabilities k as

well as maps from natural numbers (locations) n to values v and a tag η. The tag η can be ⊥, which

means that n is globally available (not protected) or a capability k, which protects n. A globally

available location can be freely read and written but one that is protected by a capability requires

the same capability to be supplied at the time of read/write (Rule ELP-assign, Rule ELP-deref).
LP has a big-step semantics for expressions, a labelled small-step semantics and a semantics that

accumulates traces. These judgments follow similar judgements in the semantics of LU (Figure 5).

A second difference between LP and LU is that LP has no booleans, while LU has them. This

makes the compiler and the related proofs interesting, as discussed in the proof of Theorem 3.3.

In LP, the locations of interest to a monitor are all those that can be reached from the address

0. Location 0 itself is protected with a capability kroot that is assumed to occur only in the code

of the component in focus, so a component is defined as C ::= kroot; F; I. We can now give a

precise definition of component-monitor agreement for LP as well as a precise definition of attacker,

which must care about the kroot capability. In the following, we use auxiliary function caps( · ) to
return the capabilities of the argument (analogously to how locs( · ) returned the location of its

argument).

M⌢C def
= (M = ({σ · · · },⇝,σ 0, kroot,σ c)) and (C = (kroot; F; I))

C ⊢ A : atk def
= C.kroot < caps(A)

A monitor and compiler agree if they agree on kroot. An attacker is valid if it does not contain kroot
in its codebase a priori, though it may obtain kroot during its interaction with the component, if the

component is not carefully written.
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(ELP-deref)
n 7→ v : η ∈ H (η = ⊥) or (η = k and v′ = k)

H ▷ !n with v′ ↪→→ H ▷ v
(ELP-if)

H ▷ e ↪→→ n n ≡ 0⇒ s′′ = s n . 0⇒ s′′ = s′

C,H ▷ ifz e then s else s′
ϵ
−−→ C,H ▷ s′′

(ELP-new)
H = H1;n 7→ (v′,η) H ▷ e ↪→→ v H′ = H;n + 1 7→ v : ⊥

C,H ▷ let x = new e in s −→ C,H′ ▷ s[n + 1 / x]
(ELP-hide)

H ▷ e ↪→→ n H = H1;n 7→ v : ⊥;H2 k < dom(H) H′ = H1;n 7→ v : k;H2; k

C,H ▷ let x = hide e in s −→ C,H′ ▷ s[k
/
x]

(ELP-assign)
H ▷ e ↪→→ v H ▷ e′ ↪→→ v′ H = H1;n 7→ _ : η;H2 H′ = H1;n 7→ v : η;H2

(η = ⊥) or (η = k and v′ = k)

C,H ▷ n := e with e′ −→ C,H′ ▷ skip

Fig. 5. Expression and state semantics of LP. Omitted rules are the same as in LU (Figure 3).

Remark. This language uses what is commonly referred to as ‘data’ capabilities, i.e., capabili-

ties only for heap-allocated resources. Another kind of capabilities exist in the literature: ‘code’

capabilities, which grant the permission to jump to certain functions and execute their code. Since

our programs do not have function pointers (nor higher-order functions), the code capabilities

used and required by a program can be tracked statically, so we omit them entirely. If we extended

our language with function pointers or higher-order functions, we would have to introduce code

capabilities and pass said capabilities around in order to invoke the right function. We leave such

an extension for future work.

3.3 Compiler from LU to LP

We now present J·KL
U

LP , the compiler from LU to LP, detailing how it uses the capabilities of LP to
achieve RSC. Then, we prove that J·KL

U

LP attains RSC.

J·KL
U

LP takes as input a LU component C and returns a LP component (Figure 6). The compiler

performs a simple pass on the structure of functions, expressions and statements, using the infor-

mation of the intended cross-language relation (β) to compile values. The only non-straightforward

cases are the compilation of booleans and locations. Concerning the former, the compiler codes

source booleans true to 0 and false to 1. Concerning the latter, each LU location is encoded as a

pair of a LP location and the capability to access the location. Location update and dereference are

compiled accordingly and thus project each pair to the location and the capability in order to use

each part.

This compiler solely relies on the capability abstraction of the target language as a defence mech-

anism to attain RSC. Unlike existing security-preserving compilers, J·KL
U

LP needs neither dynamic

checks nor other constructs that introduce runtime overhead to attain RSC [10, 35, 42, 59, 63].

3.3.1 Proof of RSC. J·KL
U

LP attains RSC (Theorem 3.3). In order to set up this theorem, we need

to instantiate the cross-language relation for values, which we write as ≈β here. The relation is
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r
ℓroot; F; I

zLU

LP
= kroot;

r
F
zLU

LP
;

r
I
zLU

LP

Jf (x) 7→ s; return;KL
U

LP = f (x) 7→ JsKL
U

LP ; return; JfKL
U

LP = f

JtrueKL
U

LP = 0

JfalseKL
U

LP = 1

JnKL
U

LP = n

JxKL
U

LP = x

JℓKL
U

LP = ⟨n, v⟩

J!eKL
U

LP = !JeKL
U

LP .1 with JeKL
U

LP .2

J⟨e1, e2⟩KL
U

LP =

〈
Je1KL

U

LP , Je2K
LU

LP

〉
Je.1KL

U

LP = JeKL
U

LP .1

Je.2KL
U

LP = JeKL
U

LP .2

Je ⊕ e′KL
U

LP = JeKL
U

LP ⊕ Je′KL
U

LP

Je ⊗ e′KL
U

LP = JeKL
U

LP ⊗ Je′KL
U

LP

JskipKL
U

LP = skip

Jsu; sKL
U

LP = JsuKL
U

LP ; JsK
LU

LP

Jcall f eKL
U

LP = call f JeKL
U

LP

Jlet x = e in sKL
U

LP = let x = JeKL
U

LP in JsKL
U

LP

s if e then st
else se

{LU

LP
=

ifz JeKL
U

LP then JstKL
U

LP

else JseKL
U

LP

s let x = new e

in s

{LU

LP
=

let xloc = new JeKL
U

LP in
let xcap = hide xloc in

let x =
〈
xloc, xcap

〉
in JsKL

U

LP

Jx := eKL
U

LP = let x1 = x.1 in
let x2 = x.2 in

x1 := JeKL
U

LP with x2

Fig. 6. J·KL
U

LP , compilation of components and functions, expressions and statements from LU to LP.

parametrised by a partial bijection β : location× natural number× tag from source heap locations

to target heap locations such that:

• if (ℓ1,n,η) ∈ β and (ℓ2,n,η) ∈ β then ℓ1 = ℓ2;
• if (ℓ,n1,η1) ∈ β and (ℓ,n2,η2) ∈ β then n1 = n2 and η1 = η2.

The bijection determines when a source location and a target location (and its capability) are related.

On values, ≈β is defined as follows:

• true≈β 0;
• false≈β n for any n , 0;
• n≈β n;
• ℓ ≈β ⟨n, k⟩ if (ℓ,n, k) ∈ β ;
• ℓ ≈β ⟨n, _⟩ if (ℓ,n,⊥) ∈ β ;
• ⟨v1, v2⟩ ≈β ⟨v1, v2⟩ if v1 ≈β v1 and v2 ≈β v2.

This relation is then used to define the heap, monitor state and action relations (Figure 7). Heaps

are related, written H≈β H, when locations related in β point to related values. States are related,

written Ω ≈β Ω, when they have related heaps. The action relation α ≈β ω is defined following the

intuition of Section 2.2.

With this relation we state a backwards simulation lemma (Lemma 3.2) that is necessary for

the RSC proof (and that can also yield whole program compiler correctness). Technically, since

the semantics is deterministic, this lemma is derived from forward simulation, which is the same

statement but with the source and target reductions swapped [47].
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(Heap relation)

H≈β H1;H2 ℓ ≈β
〈
n,η

〉
v≈β v H = H1;n 7→ v : η;H2

H; ℓ 7→ v≈β H

(Empty relation)

∅≈β k

(Related states – Whole)

Ω = M; F, F′; I;H ▷ s Ω = M; F,
r
F′

zLU

LP
; I;H ▷ s M≈β M H≈β H

Ω ≈β Ω

(Call relation)

f ≈ f v≈β v H≈β H

call f v H?≈β call f v H?

(Callback relation)

f ≈ f v≈β v H≈β H

call f v H!≈β call f v H!

(Return relation)

H≈β H

ret H!≈β ret H!
(Returnback relation)

H≈β H

ret H?≈β ret H?

(Epsilon relation)

ϵ ≈β ϵ

Fig. 7. Heap, state and action relations.

Lemma 3.2 (Backward simulation).

if C,H ▷ JsKL
U

LP
λ
−−→ C,H ▷ Js′KL

U

LP and C,H ▷ s≈β C,H ▷ JsK
LU

LP and λ ≈β λ

then C,H ▷ s
λ
−−→ C,H ▷ s′ and ∃β ′ ⊇ β .C,H ▷ s′ ≈β ′ C,H ▷ JsK

LU

LP

The partial bijection β grows as we consider successive steps of program execution in our proof.

For example, if executing let x = new e in s creates some source location ℓ, then executing its

compiled counterpart will create some target location n and then protect that location with a fresh

capability k. At this point we add (ℓ,n, k) to β .

Monitor Relation. In Section 2.2, we left the monitor relation abstract. Here, we define it for our

two languages. Two monitors are related when they can simulate each other on related heaps.

Given a monitor-specific relation σ ≈σ on monitor states, we say that a relation R on source and

target monitors is a bisimulation if the following hold whenever M = ({σ · · · } ,⇝,σ0, ℓroot,σc) and
M = ({σ · · · },⇝,σ 0, kroot,σ c) are related by R:

(1) σ0 ≈σ 0, and σc ≈σ c, and

(2) For all β containing (ℓroot, 0, kroot) and all H,H with H≈β H:
(a) (σc,H, _) ∈⇝ iff (σ c,H, _) ∈⇝, and

(b) (σc,H,σ ′) ∈⇝ and (σ c,H,σ ′) ∈⇝ imply

({σ · · · } ,⇝,σ0, ℓroot,σ ′)R ({σ · · · },⇝,σ 0, kroot,σ ′).

In words, R is a bisimulation only if MRM implies that M and M simulate each other on heaps

related by any β that relates ℓroot to 0. In particular, this means that neither M nor M can be

sensitive to the specific addresses allocated during the run of the program. However, they can be

sensitive to the “shape” of the heap or the values stored in the heap. Note that the union of any

two bisimulations is a bisimulation. Hence, there is a largest bisimulation, which we denote as ≈.

Intuitively,M≈M implies thatM andM encode the same safety property (up to the relation ≈β ).

With all the boilerplate for RSC in place, we state our main theorem.

Theorem 3.3 (J·KL
U

LP attains RSC). ⊢ J·KL
U

LP : RSC
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We outline our proof of Theorem 3.3, which relies on a backtranslation we denote ⟨⟨·⟩⟩L
P

LU . Intu-

itively, ⟨⟨·⟩⟩L
P

LU takes a target traceω and builds a set of source contexts such that one of them when

linked with the source program C, produces a related trace α in the source (Theorem 3.6). In prior

work, backtranslations return a single context [11, 12, 23, 30, 54, 59, 63]. This is because they all,

explicitly or implicitly, assume that ≈ is injective from source to target. Under this assumption, the

backtranslation is unique: a target value v will be related to at most one source value v. We do

away with this assumption (e.g., the target value 0 is related to both source values 0 and true) and
thus there can be multiple source values related to any given target value. This results in a set of

backtranslated contexts, of which at least one will reproduce the trace as we need it as presented in

Example 3.4.

Example 3.4 (Backtranslating a single context into a set). Consider a source component defining a

single function succ(x) 7→ let y = x + 1 in skip and a target context linking against the compilation

of that component. Assume the context defines main(y) 7→ call succ 0, which means that the

trace semantics of the compiled component contains traces of the form call succ 0 _?. Simply

by reasoning at the target level, we cannot know whether 0 will be used as a boolean (e.g., in an

ifz e then e′ else e′′) or as a natural number (e.g., in a x + 1). Thus, the backtranslation generates

two contexts that call succ with both values that relate to 0:

{main(y) 7→ call succ true;main(y) 7→ call succ 0; }

When the first main is linked with succ and they execute, the execution gets stuck inside succ: the
x + 1 expression is effectively true + 1, which does not reduce. Since we know that the compiled

program emits a !-decorated action, the same must be true in the source too. Thus, it is not possible

that the execution gets stuck while executing code of the component and there must be another

context that does not make the execution get stuck. In this case, that context is the one with the

second implementation of main.

�

We bypass the lengthy technical setup for this proof and provide an informal description of why

the backtranslation achieves what it is supposed to using an example (Example 3.5). We refer the

interested reader to the accompanying technical report for full details on the backtranslation [65].

Notation. Example 3.5 needs to reason about lists of finite length whose elements are pairs, which

are not a base type in our language. However, they can be easily encoded as sequences of pairs,

with unit being the empty list. Thus, list ⟨1, 1⟩ :: ⟨2, 2⟩ :: ⟨3, 3⟩ is ⟨⟨1, 1⟩ , ⟨⟨2, 2⟩ , ⟨⟨3, 3⟩ , unit⟩⟩⟩. To
maintain a lightweight notation, we use some syntactic sugar to encode lists of finite length to our

language. We use metavariable L to indicate a pointer to a heap-allocated list of that form. Adding

element v to list L is denoted as L :: v; given that the content of L was some list list, adding an

element amounts to making L point to ⟨v, list⟩. Given an element ⟨v, n⟩, we use notation L(n) to
look that element up and return v (or unit if no element ⟨v, n⟩ is in L). We can easily encode this

lookup as a series of projections on the the list and then on each element of the list (note that our

language is untyped, so this is possible).

Example 3.5 (Trace backtranslation). ⟨⟨·⟩⟩L
P

LU first generates empty method bodies for all context

methods called by the compiled component. Then it backtranslates each action on the given trace,

generating code blocks that mimic that action and places that code inside the appropriate method

body. The figure below shows an example trace on the left and the code blocks generated for each

action in the trace on the right.
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(1) call f 0 (
︷      ︸︸      ︷
1 7→ 4 : ⊥,

︷      ︸︸      ︷
2 7→ 3 : ⊥)?

(2) ret (1 7→ 4 : ⊥, 2 7→ ⟨3, k⟩ : ⊥,
︷       ︸︸       ︷
3 7→ 11 : k)!

(3) call f 2 (1 7→ 55 : ⊥︸       ︷︷       ︸, 2 7→ ⟨3, k⟩ : ⊥, 3 7→ 15 : k︸       ︷︷       ︸)?

main(z) 7→
let x = new 4 in L :: ⟨x, 1⟩ ;

let x = new 3 in L :: ⟨x, 2⟩ ;

call f 0;


(1)

let x =!L(2) in L :: ⟨x, 3⟩ ; ] (2)

let x = L(1) in x := 55;

let x = L(3) in x := 15;

call f 2;


(3)

Backtranslated code maintains a support data structure at runtime, a list of locations denoted

L that are known to the target. Locations are looked up in this list based on their second field n,
which is their target-level address. Since we have access to the whole trace, we know how many

locations we will add to L so we know its length. In order to backtranslate the first call, we need

to set up the heap with the right values and then perform the call. In the diagram, dotted lines

describe which source statement generates which part of the heap. The return only generates code

that will update the list L to ensure that the context has access to all the locations it knows in the

target too. In order to backtranslate the last call we look up the locations to be updated in L so we

can ensure that when the call f 2 statement is executed, the heap is in the right state. �

For the backtranslation to be used in the proof we need to prove its correctness, i.e., that

〈〈
ω

〉〉LP
LU

generates a context A that, together with C, generates a trace α related to the given target traceω.

As before, the relatedness of actions (and of states) is stated with respect to a partial bijection β
between source and target locations (and capabilities) that grows as the execution progresses.

Theorem 3.6 (⟨⟨·⟩⟩L
P

LU is correct).

if A
[
JCKL

U

LP

]
ω
==⇒ Ω then ∃A ∈

〈〈
ω

〉〉LP
LU
.A [C]≈β A

[
JCKL

U

LP

]
and A [C]

α
==⇒ Ω

and ∃β ′ ⊇ β . α ≈β ′ω and Ω ≈β ′ Ω.

This theorem immediately implies that ⊢ J·KL
U

LP : PF-RSC, which, by Theorem 3.7 below, implies

that ⊢ J·KL
U

LP : RSC.

Theorem 3.7 (PF-RSC and RSC are eqivalent for J·KL
U

LP ).

⊢ J·KL
U

LP : PF-RSC ⇐⇒ ⊢ J·KL
U

LP : RSC

The intuition behind the proof of Theorem 3.7 follows the intuition we gave after Proposition 2.4.

The only missing element in the proof is to demonstrate that related monitor states either both

step or both get stuck on related source and target actions. We prove this by showing an invariant,

namely that the monitor states always remain related. This follows from the rules of Figure 7.

Finally, recall that the function relevant(α ) returns just the heap of the action. This, with the

relatedness of heaps, ensures that either both monitors step or both get stuck on related actions.

Example 3.8 (Compiling a secure program). To illustrate RSC at work, consider the following

source component Ca, which manages an account whose balance is security-relevant. The balance

is stored in a location (ℓroot that is tracked by the monitor). Ca provides functions to deposit to the

account as well as to print the account balance.

deposit(x) 7→ let q=abs(x) in let amt = !ℓroot in ℓroot := amt + q
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balance(x) 7→ let tmp=!ℓroot in skip

Ca never leaks the sensitive location ℓroot to an attacker. Additionally, an attacker has no way to

decrement the amount of the balance since deposit only adds the absolute value abs(x) of its input
x to the existing balance.

By compiling Ca with J·KL
U

LP , we obtain the following target program. For simplicity of reading,

we provide a simplification of the compiled programs below the output of the compiler.

deposit(x) 7→ let q=abs(x) in
let amt=! ⟨0, kroot⟩ .1 with ⟨0, kroot⟩ .2 in
let l1=⟨0, kroot⟩ .1 in
let l2=⟨0, kroot⟩ .2 in
l1 := amt + q with l2

balance(x) 7→ let tmp=! ⟨0, kroot⟩ .1 with ⟨0, kroot⟩ .2 in skip
simplified as

deposit(x) 7→ let q=abs(x) in
let amt=!0 with kroot in
0 := amt + q with kroot

balance(x) 7→ let tmp=!0 with kroot in skip

Recall that location ℓroot is mapped to location 0 and protected by the kroot capability. In the

compiled code, while location 0 is freely computable by a target attacker, capability kroot is not.
Since that capability is not leaked to an attacker by the code above, an attacker will not be able to

tamper with the balance stored in location 0, even though it has direct access to 0. �

Failing to Attain RSC. We now provide an insight of how could we detect whether a compiler is

not RSC. In fact, if we had made a security-relevant mistake in the compiler, we would like one of

the proofs to fall apart. Two ways to fail at attaining RSC come to mind: not using capabilities or

leaking them; we explore the former for simplicity. Let us assume that the compiler does not protect

compiled code with capabilities. Intuitively, compiled code is insecure because location 0 is freely
accessible to the attacker, who can alter its content at will. In terms of proofs, this vulnerability

manifests itself Theorem 3.6, whose proof would fail. Let us consider a valid target trace emitted by

code compiled with the vulnerable compiler we discuss here. Such a trace would be one where the

attacker changes the value of 0 as indicated below. There, the content of that location is reset to 3
between the return and the call (i.e., when the attacker executes).

call f v 0 7→ 3 : ⊥? · ret 0 7→ 1 : ⊥! · call f v 0 7→ 3 : ⊥?

No source attacker can do that, because location ℓroot is not accessible to them. This would make

the proof of Theorem 3.6 fail and reveal a hint that something that was supposed to be secure is

now vulnerable.

4 RSC VIA BISIMULATION
If the source language has a verification system that enforces robust safety, proving that a compiler

attains RSC may be simpler than that of Section 3 in some cases, as a backtranslation may not

be needed at all. To demonstrate this, we consider a specific class of monitors, namely those that

enforce type invariants on a specific set of locations. Our source language, Lτ , is similar to LU but it

has a type system that accepts only source programs whose traces the source monitor never rejects.
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Our target language is mostly unchanged. Our compiler J·KL
τ

Lπ is directed by typing derivations,

and its proof of RSC relies on a cross-language invariant of program execution rather than a

backtranslation. A second, independent goal of this section is to show that RSC is compatible with

concurrency. Consequently, our source and target languages include constructs for forking threads.

4.1 The Source Language Lτ

Components C ::= ∆; F; I Heaps H ::= ∅ | H; ℓ 7→ v : τ

Types τ ::= Bool | Nat | τ × τ | Ref τ | UN Envs. Γ ::= ∅ | Γ; (x : τ )
Superf . Types φ ::= Bool | Nat | UN × UN | Ref UN

Statements s ::= · · · | (∥ s) | endorse x = e as φ in s

Monitors M ::= ({σ · · · } ,⇝,σ0,∆,σc) Mon. Trans.⇝ ::= ∅ | ⇝; (σ ,σ )

Store Env. ∆ ::= ∅ | ∆; (ℓ : τ ) Processes π ::= (s)

Soups Π ::= ∅ | Π ∥ π Prog. States Ω ::= C,H ▷ Π

Fig. 8. Syntax of Lτ . Elided and omitted elements are the same as in LU (Figure 1).

Lτ extends LU with concurrency, so it has a fork statement (∥ s), processes and process soups [21]
and an extensive type system (Figure 8). Components define a set of safety-relevant locations ∆, so
and heaps carry type information. ∆ also specifies a type for each safety-relevant location.

Lτ has an unconventional type system that enforces robust type safety [2, 15, 34, 37, 48, 62],

which means that no context can cause the static types of sensitive heap locations to be violated at

runtime. Using a special type UN that is described below, a program component statically partitions

heap locations it deals with into those it cares about (sensitive or “trusted” locations) and those it

does not care about (“untrusted” locations). Call a value shareable if only untrusted locations can

be extracted from it using the language’s elimination constructs. The type system then ensures

that a program component only ever shares shareable values with the context. This ensures that

the context cannot violate any invariants (including static types, which is what we care about in

this section) of the trusted locations, since it can never gets direct access to them.

Type UN stands for “untrusted” or “shareable” and contains all values that can be passed to the

context. Every type that is not a subtype of UN is implicitly trusted and cannot be passed to the

context. Untrusted locations are explicitly marked UN at their allocation points in the program.

Other types are deemed shareable via subtyping. Intuitively, a type is safe if values in it can only

yield locations of type UN by the language’s elimination constructs. For example, UN × UN is a

subtype of UN. We write τ ⊢ ◦ to mean that τ is a subtype of UN.
Further, Lτ contains an endorsement statement (endorse x = e as φ in s) that dynamically checks

the top-level constructor of a value of type UN and gives it a more precise superficial type φ [26].

This allows a program to safely inspect values coming from the context. It is similar to existing

type casts [52] but it only inspects one structural layer of the value (this simplifies the compilation).

The operational semantics of Lτ updates that of LU to deal with concurrency and endorsement

(Figure 10). For concurrency, the program state Ω contains a soup (i.e., a multiset) Π of processes,

where each process is a statement executing as in the program state for LU, and a soup takes a step

if any process in it does. The latter performs a runtime check on the endorsed value [67], which

performs a syntactic check on a value given some superficial type φ. Superficial types φ only allow

checking types “on the surface”, so pairs and references are not nested; in order to endorse a nested

pair, multiple endorse statements must be used.
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⊢ C : UN Component C is well-typed. C ⊢ F : τ Function F takes arguments of type τ .

∆, Γ ⊢ ⋄ Well-formed environments. ∆, Γ ⊢ e : τ Expression e has type τ in Γ and ∆.

τ ⊢ ◦ Type τ is insecure. C,∆, Γ ⊢ s Statement s is well-typed in C, Γ and ∆.

(TLτ -bool-pub)

Bool ⊢ ◦

(TLτ -nat-pub)

Nat ⊢ ◦

(TLτ -pair-pub)

τ ⊢ ◦ τ ′ ⊢ ◦

τ × τ ′ ⊢ ◦

(TLτ -un-pub)

UN ⊢ ◦

(TLτ -references-pub)

Ref UN ⊢ ◦

(TLτ -true)
∆, Γ ⊢ ⋄

∆, Γ ⊢ true : Bool

(TLτ -false)
∆, Γ ⊢ ⋄

∆, Γ ⊢ false : Bool

(TLτ -nat)
∆, Γ ⊢ ⋄

∆, Γ ⊢ n : Nat

(TLτ -var)
x : τ ∈ Γ
∆, Γ ⊢ x : τ

(TLτ -loc)
l : τ ∈ ∆

∆, Γ ⊢ l : Ref τ

(TLτ -pair)
∆, Γ ⊢ e1 : τ
∆, Γ ⊢ e2 : τ ′

∆, Γ ⊢ ⟨e1, e2⟩ : τ × τ ′

(TLτ -proj-1)

∆, Γ ⊢ e : τ × τ ′

∆, Γ ⊢ e.1 : τ

(TLτ -proj-2)

∆, Γ ⊢ e : τ × τ ′

∆, Γ ⊢ e.2 : τ ′

(TLτ -dereference)
∆, Γ ⊢ e : Ref τ
∆, Γ ⊢ !e : τ

(TLτ -op)

∆, Γ ⊢ e : Nat ∆, Γ ⊢ e′ : Nat

∆, Γ ⊢ e ⊕ e′ : Nat
(TLτ -cmp)

∆, Γ ⊢ e : Nat ∆, Γ ⊢ e′ : Nat

∆, Γ ⊢ e ⊗ e′ : Bool

(TLτ -coercion)
C,∆, Γ ⊢ e : τ τ ⊢ ◦

C,∆, Γ ⊢ e : UN

(TLτ -skip)

C,∆, Γ ⊢ skip

(TLτ -function-call)

((f ∈ dom(C.funs)) ∨ (f ∈ dom(C.intfs)))
∆, Γ ⊢ e : UN
∆, Γ ⊢ call f e

(TLτ -sequence)
C,∆, Γ ⊢ su
C,∆, Γ ⊢ s

C,∆, Γ ⊢ su; s
(TLτ -letin)

∆, Γ ⊢ e : τ
C, Γ; x : τ ⊢ s

C,∆, Γ ⊢ let x : τ = e in s

(TLτ -assign)
∆, Γ ⊢ x : Ref τ
∆, Γ ⊢ e′ : τ

C,∆, Γ ⊢ x := e′

(TLτ -new)
∆, Γ ⊢ e : τ

C, Γ; x : Ref τ ⊢ s
C,∆, Γ ⊢ let x = newτ e in s

(TLτ -if)
∆, Γ ⊢ e : Bool

C,∆, Γ ⊢ st C,∆, Γ ⊢ se
C,∆, Γ ⊢ if e then st else se

(TLτ -fork)
C,∆, Γ ⊢ s

C,∆, Γ ⊢ (∥ s)

(TLτ -endorse)
∆, Γ ⊢ e : UN

C,∆, Γ; (x : φ) ⊢ s

C,∆, Γ ⊢ endorse x = e as φ in s

Fig. 9. Typing judgements and rules of Lτ .

(ELτ -endorse)
H ▷ e ↪→→ v ∆,∅ ⊢ v : φ
∆ = {ℓ : τ | ℓ 7→ v′ : τ ∈ H}

C,H ▷ endorse x = e as φ in s −→ C,H ▷ s[v / x]

(ELτ -fork)

Π = Π1 ∥ (∥ s) ; s′ ∥ Π2
Π′ = Π1 ∥ skip; s′ ∥ Π2 ∥ s

C,H ▷ Π −→ C,H ▷ Π′

Fig. 10. Semantics of Lτ . Omitted elements are the same as in LU (Figure 3).

MonitorsM check at runtime that the set of trusted heap locations ∆ have values of their intended

static types. Accordingly, the description of the monitor includes a list of trusted locations and

their expected types (in the form of an environment ∆). The type τ of any location in ∆ must be

trusted, so τ ⊬ ◦. To facilitate the monitor’s checks, every heap location carries a type at runtime
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(in addition to a value). The monitor transitions should, therefore, be of the form (σ ,∆,σ ′), but
since ∆ never changes (it maps trusted locations to static types), we write the transitions as pairs
of states only.

A monitor and a component agree if they have the same ∆:

M⌢C
def
= M = ({σ · · · } ,⇝,σ0,∆,σc) and C = (∆; F; I)

Other definitions (safety, robust safety and actions) are as in Section 2.

Importantly, we show that a well-typed component generates traces that are always accepted by

an agreeing monitor, so every component typed at UN is robustly safe.

Theorem 4.1 (Typability Implies Robust Safety in Lτ ).

If ⊢ C : UN and C⌢M then M ⊢ C : rs

Richer Source Monitors. In Lτ , source language monitors only enforce the property of type safety

on specific memory locations (robustly). This can be generalized substantially to enforce arbitrary

invariants other than types on locations. The only requirement is to find a type system (e.g., based

on refinements or Hoare logics) that can enforce robust safety in the source (for example, as in the

work of Swasey et al. [76]). Our compilation and proof strategy should work with little modification.

Another easy generalization is allowing the set of locations considered by the monitor to grow

over time, as in Section 3.

4.2 The Target Language Lπ

Our target language, Lπ , extends the previous target language LP, with support for concurrency

(forking, processes and process soups), atomic co-creation of a protected location and its protecting

capability and for examining the top-level construct of a value according to a pattern B (Figure 11).

Statements s ::= · · · | (∥ s) | let x = newhide e in s | destruct x = e as B in s or s
Patterns B ::= nat | pair Monitors M ::= ({σ · · · },⇝,σ 0,H0,σ c)

(ELπ -destruct-nat)
H ▷ e ↪→→ n

C,H ▷ destruct x = e as nat in s or s′ −→ C,H ▷ s[n / x]
(ELπ -new)

H = H1;n 7→ (v′,η) H ▷ e ↪→→ v k < dom(H) s′ = s[⟨n + 1, k⟩
/
x]

C,H ▷ let x = newhide e in s −→ C,H;n + 1 7→ v : k; k ▷ s′

Fig. 11. Syntax and semantics of Lπ . Elided elements are either the same as LP (Figures 4 and 5) or Lτ

(Figure 8).

Monitors are also updated to consider a fixed set of locations (a heap partH0). Atomic co-creation

of locations and capabilities is provided to match modern security architectures such as Cheri [81]

(which implement capabilities at the hardware level). This atomicity is not strictly necessary and

we prove that RSC is attained both by a compiler relying on it and by one that allocates a location

and then protects it non-atomically. The former compiler (with this atomicity in the target) is a bit

easier to describe, so we start with it (Section 4.3) before moving to the non-atomic one (Section 4.4).
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4.3 Compiler from Lτ to Lπ

The high-level structure of the compiler, J·KL
τ

Lπ , is similar to that of our earlier compiler J·KL
U

LP

(Section 3.3). However, J·KL
τ

Lπ is defined by induction on the type derivation of the source component

to be compiled. Most cases are a straightforward adaptation of the analogous cases from Figure 6,

so we omit them. We show only a few instructional cases in Figures 12 and 13. When compiling a

component we ensure that monitor-sensitive locations from ∆ are allocated to related locations

and initialised to valid values, i.e., values that respect the cross-language relation. Such a set up of

heaps is denoted with ∆ ⊢β0 H0, whose details are in Rule Initial-heap (Figure 14). Intuitively, the

domain of the safety-relevant heap must be related to the domain of ∆. Additionally, the heap is

populated with values vwhose source-level counterparts have type τ ; for locations, we do not allow
cycles in memory for simplicity (Rule Initial-value). The most interesting cases of the compiler are

are allocation and endorsement. The former explicitly uses type information to achieve security

efficiently, protecting only those locations whose type is not UN. The latter performs a 1-level

de-structuring of the value to be endorsed according to the expected superficial type φ.

u

v
C ≡ ∆; F; I C ⊢ F : UN

names(F) ∩ names(I) = ∅ ∆ ⊢ ok

⊢ C : UN

}

~
Lτ

Lπ

= H0;
r
F
zLτ

Lπ
;

r
I
zLτ

Lπ
if ∆ ⊢β0 H0

u

v
F ≡ f (x : UN) 7→ s; return; C,∆; x : UN ⊢ s
∀f ∈ fn(s ), f ∈ dom(C.funs) ∨ f ∈ dom(C.intfs)

C ⊢ F : UN

}

~
Lτ

Lπ

= f (x) 7→ JC;∆; x : UN ⊢ sKL
τ

Lπ ; return;

s
∆, Γ ⊢ ⋄

∆, Γ ⊢ n : Nat

{Lτ

Lπ
= n

s
x : τ ∈ Γ
∆, Γ ⊢ x : τ

{Lτ

Lπ
= x

s
ℓ : τ ∈ ∆

∆, Γ ⊢ ℓ : τ

{Lτ

Lπ
= ⟨n, v⟩

s
∆, Γ ⊢ e : τ τ ⊢ ◦

∆, Γ ⊢ e : UN

{Lτ

Lπ
= J∆, Γ ⊢ e : τ KL

τ

Lπ

s
∆, Γ ⊢ e : Nat ∆, Γ ⊢ e′ : Nat

∆, Γ ⊢ e ⊕ e′ : Nat

{Lτ

Lπ
= J∆, Γ ⊢ e : NatKL

τ

Lπ ⊕ J∆, Γ ⊢ e′ : NatKL
τ

Lπ

s
∆, Γ ⊢ e : Nat ∆, Γ ⊢ e′ : Nat

∆, Γ ⊢ e ⊗ e′ : Bool

{Lτ

Lπ
= J∆, Γ ⊢ e : NatKL

τ

Lπ ⊗ J∆, Γ ⊢ e′ : NatKL
τ

Lπ

s
∆, Γ ⊢ e : Ref τ
∆, Γ ⊢ !e : τ

{Lτ

Lπ
= !J∆, Γ ⊢ e : Ref τ KL

τ

Lπ .1 with J∆, Γ ⊢ e : Ref τ KL
τ

Lπ .2

Fig. 12. J·KL
τ

Lπ , compilation of components, functions and expressions from Lτ to Lπ (excerpts, omitted
elements are analogous to their counterparts in Figure 6).

New Monitor Relation. As monitors have changed, we also need a new monitor relationM≈M.

Informally, a source and a target monitor are related if the target monitor can always step whenever

the target heap satisfies the types specified in the source monitor’s ∆ (up to renaming by the partial

bijection β0).
We write ⊢ H : ∆ to mean that for each location ℓ ∈ ∆, we have that ∆;∅ ⊢ H(ℓ) : ∆(ℓ): i.e.,

the contents of H are well-typed according to ∆. Given a partial bijection β from source to target

locations, we say that a target monitor M = ({σ · · · },⇝,σ 0,H0,σ c) is good, written ⊢ M : β ,∆, if
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s
∆, Γ ⊢ e : τ C,∆, Γ; x : Ref τ ⊢ s

C,∆, Γ ⊢ let x = newτ e in s

{Lτ

Lπ
=




let xo = new J∆, Γ ⊢ e : τ KL
τ

Lπ
in let x = ⟨xo, 0⟩
in JC,∆, Γ; x : Ref τ ⊢ sKL

τ

Lπ

if τ = UN

let x = newhide J∆, Γ ⊢ e : τ KL
τ

Lπ

in JC,∆, Γ; x : Ref τ ⊢ sKL
τ

Lπ
otherwise

u

v
∆, Γ ⊢ e : Bool

C,∆, Γ ⊢ st C,∆, Γ ⊢ se
C,∆, Γ ⊢ if e then st else se

}

~
Lτ

Lπ

=
ifz J∆, Γ ⊢ e : BoolKL

τ

Lπ

then JC,∆, Γ ⊢ stKL
τ

Lπ else JC,∆, Γ ⊢ seKL
τ

Lπ

s
C,∆, Γ ⊢ su C,∆, Γ ⊢ s

C,∆, Γ ⊢ su; s

{Lτ

Lπ
= JC,∆, Γ ⊢ suKL

τ

Lπ ; JC,∆, Γ; Γ
′ ⊢ sKL

τ

Lπ

s
∆, Γ ⊢ e : τ C,∆, Γ; x : τ ⊢ s

C,∆, Γ ⊢ let x : τ = e in s

{Lτ

Lπ
= let x=J∆, Γ ⊢ e : τ KL

τ

Lπ in JC,∆, Γ; x : τ ⊢ sKL
τ

Lπ

s
∆, Γ ⊢ x : Ref τ ∆, Γ ⊢ e : τ

C,∆, Γ ⊢ x := e

{Lτ

Lπ
=

let xl = x.1 in let xc = x.2

in xl := J∆, Γ ⊢ e : τ KL
τ

Lπ with xc
s

C,∆, Γ ⊢ s

C,∆, Γ ⊢ (∥ s)

{Lτ

Lπ
=

(
∥ JC,∆, Γ ⊢ sKL

τ

Lπ
)

s
∆, Γ ⊢ e : UN C,∆, Γ; (x : φ) ⊢ s

C,∆, Γ ⊢ endorse x = e as φ in s

{Lτ

Lπ
=




����������

destruct x = J∆, Γ ⊢ e : UNKL
τ

Lπ as nat in
ifz x then JC,∆, Γ; (x : φ) ⊢ sKL

τ

Lπ else
ifz x − 1 then JC,∆, Γ; (x : φ) ⊢ sKL

τ

Lπ else wrong
or wrong

if φ = Bool

�����
destruct x = J∆, Γ ⊢ e : UNKL

τ

Lπ as nat in JC,∆, Γ; (x : φ) ⊢ sKL
τ

Lπ
or wrong if φ = Nat

�����
destruct x = J∆, Γ ⊢ e : UNKL

τ

Lπ as pair in JC,∆, Γ; (x : φ) ⊢ sKL
τ

Lπ
or wrong if φ = UN × UN

�����
destruct x = J∆, Γ ⊢ e : UNKL

τ

Lπ as pair in !x.1 with x.2;JC,∆, Γ; (x : φ) ⊢ sKL
τ

Lπ
or wrong if φ = Ref UN

Fig. 13. J·KL
τ

Lπ , compilation of statements from Lτ to Lπ (excerpts, omitted elements are analogous to their
counterparts in Figure 6).

for all σ ∈ {σ · · · } and all H≈β H such that ⊢ H : ∆, there is a σ ′ such that (σ ,H,σ ′) ∈⇝. For a

fixed partial bijection β0 between the domains of ∆ and H0, we say that the source monitor M and

the target monitor M are related, written M≈M, if ⊢ M : β0,∆ for the ∆ in M. With this setup, we

define RSC as in Section 2. Our main theorem is that J·KL
τ

Lπ attains RSC under this definition.

Theorem 4.2 (Compiler J·KL
τ

Lπ attains RSC). ⊢ J·KL
τ

Lπ : RSC

To prove that J·KL
τ

Lπ attains RSC we do not rely on a backtranslation and we show RSC as of

Definition 2.2 instead of the property-free version. Here, we know statically which locations can be

monitor-sensitive: they must all be trusted, i.e., must have a type τ satisfying τ ⊬ ◦. Using this, we
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(Initial-heap)

∆ ⊢ H ∆,H ⊢β v: τ ℓ ≈β ⟨n, k⟩

∆, ℓ : τ ⊢β H;n 7→ v : k
(Initial-value)

(τ ≡ Bool ∧ v ≡ 0) ∨ (τ ≡ Nat ∧ v ≡ 0) ∨

(τ ≡ Ref τ ∧ v ≡ n′ ∧ n′ 7→ v′ : k′ ∈ H ∧ ℓ′ ≈β ⟨n′, k′⟩ ∧ ℓ : τ ∈ ∆,∆,H ⊢ v′: τ ) ∨

(τ ≡ τ1 × τ2 ∧ v ≡ ⟨v1, v2⟩ ∧ ∆,H ⊢ v1: τ1 ∧ ∆,H ⊢ v2: τ2)
∆,H ⊢β v: τ

Fig. 14. Initialisation of the safety-relevant target heap based on the source typing environment.

set up a simple cross-language relation (later indicated as
∼∼∼β ) and show it to be an invariant on

runs of source and compiled target states. Like previous relations, this relation is also indexed by a

partial bijection β . The relation captures the following:

• Heaps (both source and target) can be partitioned into two parts, a trusted part and an

untrusted part;

• The trusted source heap contains only locations whose type is trusted (τ ⊬ ◦);
• The trusted target heap contains only locations related to trusted source locations and these
point to related values; more importantly, every trusted target location is protected by a

capability;

• In the target, any capability protecting a trusted location does not occur in attacker code,

nor is it stored in an untrusted heap location.

We need to prove that this relation is preserved by reductions both in compiled and in attacker

code. The former follows from the proof of source robust safety (Theorem 4.1).

The latter is formalised in Lemma 4.3 below and it is simple to prove. Since all trusted locations

are protected with capabilities, attackers have no access to trusted locations, and capabilities are

unforgeable and unguessable (by the semantics of Lπ ). At this point, knowing that the monitors at

hand are related, and that source traces are always accepted by the considered source monitors, we

can conclude that target traces are always accepted by the considered target monitors too. Note

that this kind of an argument requires all compilable source programs to be robustly safe and is,

therefore, impossible for our first compiler J·KL
U

LP . Overall, avoiding the backtranslation results in a

proof much simpler than that of Section 3.

In order to state the lemma discussed above, we rely on notation C ⊢att Π
λ
−−→ Π′, which states

that the reduction taking place occurs in attacker code. This can be easily defined by observing the

stack of functions (explained in Example 3.1) and controlling whether the executing function is

defined by the attacker or not. Note that unlike before, we do not need to grow the partial bijection

here because it is used to track locations as used by the compiled code and not by the attacker.

Lemma 4.3 (Attacker actions preserve relatedness).

if C,H ▷ Π
λ
−−→ C,H′ ▷ Π′ and C,H ▷ Π

λ
−−→ C,H′ ▷ Π′ and C,H ▷ Π ∼∼∼β C,H ▷ Π

and C ⊢att Π
λ
−−→ Π′ and C ⊢att Π

λ
−−→ Π′ then C,H′ ▷ Π′ ∼∼∼β C,H′ ▷ Π′

4.4 Non-Atomic Allocation of Capabilities
The compiler of Figure 12 uses a new target language construct, newhide, that simultaneously

allocates a new location and protects it with a capability. This atomic construct is what certain
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capability machines provide, and it simplifies our proof of security in the concurrent setting at

hand. If allocation and protection were not atomic, then a concurrent adversary thread could

protect a location that had just been allocated and acquire the capability to it before the allocating

thread could do so. This would break the cross-language relation we use in our proof. However,

note that this is not really an attack since it does not give the adversary any additional power to

violate the safety property enforced by the monitor. The reason is that the thread allocating the

location gets stuck when it tries to acquire the capability itself (since the adversary obtained the

capability), and, by the design of our compiler, it will not try to use the location before obtaining

the capability. Consequently, it is possible to do away with the newhide construct for compiling

allocation. Figure 15 shows how compilation can also be done using the let xk = hide x in . . .
construct of Section 3.

s
∆, Γ ⊢ e : τ C,∆, Γ; x : Ref τ ⊢ s

C,∆, Γ ⊢ let x = newτ e in s

{Lτ

Lπ
=




let xt = new 0 in
let xk = hide xt in
let xc = J∆, Γ ⊢ e : τ KL

τ

Lπ in
xt := xc with xk;
let x = ⟨xt, xk⟩ in
JC,∆, Γ; x : Ref τ ⊢ sKL

τ

Lπ

if τ , UN

Fig. 15. Non-atomic implementation of capability allocation, only the interesting case for τ , UN is reported,
the other is analogous to the one in Figure 12.

The price to pay is a slightly more involved cross-language relation, which must relate states

where either (i) the heaps are partitioned as before, or (ii) the target execution is stuck trying to

acquire a capability for a location that should be trusted.

We refer the interested reader to the accompanying technical report for details of the new relation

and the proof that this alternative compiler also attains RSC [65].

5 RSC RELYING ON TARGET MEMORY ISOLATION
Both compilers presented so far used a capability-based target language. To avoid giving the false

impression that RSC is only useful for this kind of a target, we show here how to attain RSC when

the protection mechanism in the target is completely different. We consider a new target language,

LI , which does not have capabilities, but instead offers coarse-grained memory isolation based

on enclaves (Section 5.1). This mechanism is supported (in hardware) in mainstream x86-64 and

ARM CPUs (Intel calls this SGX [49]; ARM calls it TrustZone [77]). It is also straightforward to

implement purely in software using any VM-based, process-based, or in-process isolation technique.

We present a compiler J·KL
τ

LI from our last source language Lτ to LI and prove that it attains RSC
(Section 5.2).

5.1 LI , a Target Language with Coarse-Grained Memory Isolation
Language LI replaces Lπ ’s capabilities with a simple security abstraction called an enclave. An

enclave is a collection of code and memory locations, with the properties that: (a) only code within

the enclave can access the memory locations of the enclave, and (b) code from outside can transfer

control only to designated entry points in the enclave’s code. For simplicity, LI supports only one

enclave. Generalizing this to many enclaves is straightforward, but not necessary for our purposes.

To model the enclave, LI components carry additional information E, the list of functions that
reside in the enclave. Only functions that are listed in E can create, read and write locations in the
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enclave, using statements and expressions. Locations in LI are integers (not natural numbers). By

convention, non-negative locations are outside the enclave (accessible from any function), while

negative locations are inside the enclave (accessible only from functions in E).

Components C ::= H0 ; F ; I ; E Enclave funcs. E ::= f Heaps H ::= ∅ | H ; n 7→ v

Values v ::= n ∈ Z | ⟨v, v⟩ | k Expressions e ::= · · · | !e

Statements s ::= · · · | x := e | let x = new e in s | let x = newiso e in s

Fig. 16. Syntax of LI . Elided and omitted elements are the same as in LP (Figure 4) or Lπ (Figure 11).

The semantics (Figure 17) are almost those of Lπ , but the expression semantics change to

C;H ; f ▷ e ↪→→ v, recording which function f is currently executing. The operational rule for any

memory operation checks that either the access is to a location outside the enclave or that f ∈ E
(formalised by C ⊢ f : prog). Allocating a protected location (Rule ELI -isolate) is done with respect

to location n, which is the smallest allocated location. This way, the new location n − 1 will be for
sure in the domain of the enclave. Monitors of LI are the same as those of Lπ .

(ELI -deref)
n 7→ v ∈ H (n ≥ 0) or (n < 0 and C ⊢ f : prog)

C;H ; f ▷!n ↪→→ v

(ELI -isolate)
H = n 7→ _;H1 C;H ; f ▷ e ↪→→ v C ⊢ f : prog

C,H ▷ (let x = newiso e in s)f ;f
ϵ
−−→ C, n − 1 7→ v;H ▷ (s[n − 1 / x])f ;f

(ELI -assign)
C;H ; f ▷ e ↪→→ v H = H1; n 7→ _;H2 H ′ = H1; n 7→ v;H2

(n ≥ 0) or (n < 0 and C ⊢ f : prog)

C,H ▷ (n := e)f ;f
ϵ
−−→ C,H ′ ▷ (skip)f ;f

Fig. 17. Semantics of LI . Omitted rules are as in LP (Figure 5) and Lτ (Figure 10).

5.2 Compiler from Lτ to LI

The high-level structure of the compiler J·KL
τ

LI is similar to that of J·KL
τ

Lπ from Section 4.3 (Figure 18).

Compiler J·KL
τ

LI ensures that all the (and only the) functions of the (trusted) component we write

are part of the enclave, i.e., constitute E. Additionally, the compiler populates the safety-relevant

heap H0 based on the information in ∆ according to bijection φ. This is captured by the judgement

∆ ⊢φ H0 , whose details are in Figure 19 and they follow the same intuition of Figure 14. Compiler,

J·KL
τ

LI also ensures that trusted locations are stored in the enclave. As before, the compiler relies

on typing information for this. Locations whose types are shareable (subtypes of UN) are placed
outside the enclave while those that are trusted (not subtypes of UN) are placed inside (second rule

in Figure 18).

For this compiler we need a different partial bijection that drops capabilities and considers

integers instead of natural numbers. We indicate such a bijection with φ. Its type is ℓ × n, but it has
the same properties as β in Section 3.3.1.

ACM Trans. Graph., Vol. 37, No. 4, Article 111. Publication date: August 2019.



111:30 Marco Patrignani and Deepak Garg

u

v
C ≡ ∆; F; I C ⊢ F : UN ∆ ⊢ ok

names(F) ∩ names(I) = ∅
⊢ C : UN

}

~
Lτ

LI

= H0 ;

r
F
zLτ

LI
;

r
I
zLτ

LI
; dom(F) if ∆ ⊢φ H0

u

w
v

C,∆, Γ ⊢ e : τ
C,∆, Γ; x : Ref τ ⊢ s
C,∆, Γ ⊢
let x = newτ e in s

}

�
~

Lτ

LI

=




let x = new J∆, Γ ⊢ e : τ KL
τ

LI

in JC,∆, Γ; x : Ref τ ⊢ sKL
τ

LI
if τ = UN

let x = newiso J∆, Γ ⊢ e : τ KL
τ

LI

in JC,∆, Γ; x : Ref τ ⊢ sKL
τ

LI
else

Fig. 18. J·KL
τ

LI , compilation of components and statements from Lτ to LI (excerpts, missing bits are adaptations
of those bits from Figures 6 and 12).

(Initial-heap)

∆ ⊢ H ∆,H ⊢ v: τ ℓ ≈φ n

∆, ℓ : τ ⊢φ H ; n 7→ v
(Initial-value)

(τ ≡ Bool ∧ v ≡ 0) ∨ (τ ≡ Nat ∧ v ≡ 0) ∨

(τ ≡ Ref τ ∧ v ≡ n′ ∧ n′ 7→ v ′ ∈ H ∧ ℓ′ ≈φ n′ ∧ ℓ : τ ∈ ∆,∆,H ⊢ v ′: τ ) ∨

(τ ≡ τ1 × τ2 ∧ v ≡ ⟨v1, v2⟩ ∧ ∆,H ⊢ v1: τ1 ∧ ∆,H ⊢ v2 : τ2)
∆,H ⊢φ v: τ

Fig. 19. Initialisation of the safety-relevant target heap based on the source typing environment.

The cross-language relation ≈ is mostly unchanged. The only change is for relating locations, as

defined below:

• ℓ ≈φ n if (ℓ, n) ∈ φ

Our main theorem is that J·KL
τ

LI attains RSC.

Theorem 5.1 (Compiler J·KL
τ

LI attains RSC). ⊢ J·KL
τ

LI : RSC

The intuition behind the proof is simple: all trusted locations (including safety-relevant locations)

are in the enclave and adversarial code cannot tamper with them. The proof follows the idea of the

proof of Theorem 4.2: we build a cross-language relation, which we show to be an invariant on

executions of source and corresponding compiled programs. The only change is that every location

in the trusted target heap is isolated in the enclave.

6 FULLY ABSTRACT COMPILATION
Our next goal is to compare RSC to fully abstract compilation (or FAC) at an intuitive level. We

first define FAC (Section 6.1). Then, we present a series of examples of how FAC may result in

inefficiencies in compiled code (Section 6.2). Relying on these examples, we present what is needed

to write a fully abstract compiler from LU to LP, the languages of our first compiler (Section 6.3).

We use this compiler to compare RSC and FAC concretely, showing that, at least on this example,

RSC permits more efficient code and affords simpler proofs than FAC (Section 6.4).

Remark. This does not imply that one should always prefer RSC to FAC blindly. In some cases,

one may want to establish full abstraction for reasons other than security, so there FAC is preferable.

ACM Trans. Graph., Vol. 37, No. 4, Article 111. Publication date: August 2019.



Robustly Safe Compilation, an Efficient Form of Secure Compilation 111:31

Also, when the target language is typed [11, 12, 23, 54] or has abstractions similar to those of

the source, full abstraction may have no downsides (in terms of efficiency of compiled code and

simplicity of proofs) relative to RSC. However, in many settings, including those we consider, target

languages are not typed, and often differ significantly from the source in their abstractions. In such

cases, RSC is a worthy alternative.

6.1 Formalising Fully Abstract Compilation
As stated in Section 1, FAC requires the preservation and reflection of observational equivalence,

and most existing work instantiates observational equivalence with contextual equivalence (≃ctx ).

Contextual equivalence and FAC are defined below. Informally, two components C1 and C2 are

contextually equivalent if no context A interacting with them can tell them apart, i.e., they are

indistinguishable. Contextual equivalence can encode security properties such as confidentiality,

integrity, invariant maintenance and non-interference [6, 10, 59, 64]. We do not explain this well-

known observation here, but refer the interested reader to the survey of Patrignani et al. [60].
Informally, a compiler J·KST is fully abstract if it translates (only) contextually-equivalent source

components into contextually-equivalent target ones.

Definition 6.1 (Contextual equivalence and fully abstract compilation).

C1 ≃ctx C2
def
= ∀A.A [C1] ⇑ ⇐⇒ A [C2] ⇑, where ⇑ means execution divergence

⊢ J·KST : FAC def
= ∀C1,C2.C1 ≃ctx C2 ⇐⇒ JC1KST ≃ctx JC2KST

The security-relevant direction of FAC is⇒ [31]. This direction is security-relevant because the

proof thesis concerns target contextual equivalence (≃ctx ). Unfolding the definition of ≃ctx on the

right of the implication yields a universal quantification over all possible target contexts A, which
captures malicious attackers. In fact, there may be target contexts A that can interact with compiled

code in ways that are impossible in the source language. Compilers that attain FAC with untyped

target languages often insert checks in compiled code that detect such interactions and respond to

them securely [64], often by halting the execution [6, 10, 31, 40, 42, 45, 59, 60]. These checks are

often inefficient, but must be performed even if the interactions are not security-relevant. We now

present examples of this.

6.2 FAC and Inefficient Compiled Code
We illustrate various ways in which FAC forces inefficiencies in compiled code via a running

example. Consider a password manager written in an object-oriented language that is compiled to

an assembly-like language. We elide most code details and focus only on the relevant aspects.

1 private db: Database;
2

3 public testPwd( user: Char[8], pwd: BitString): Bool{
4 if( db.contains( user )){ return db.get( user ).getPassword() == pwd; }
5 }
6 ...
7 private class Database{ ... }

The source program exports the function testPwd to check whether a user’s stored password

matches a given password pwd. The stored password is in a local database, which is represented by

a piece of local state in the variable db. The details of db are not important here, but the database is

marked private, so it is not directly accessible to the context of this program in the source language.

Example 6.2 (Extensive checks). A fully-abstract compiler for the program above must generate

code that checks that the arguments passed to testPwd by the context are of the right type [10, 35,
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42, 59, 63]. The code expects an array of characters of length 8. A parameter of a different type (e.g.,

an array of objects) cannot be passed in the source, so it must also be prevented in the target. Since

the target is untyped, code must be inserted to check the argument. Specifically, a fully abstract

compiler will generate code similar to the following (we assume that arrays are passed as pointers

into the heap).

1 label testpwd
2 for i = 0; i< 8; i++ // 8 is the legth of the user field in the previous snippet
3 load the memory word stored at address r0+ i into r1

4 test that r1 is a valid char encoding

5 ...

Basically, this code dynamically checks that the first argument is a character array of length 8

because a type mismatch could lead to a violation of FAC. Such a check can be very inefficient

when the length is very long. �

The problem here is that FAC forces these checks on all arguments, even those that have no

security relevance. In contrast, RSC does not need these checks. Indeed, none of our earlier compilers

(J·KL
U

LP , J·K
Lτ
Lπ and J·KL

τ

LI ) insert them. Note that any robustly safe source program will already have

programmer-inserted checks for all parameters that are relevant to the safety property of interest,

and these checks will be compiled to the target. For other parameters, the checks are irrelevant,

both in the source and the target, so there is no need to insert them.

Example 6.3 (Component size in memory). Let us now consider two different ways to implement

the Database class: as a List and as a RedBlackTree. As the class is private, its internal behaviour
and representation of the database is invisible to the outside. Let Clist be the program with the List
implementation and Ctree be the program with the RedBlackTree implementation; in the source

language, these are equivalent.

However, a subtlety arises when considering the assembly-level, compiled counterparts of Clist
and Ctree: the code of a RedBlackTree implementation consumes more memory than the code of a

List implementation. Thus, a target-level context can distinguish Clist from Ctree by just inspecting

the sizes of the code segments. So, in order for the compiler to be fully abstract, it must produce code

of a fixed size [10, 59]. This wastes memory and makes it impossible to compile some components.

An alternative would be to spread the components in an overly-large memory at random places

i.e., use address-space layout randomization or ASLR, so that detecting different code sizes has a

negligible chance of success [6, 40]. However, ASLR is now known to be broken [16, 41]. �

Again, we see that FAC introduces an inefficiency in compiled code (pointless code memory

consumption) even though this has no security implication here. In contrast, RSC does not require

this unless the safety property(ies) of interest care about the size of the code (which is very unlikely

in a security context, since security by code obscurity is a strongly discouraged practice).

Example 6.4 (Wrappers for heap resources). Assume that the Database class is implemented as a

List. Shown below are two implementations of the newList method inside List which we call

Cone and Ctwo. The only difference between Cone and Ctwo is that Ctwo allocates two lists internally;

one of these (shadow) is used for internal purposes only.

1 public newList(): List{
2

3 ell = new List();
4 return ell;
5 }

1 public newList(): List{
2 shadow = new List();
3 ell = new List();
4 return ell;
5 }

Again, Cone and Ctwo are equivalent in a source language that does not allow pointer comparison.

To attain FAC when the target allows pointer comparisons, the pointers returned by newList in
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the two implementations must be the same, but this is very difficult to ensure since the second

implementation does more allocations. A simple solution to this problem is to wrap ell in a

proxy object and return the proxy [10, 50, 59, 63]. Compiled code needs to maintain a lookup table

mapping the proxy to the original object. Proxies must have allocation-independent addresses.

Proxies work but they are inefficient due to the need to look up the table on every object access.

Another way to attain FAC is to weaken the source language, introducing an operation to

distinguish object identities in the source [56]. However, this is a widely discouraged practice, as it

changes the source language from what it really is and the implication of such a change may be

difficult to fathom for programmers and verifiers alike. �

In this example, FAC forces all privately allocated locations to be wrapped in proxies, but RSC
does not require this. Our target languages LP, Lπ and LI support address comparison (addresses are

natural numbers or integers in their heaps) but J·KL
U

LP and J·KL
τ

Lπ just use capabilities to attain security

efficiently, while J·KL
τ

LI just relies on enclaves. On the other hand, for attaining FAC, capabilities or
enclaves would be insufficient since they do not hide addresses; proxies would still be required

(this point is concretely demonstrated in Section 6.3).

Example 6.5 (Strict termination vs divergence). Consider a source language that is strictly termi-

nating while a target language that is not. Below is an extension of the password manager to allow

database encryption via an externally-defined function. As the database is not directly accessible

from external code, the two implementations below Cenc (which does the encryption) and Cskip
which skips the encryption are equivalent in the source.

1 public encryptDB( func : Database →
Bitstring) : void {

2 func( this.db );
3 return;
4 }

1 public encryptDB( func : Database →
Bitstring) : void {

2

3 return;
4 }

If we compile Cenc and Cskip to an assembly language, the compiled counterparts cannot be
equivalent, since the target-level context can detect which function is compiled by passing a func
that diverges. Calling the compilation of Cenc with such a func will cause divergence, while calling

the compilation of Cskip will immediately return. �

This case presents a situation where FAC is outright impossible. The only way to get FAC is to

make the source language artificially non-terminating. (See the work of Devriese et al. [32] for
more details of this particular problem.) On the other hand, RSC can be easily attained even in

such settings since it is completely independent of termination in the languages (unless the safety

properties of interest are termination-sensitive, which is usually not the case). For the specific

examples we have considered, even if our source languages LU and Lτ were restricted to terminating

programs only, the same compilers and the same proofs of RSC would still work.

Remark. It is worth noting that many of the inefficiencies above might be resolved by just

replacing contextual equivalence with a different equivalence in the statement of FAC. However, it
is not known how to do this generally for arbitrary sources of inefficiency and, further, it is unclear

what the security consequences of such instantiations of FAC would be. On the other hand, RSC is

uniform and it does address all these inefficiencies.

An issue that can normally not be addressed just by tweaking equivalences is side-channel

leaks, as they are, by definition, not expressible in the language. Neither FAC nor RSC deals with

side channels, but recent results describe how to account for side channels in security-preserving

compilers [17].
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6.3 Towards a Fully Abstract Compiler from LU to LP

In this section, we describe what it would take to build a fully abstract compiler from LU to LP. Along
the way, we note how this compiler would be less efficient than the RSC compiler we described

earlier. In fact, to get a fully abstract compiler, we need to adjust the languages. We describe these

language changes first.

6.3.1 Language Extensions to LU and LP. This section lists the language extensions required for a

fully-abstract compiler from LU to LP. It is not possible to motivate all the language changes before

explaining the details of the compiler, so some of the justification is postponed to Section 6.3.2.

A first concern for full abstraction is that a target context can always determine the memory

consumption of two compiled components, analogously to Example 6.3. To ensure that this does

not break full abstraction, we add a source expression size that returns the number of locations ℓ
allocated in the heap.

In the target language LP, we need to know whether an expression is a pair, whether it is a

location, and we need to be able to compare two capabilities. Accordingly, we add the operations

isloc(e), ispair(e) and eqcap(e, e), respectively.
Finally, compiled code needs private functions for its runtime checks that must not be visible

to the context. LP does not have this functionality: all functions defined by a component can be

called by the context. Accordingly, we modify LP so that all functions F defined in a component are

private to it by default. Each component explicitly includes the list of functions it exports; only

these functions can be called by the context.

6.3.2 The *·+LULP Compiler. The fully abstract compiler *·+LULP is similar to the RSC attaining compiler

J·KL
U

LP , but with critical differences. We know that fully abstract compilation preserves all source

abstractions in the target language. Here, the only abstraction that distinguishes LP from LU is

that locations are abstract in LU, but concrete natural numbers in LP. Thus, locations allocated by

compiled code must not be passed directly to the context as this would reveal the allocation order

(as seen in Example 6.4). Instead of passing the location ⟨n, k⟩ to the context, the compiler arranges

for an opaque handle ⟨n′, kcom⟩ (that cannot be used to access any location directly) to be passed.

Such an opaque handle is often called a mask or seal in the literature and this technique is often

called dynamic sealing [74].

To ensure that masking is done properly, *·+LULP inserts code at entry points and at exit points to

compiled code (i.e., at function calls, before returning, before and after callbacks), wrapping the

compiled code in a way that enforces masking. This notion of wrapping is standard in literature on

fully abstract compilation [35, 63]. The wrapper keeps a list L of component-allocated locations that

are shared with the context in order to know their masks. When a component-allocated location is

shared, it is added to the list L. The mask of a location is its index in this list. If the same location is

shared again it is not added again but its previous index is used. So if ⟨n, k⟩ is the 4th element of L,
its mask is ⟨4, kcom⟩. To implement lookup in L we must compare capabilities too, for we rely on

the newly added operation eqcap. To ensure capabilities do not leak to the context, the second field

of the pair is a constant capability kcom, which protects a dummy location the compiled code does

not actually use. Technically speaking, this is exactly how existing fully abstract compilers operate

(e.g., as in the work of Patrignani et al. [59]).
As should be clear, this kind of masking is very inefficient at runtime. However, even this masking

is not sufficient for full abstraction. Next, we explain additional things the compiler must do.

Determining when a Location is Passed to the Context. A component-allocated location can be

passed to the context not just as a function argument but on the heap. So before passing control
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to the context the compiled code needs to scan the whole heap where a location can be passed

and mask any component-allocated locations it finds. Dually, when receiving control the compiled

code must scan the heap to unmask all masked locations. The problem now is determining what

parts of the heap to scan and how. Specifically, the compiled code needs to keep track of all the

locations (and related capabilities) that are shared, i.e., (i) passed from the context to the component

and (ii) passed from the component to the context. These are the locations through which possible

communication of locations can happen. Compiled code keeps track of these shared locations in a

list S. Intuitively, on the first function call from the context to the compiled component, assuming

the parameter is a location, the compiled code will register that location and all other locations

reachable from it in S. On subsequent ? (incoming) actions, the compiled code will register all new

locations available as parameters or reachable from S. Then, on any ! (outgoing) action, the compiled

code must scan whatever locations (that the compiled code has created) are now reachable from S
and add them to S. We need the new instructions isloc and ispair in LP to compute these reachable

locations. Of course, this kind of scanning of locations reachable from S at every call/return between
components can be extremely costly.

Enforcing the Masking of Locations. The functions mask and unmask are added by the compiler

to the compiled code. The first function takes a location (which intuitively contains a value v) and
replaces (in v) any pair ⟨n, k⟩ of a location protected with a component-created capability k with its

index in the masking list L. The second function replaces any pair ⟨n, kcom⟩ with the nth element

of the masking list L. These functions should not be directly accessible to the context (else it can

unmask any masked location and break full abstraction). This is why LP needs private functions.

Letting the Context use Masked Locations. Masked locations cannot be used directly by the context

for reading and writing. Thus, compiled code must provide a read and a write function (both of

which are public) that implement reading and writing for masked locations.

As should be clear, code compiled through *·+LULP has a lot of runtime overhead in calculating

the heap reachable from S and in masking and unmasking locations. Additionally, it also has code

memory overhead: the functions read, write, mask, unmask and list manipulation code must be

included. Finally, there is data overhead in maintaining S, L and other supporting data structures

to implement the runtime checks described above. In contrast, the code compiled through J·KL
U

LP
(which is just robustly safe and not fully abstract) has none of these overheads.

6.4 Proving that *·+LULP is a Fully Abstract Compiler

Using *·+LULP as a concrete example, we now discuss why proving FAC can be harder than proving

RSC. Consider the hard part of FAC, the forward implication, C1 ≃ctx C2 ⇒ JC1KST ≃ctx JC2KST. The
contrapositive of this statement is JC1KST ;ctx JC2KST ⇒ C1 ;ctx C2. By unfolding the definition of

;ctx we see that, given a target context A that distinguishes JC1KST from JC2KST, it is necessary to

show that there exists a source context A that distinguishes C1 from C2. That source context A
must be built (backtranslated) starting from the already given target context A that differentiates

JC1KST from JC2KST.
A backtranslation directed by the syntax of the target context A is hopeless here since the

target expressions iscap and isloc cannot be directly backtranslated to valid source expressions.

Hence, we resort to another well-known technique [10, 63]. First, we define a fully abstract (labeled)
trace semantics for the target language. A trace semantics is fully abstract when two components

are contextually inequivalent iff their trace semantics differ in at least one trace. So if we write
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TR (C) to denote the traces of the component C, we can formally state full abstraction of the trace

semantics as: TR
(
*C1+L

U

LP

)
= TR

(
*C2+L

U

LP

)
⇐⇒ *C1+L

U

LP ≃ctx *C2+L
U

LP . Given this trace semantics,

the statement of the forward implication of full abstraction reduces to:

TR
(
*C1+L

U

LP
)
, TR

(
*C2+L

U

LP
)
⇒ C1 ;ctx C2.

The advantage of this formulation over the original one is that nowwe can construct a distinguishing

source context forC1 andC2 using the trace onwhich TR
(
*C1+L

U

LP

)
and TR

(
*C2+L

U

LP

)
disagree.While

this proof strategy of constructing a source context from a trace is similar to our proof of RSC, it is
fundamentally much harder and much more involved. There are two reasons for this.

First, fully abstract trace semantics are much more complex than our simple trace semantics

of LP from earlier sections. The reason is that our earlier trace semantics include the entire heap

in every action, but this breaks full abstraction of the trace semantics: such trace semantics also

distinguish contextually equivalent components that differ in their internal private state. In a fully

abstract trace semantics, the trace actions must record only those heap locations that are shared

between the component and the context. Consequently, the definition of the trace semantics must

inductively track what has been shared in the past. In particular, the definition must account for

locations reachable indirectly from explicitly shared locations. This complicates both the definition

of traces and the proofs that build on the definition.

Second, the source context that the backtranslation constructs from a target trace must simulate

the shared part of the heap at every context switch. Since locations in the target may be masked

now, the source context must maintain a map with the source locations corresponding to the target

masked ones, which complicates the source context substantially. Call this map B. Now, this affects
two patterns of target traces that need to be handled in a special way: call read v H? · ret H′!
and call write v H? · ret H′!. Normally, these patterns would be translated to source-level calls

to the same functions (read and write), but this is not possible. In fact, the source code has no read
or write function, and the target-level calls to these functions need to be backtranslated to the

corresponding source constructs (! and :=, respectively). The locations used by these constructs

must be looked up from B as these are reads and writes to masked locations. Moreover, calls and

returns to read can be simply ignored since the effects of reads are already captured by later actions

in traces. Calls and returns to write cannot be ignored as they set up a component location (albeit

masked) in a certain way and that affects the behaviour of the component. We show in Example 6.6

how to backtranslate calls and returns to write.

Example 6.6 (Backtranslation of traces). Consider the trace below and its backtranslation.

(1) call f 0 1 7→ 4?
(2) ret 1 7→ ⟨1, kcom⟩ !

(3)

[
call write ⟨⟨1, kcom⟩ , 5⟩ 1 7→ ⟨1, kcom⟩ ?
ret 1 7→ ⟨1, kcom⟩ !

main(x) 7→
let x = new 4 in L :: ⟨x, 1⟩

call f 0

]
(1)

let x =!L(1) in B :: ⟨x, 1⟩ ] (2)

!B(1) := 5
]
(3)

The first action, where the context registers the first location in the list L, is as before. Then in

the second action the compiled component passes to the context (in location 1) a masked location

with index 1 and, later, the context writes 5 to it. The backtranslated code must recognise this

pattern and store the location that, in the source, corresponds to the mask 1 in the list B (action 2).

In action 3, when it is time to write 5 to that location, the code looks up the location to write to

from B. �
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It should be clear that this proof of FAC is substantially harder than our corresponding proof of

RSC, which needed neither fully abstract traces, nor tracking any mapping in the backtranslated

source contexts.

7 RELATEDWORK
Recent work [9, 36] presents new criteria for secure compilation that ensure preservation of

subclasses of hyperproperties. Hyperproperties [27] are a formal representation of predicates

on programs, i.e., they are predicates on sets of traces. Hyperproperties capture many security-

relevant properties including not just conventional safety and liveness, which are predicates on

traces, but also properties like non-interference, which is a predicate on pairs of traces. Modulo

technical differences, our definition of RSC coincides with the criterion of “robust safety property

preservation” in [9, 36]. We show, through concrete instances, that this criterion can be easily

realized by compilers, and develop two proof techniques for establishing it. We further show

that the criterion leads to more efficient compiled code than does FAC. Additionally, the criteria
in [9, 36] assume that behaviours in the source and target are represented using the same alphabet.

Hence, the definitions (somewhat unrealistically or ideally) do not require a translation of source

properties to target properties. That line of work has been extended to consider criteria that preserve

hyperproperties between languages with different trace models which are connected by a trace

relation similar to ours [8]. Like this last work, we consider differences in the representation of

behaviour in the source and in the target and this is accounted for in our monitor relation M≈M.

Unlike this last work, we provide different instances where the relation is instantiated in order to

show how the theory scales to different protection mechanisms. A slightly different account of the

difference between traces across languages is presented by Patrignani and Garg [64] in the context

of reactive black-box programs.

Abate et al. [7] define a variant of robustly-safe compilation called RSCC specifically tailored to

the case where (source) components can perform undefined behaviour. RSCC does not consider

attacks from arbitrary target contexts but from compiled components that can become compromised

and behave in arbitrary ways. To demonstrate RSCC, Abate et al. [7] rely on two backends for their

compiler: software fault isolation and tag-based monitors. On the other hand, we rely on capability

machines and memory isolation. RSCC also preserves (a form of) safety properties and can be

achieved by relying on a trace-based backtranslation; it is unclear whether proofs can be simplified

when the source is verified and concurrent, as in our second compiler.

ASLR [6, 40], protected module architectures [10, 45, 59, 63], tagged architectures [42], capability

machines [78] and cryptographic primitives [4, 5, 24, 28] have been used as targets for FAC. We

believe all of these can also be used as targets of RSC-attaining compilers. In fact, some targets

such as capability machines seem to be better suited to RSC than FAC, as we demonstrated.

Ahmed et al. prove full abstraction for several compilers between typed languages [11, 12, 54].

As compiler intermediate languages are often typed, and as these types often serve as the basis for

complex static analyses, full abstraction seems like a reasonable goal for (fully typed) intermediate

compilation steps. In the last few steps of compilation, where the target languages are unlikely to

be typed, one could establish robust safety preservation and combine the two properties (vertically)

to get an end-to-end security guarantee.

There are three other criteria for secure compilation that we would like to mention: securely

compartmentalised compilation (SCC) [42], trace-preserving compilation (TPC) [64] and non-

interference-preserving compilation (NIPC) [13, 17, 18, 29, 51]. SCC is a re-statement of the “hard”

part of full abstraction (the forward implication), but adapted to languages with undefined behaviour

and a static notion of components. Thus, SCC suffers from much of the same efficiency drawbacks
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as FAC. TPC is a stronger criterion than FAC, that most existing fully abstract compilers also attain.

Again, compilers attaining TPC also suffer from the drawbacks of compilers attaining FAC.
NIPC preserves a single property: noninterference (NI). However, this line of work does not

consider active target-level adversaries yet. Instead, the focus is on compiling whole programs. Since

noninterference is not a safety property, it is difficult to compare NIPC to RSC directly. However,

noninterference can also be approximated as a safety property [22]. So, in principle, RSC (with

adequate massaging of observations) can be applied to stronger end-goals than NIPC.

Swamy et al. [75] embed an F
∗
model of a gradually and robustly typed variant of JavaScript

into an F
∗
model of JavaScript. Gradual typing supports constructs similar to our endorsement

construct in Lτ . Their type-directed compiler is proven to attain memory isolation as well as static

and dynamic memory safety. However, they do not consider general safety properties, nor a general

criterion for compiler security.

Two of our target languages rely on capabilities for restricting access to sensitive locations from

the context. Although capabilities are not mainstream in any processor, fully functional research

prototypes such as Cheri exist [81]. Capability machines have previously been advocated as a target

for efficient secure compilation [33] and preliminary work on compiling C-like languages to them

exists, but the criterion applied is FAC [70, 71, 78].

On the other hand, one of our target languages relies on coase-grained isolation, a feature that is

being increasingly supported in hardware (Intel calls this SGX [49]; ARM calls it TrustZone [77]).

Coarse-grained isolation has also been advocated as a target for secure compilation [10, 45, 57].

The criterion applied in these works is FAC, which is what lets us draw a starker comparison in

Section 6.

8 CONCLUSION
This paper has examined robustly safe compilation (RSC), a soundness criterion for compilers

with direct relevance to security. We have shown that the criterion is easily realizable and may

lead to more efficient code than does fully abstract compilation. We have also presented two

techniques for establishing that a compiler attains RSC. One is an adaptation of an existing technique,
backtranslation, and the other is based on inductive invariants.
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