
Secure compilation and hyperproperty preservation
Marco Patrignani

MPI-SWS, Germany
marcopat@mpi-sws.org

Deepak Garg
MPI-SWS, Germany

dg@mpi-sws.org

Abstract—The area of secure compilation aims to design
compilers which produce hardened code that can withstand
attacks from low-level co-linked components. So far, there is no
formal correctness criterion for secure compilers that comes with
a clear understanding of what security properties the criterion
actually provides. Ideally, we would like a criterion that, if
fulfilled by a compiler, guarantees that large classes of security
properties of source language programs continue to hold in
the compiled program, even as the compiled program is run
against adversaries with low-level attack capabilities. This paper
provides such a novel correctness criterion for secure compilers,
called trace-preserving compilation (TPC). We show that, in a
specific technical sense, TPC preserves a large class of security
properties, namely all safety hyperproperties. Further, we show
that TPC preserves more properties than full abstraction, the
de-facto criterion used for secure compilation. Then, we show that
several fully abstract compilers described in literature satisfy an
additional, common property, which implies that they also satisfy
TPC. As an illustration, we prove that a fully abstract compiler
from a typed source language to an untyped target language
satisfies TPC.

This paper uses colors to distinguish elements of different
languages. For a good experience, please print/view it in color.

I. INTRODUCTION

Many high-level languages offer security features to pro-
grammers in the form of type systems, encapsulation prim-
itives and so forth. Programs written in these high-level
languages are ultimately translated into executable code in a
low-level, target language by a compiler. Most target languages
do not offer the same security features as high-level source
languages, so target-level programs are subject to attacks such
as control flow hijacking as well as reading/writing of private
data or even code. One way to prevent these attacks is to
use a compiler that produces target-level programs that are as
secure as their source-level counterparts. Such compilers are
generically called secure compilers.

Researchers have investigated secure compilation predomi-
nantly in the form of fully abstract compilation (or analogous
notions) [1], [7], [8], [17], [24], [5], [27], [21], [20], [40],
[32], [2], [3], [4], [31], [36], [29], [38], which means that
source-level program equivalence is preserved and reflected by
compilation or, in other words, two source-level programs are
equivalent iff their compilations are equivalent. Fully abstract
compilation is a useful extensional soundness criterion for
secure compilers, as it ensures the absence of target-level
attacks like control flow hijacks. However the specific security
properties preserved by a fully abstract compiler depend on the
definition of program equivalence in the source and target lan-

guages. In particular, to preserve different security properties,
the definitions of equivalence must be changed appropriately.
This variable definition of full abstraction does not yield a
criterion for compiler security. As a result, many existing
work on secure compilation [5], [24], [7], [8], [21], [27], [38],
[40] uses a single, standard notion of full abstraction obtained
by defining program equivalence as contextual equivalence
in all possible contexts. However, it is unclear what security
properties are preserved by this criterion and, as we show later,
obvious security properties are not preserved by it (Section II).

Motivated by this, we ask whether we can find a different
criterion for soundness of secure compilers that is guaranteed
to preserve a large class of security properties. As a first
step in this direction, we present trace preserving compilation
(TPC), an intensional criterion for compiler correctness that
we show preserves an entire class of security properties,
namely all hypersafety properties [19]. TPC is based on the
notion of trace semantics. Intuitively, a trace-preserving com-
piler generates code modules that (i) preserve the behaviour of
their source-level counterparts when the low-level environment
provides valid inputs and (ii) correctly identify and recover
from invalid inputs. Invalid inputs are those that have no
source-level counterpart (e.g., if booleans are encoded as the
integers 0 and 1 by the compiler, then 2 would be an invalid
boolean input in the target). Condition (i) implies what is often
called correct compilation—that the target preserves source
behaviour when all interacting components have been com-
piled using the same (or an equivalent) compiler. Condition (ii)
ensures that compiled code detects and responds appropriately
to target-level attacks. (We provide a more detailed overview
of these notions in Section II.)

Technically, we identify two different strategies for re-
sponding to invalid inputs, thus obtaining two slightly dif-
ferent characterizations of TPC (Section III). After defining
TPC, we prove that it preserves all hypersafety properties
(Section IV) in a specific technical sense. In prior work,
hypersafety properties have been shown to capture many
security-relevant properties including all safety properties as
well as information flow properties like noninterference [19].
Hence, showing that TPC preserves all hypersafety properties
implies that it also preserves these specific properties.

Next, we study the relationship between TPC and fully
abstract compilation. We show that TPC is stronger than
the standard notion of fully abstract compilation (Section V)
under injectivity, a specific condition on translation of input
and output symbols that full abstraction requires. We further

show that under another assumption, which we call fail-
safe behaviour or FSB (compiled code modules immediately
terminate on invalid inputs), correct compilation is equivalent
to (a form of) TPC (Section VI). As many existing fully-
abstract compilers also happen to be correct and FSB , they
also achieve TPC.

The formal setting in which we study TPC is deterministic
reactive programs. This is the minimal interesting setting in
which one can examine trace-based notions such as hyperprop-
erties. Our formal model of reactive programs abstracts over
the code of modules, retaining only their I/O behaviour. This
suffices for defining TPC. However, in writing a compiler,
one must be concerned with the code. To bridge this gap, we
show by example in Section VI how our definition applies to
a concrete language (a typed lambda-calculus) and a concrete
compiler for it. Specifically, we state FSB in terms of contex-
tual equivalence and show that the fully abstract compiler of
Devriese et al. [21] satisfies FSB and is, therefore, TPC. This
implies that the compiler preserves all hypersafety properties.
We believe this observation also applies to other fully abstract
compilers [7], [8], [27], [5], [38], [29], [24], [40].

To summarize, the contributions of this paper are:
• a new intensional soundness criterion for secure compi-

lation (TPC);
• a proof that TPC preserves all hypersafety properties (in

a specific technical sense);
• the relation between TPC and fully abstract compilation,

the current standard for secure compilation, and a proof
that TPC is stronger;

• a property that many existing fully abstract compilers
satisfy, which implies that they also satisfy TPC, hence
showing that TPC already exists in current secure com-
pilers.

Full proofs of theorems and additional discussion can be
found in a companion technical report [41].

II. INFORMAL OVERVIEW

This section provides an overview of the programming
model and compilers we consider (Section II-A and Sec-
tion II-B respectively). Then it defines compiler properties
(Section II-C) such as correctness and full abstraction. We then
present shortcomings of compiler full abstraction to motivate
the need for a new compiler soundness criterion (Section II-D).
Finally, we discuss the contributions of this paper—the new
soundness criterion for secure compilation (Section II-E).

Colour convention: We use blue,bold font for source
elements, red, sans-serif font for target elements and black
for elements common to both languages (to avoid repeating
similar definitions twice). Thus, C is a source-level program,
C is a target-level program and C is generic notation for either
a source-level or a target-level program.

A. Reactive Programs

We study the secure compilation of deterministic reactive
programs. A reactive program contains some internal state,
which is not directly observable and reacts to a stream of

inputs from the environment by producing a stream of ob-
servable outputs. After each input, the program may update its
internal state, allowing all past inputs to influence an output.
By definition, a reactive program is really a component of
a larger program that provides it inputs (we use the terms
components and programs to refer to the same notion).

Definition 1 (Reactive language). A reactive language is a
tuple (I,O, P , ρ). I , O are sets of input and output actions.
P is the set of all possible programs or components (all sets
we consider are finite or countably infinite). ρ : I × P →
O × P is a transition function that represents the language
semantics. We overload the notation and use P for program
states too. Elements of I , O and P are written α?, α! and
C, respectively. When component C is given input α?, it
produces the output α! and advances internally to the state C ′

if ρ(α?, C) = (α!, C ′). Termination (as well as divergence) are
special outputs after which the component keeps responding
only with the same action, so it stutters.

A reactive program includes mutable, unobservable internal
state as well as code. The code is left abstract but we often
use concrete syntax in examples and explanations. Implicitly,
the considered programs are input total, i.e., they react to all
possible inputs. We use the adjective “initial” with a program
to indicate the situation prior to any interaction with the
environment.

Definition 2 (Traces). A trace, written ᾱ, is an infi-
nite sequence of alternating input-output actions, so ᾱ ≡
α1?, α1!, α2?, α2!, . . . where ≡ denotes syntactic equivalence.
All actions are taken from the alphabet Aα = I∪O. Whenever
we write α, we implicitly mean α ∈ Aα.

A trace α1?α1! · · · is in the behaviours of an initial program
C0 when there is a sequence of states C1, . . . , Cn, . . . such
that for each j ≥ 1, ρ(αj?, Cj−1) = (αj !, Cj). The set of all
traces of C0 is written TR(C 0).

In general, two programs are said to be contextually equiva-
lent when they cannot be distinguished by any context. In our
reactive setting, contextual equivalence coincides with trace
equivalence.

Definition 3 (Trace equivalence). Two programs are trace
equivalent, written C1

T
=C2, if their trace semantics coincide.

C1
T
=C2

def
= TR(C1) = TR(C2).

We now present an example of a trivial reactive language.

Example 1 (A reactive language for booleans). Consider a
source language S that only includes terminating programs
that compute the boolean identity function. Internally, these
programs can do arbitrary computation, but they take a boolean
as input and produce the same boolean as output. We omit the
full syntax and semantics of internal reductions, which can be
though of as a typed lambda calculus. Intuitively, input actions
iid can be thought of as function calls, while output ones oid

can be seen as returns.

inputs iid = { id(true)?, id(false)?}
outputs oid = { ret(true)!, ret(false)!}

programs id
def
= λx.x, idnot

def
= λx.not (not x), · · ·

Any infinite concatenation of the two trace fragments below
describe the possible behaviour of any program in S.

αt
def
= id(true)? · ret(true)!

αf
def
= id(false)? · ret(false)!

Since the traces of all programs in S are the same, any two
programs in S are trace-equivalent. �

B. Compilers
A compiler is a tool that (among other things) transforms

initial programs of a source language to initial programs of
a target language, relative to a coding of source inputs and
outputs in the target. Let S = (I,O,P,ρ) and T = (I,O,P, ρ)
be a source and a target language, respectively.

Definition 4 (Compiler). A compiler from S to T is a triple
(≈I ,≈O, J · KST), where ≈I and ≈O are relations on I× I and
O×O that represent coding of inputs and outputs respectively,
and J · KST : P → P is a function that translates source initial
components to target initial ones. We assume that ≈I and ≈O
satisfy the following two conditions (stated here only for ≈I
for brevity):
(Totality) For every α? ∈ I, there exists α? ∈ I such that
α?≈I α?.
(Functionality) α1?≈I α? and α2?≈I α? imply α1? = α2?

Relations ≈I and ≈O specify how inputs and outputs are
coded by the compiler. For instance, if a compiler maps the
input true to the input 1, then we would have true≈I 1.
Totality is essential since a compiler should consider all source
behaviour. Functionality is not necessary for compilers in
general, but in the context of preserving security properties, it
is essential to avoid conflating (through compilation) distinct
source symbols that a property of interest treats differently. For
example, in information flow security, relating a public and a
private source action to the same target action would make
it impossible to talk about the preservation of a property like
noninterference.

Throughout this paper, we write ≈ in place of both ≈I and
≈O and often refer to a compiler as just the function J · KST ,
assuming implicitly that ≈ is given. ≈ is lifted to traces point-
wise (Rule Relate-trace).

(Relate-trace)
α1≈α1 α2, · · · ≈α2, · · ·
α1,α2, · · · ≈α1, α2, · · ·

C. Compiler Properties
This section presents two compiler properties, correctness

and full abstraction, that are often used together as a criterion
for the soundness of a secure compiler. Correctness (Defi-
nition 5) states that the compiler preserves source program
behaviour up to ≈. CC denotes the set of all correct compilers.

Definition 5 (Compiler correctness). A compiler J · KST is
correct, denoted J · KST ∈ CC , if ∀C, ᾱ, ᾱ. ᾱ ∈ TR(C) and
ᾱ≈ ᾱ imply ᾱ ∈ TR(JCKST).

Compiler full abstraction is the most-widely used soundness
criterion for secure compilation. It states that the compiler
preserves and reflects some notion of program equivalence.
The general idea behind full abstraction is that the abilities of
the context (the attacker) often differ between the source and
the target. For instance, in a target language that is assembly,
the context may be able to access private fields of an object
directly through load/store instructions, but this access may be
prohibited to source-level contexts by the source semantics. A
fully abstract compiler can rule out such attacks by ensuring
(often through dynamic checks) that the power of an attacker
interacting with the compiled program in the target language
is limited to attacks that could also be performed by some
source language attacker interacting with the source program.

Nonetheless, the specific security properties preserved by
a secure compiler depend on the chosen notion of program
equivalence. In the secure compilation literature, the most
commonly chosen notion of program equivalence is con-
textual equivalence (indistinguishability by any context in
the language), which, as noted before, coincides with trace
equivalence in our setting. This corresponds to the following
definition of full abstraction. We re-emphasize that this is just
one possible definition of full abstraction (the most commonly
used), based on the most commonly used notion of program
equivalence.

Definition 6 (Full abstraction). A compiler J · KST is fully
abstract, denoted J · KST ∈ FA, if ∀C,C′. C T

= C′ if and only
if JCKST T

= JC′KST .

D. Shortcomings of Full Abstraction for Security

Most existing work on secure compilation proves (or as-
sumes) compiler correctness and proves compiler full abstrac-
tion in the sense defined above. We now show that some
intuitive and interesting security properties are not necessarily
preserved by such a compiler. This justifies the need for a
new soundness criterion for secure compilation. The need for
new soundness criteria has also pointed out by other recent
work [40], [29], [42].

Example 2 (Safety violation). Consider a source language
whose only data type is booleans and that only admits the
constant function that always returns true. Consider a target
language T (called λN in the remainder of the paper) whose
programs perform operations on natural numbers, so they input
numbers and output numbers. Consider a trivial compiler J · KST
from S to T that maps any source program to the target
program λx. if x < 2 then 1 else 0.

Under the coding true≈ 1 and false≈ 0, this compiler
is both correct and fully abstract (trivially). However, this
compiler does not preserve even trivial properties like “never
output false”. In the source, this property cannot be violated
(since the only allowed functions always output true). In the

target, the property would naturally translate to “never output
0” but on input 2, compiled programs output 0 and violate the
property. �

One may argue that there is, in fact, a gap in this argument
since we have not formally specified how to translate a source
property to the target language and have relied on an intuitive
translation. Indeed, there is no single canonical translation of
properties in literature, and this problem was identified by
Abadi over a decade ago [1]. However, for a safety property
like the one above, where the goal is for the program to not
reach an unsafe state (or produce an unsafe output), a natural
translation would rule out the translations of outputs that the
source property rules out.

To summarize, this example identifies two problems:
1) It is unclear what it means to preserve a source-language

property in the target language as the two languages
can be different (this subject is further developed in
Section IV-B);

2) Standard full abstraction and compiler correctness do
not preserve all safety properties under an intuitive
translation of properties.

The novel secure compilation criterion we propose preserves
all safety properties under a translation that we prove to pre-
serve the intuitive meaning of safety properties (as described
in Section IV-B3).

Example 3 (Confidentiality violation). Consider the source
language of Example 2 but with a simple addition: these
programs now store a boolean secret in their internal state.
All programs of this language always returns true except on
the 10th input, where they output the boolean secret. Their
traces can therefore be as in Figure 1 (the indices t and f
indicate the internally stored secret).

αt =

nine times︷ ︸︸ ︷
id(true)? · ret(true)! · id(true)? · ret(true)! · · ·

αf =

nine times︷ ︸︸ ︷
id(true)? · ret(true)! · id(true)? · ret(false)! · · ·

α′t =

nine times︷ ︸︸ ︷
id(false)? · ret(true)! · id(false)? · ret(true)! · · ·

α′f =

nine times︷ ︸︸ ︷
id(false)? · ret(true)! · id(false)? · ret(false)! · · ·

secret

αt =

nine times︷ ︸︸ ︷
id(1)? · ret(1)! · id(1)? · ret(1)! · · ·

αf =

nine times︷ ︸︸ ︷
id(1)? · ret(1)! · id(1)? · ret(0)! · · ·

αu =

less than nine times︷ ︸︸ ︷
id(1)? · ret(1)! · id(2)? · ret(1)! · · ·

α′u =

less than nine times︷ ︸︸ ︷
id(1)? · ret(1)! · id(2)? · ret(0)! · · ·

secret

Fig. 1. Source and target traces for Example 3.

Consider the following declassification property: “Do not

output the secret until the 10th input”. All source programs
satisfy this property.

Consider λN, the target language of Example 2 that inputs
and outputs natural numbers, and the same coding ≈. Consider
a compiler that translates source programs to behave exactly
as in the source if the input is 1 or 0 (the encodings of true
and false), but to output the secret immediately if the input
is any number greater than 1. A subset of the semantics of
compiled components is also presented in Figure 1.

This compiler is correct, because correctness is concerned
only with target traces that are translated from the source, and
compiled components have traces αt and αf (as well as elided
ones) that derive from αt and αf . The compiler is also fully
abstract: source programs with the same trace semantics have
the same trace semantics at the target as well.

However, again, the compiled programs do not satisfy the
intended declassification property: they can be caused to leak
the secret at any time, even before the 10th input, as in αu

and α′u by providing 2 as the input. �

A bit of analysis shows the precise shortcoming of compiler
correctness and full abstraction as a joint soundness criteria in
these examples and for secure compilation in general. Call
a target input α invalid if it does not code a source input,
i.e., if there is no α? such that α?≈α?. Compiler correctness
does not handle these inputs since it states that a compiled
program should behave exactly like the source program while
the (target) inputs are valid. However, once an invalid input
is received by a compiled program, compiler correctness does
not constrain the behaviour of the program further. It is this
lack of constraint that Example 2 exploits. Furthermore, for
a pair of distinguishable source programs, full abstraction
says nothing if the compiler is correct. Consequently, two
distinguishable source programs are allowed to differ in an
arbitrary manner after an invalid input is received in the target,
while the property of interest may care how the programs
differ. Example 3 exploits this freedom.

(Some readers may argue that we should not call a compiler
correct if we do not consider all possible inputs that the
compiled code can receive. However, compiler correctness
is always defined for programs that interact with target-level
programs that also have source-level counterparts—often they
are obtained via the same compiler—because that is what is
expected in the absence of an adversary.)

It should be clear that the problem here is the freedom
of behaviour on invalid inputs. The novel compiler security
criterion we propose (TPC) curtails this freedom by defining
precisely how the program should behave on invalid inputs.

Remark: A viable criticism of our analysis of Examples 2
and 3 is that one could change the notion of the source and
target program equivalence in the definition of full abstraction
to capture the required properties precisely. In fact, early work
on full abstraction for secure compilation [4] kept the choice
of the program equivalence relation open. However, note that
a flexible definition of full abstraction does not lend itself to
a viable criterion for compiler design. When the compiler is

written, one may not know what properties would be of interest
for programs that will be compiled later, so what notion of full
abstraction should the compiler adhere to? In contrast, what we
propose is a fixed criterion for compiler security that preserves
classes of security properties.

E. Trace-Preserving Compilation (TPC), Informally
Informally, a compiler J·KST from S to T is trace-preserving

(Definition 1) if it produces components JCKST whose traces
are either source-level traces (TR(C)) or invalid traces (BC).

Informal definition 1 (Trace-preserving compiler, infor-
mally). ∀C ∈ S. TR(JCKST) = TR(C) ∪ BC.

The first part of the union in Definition 1 states that traces
of a compiled component C must include all the source-level
traces of C (i.e., the “valid traces”). This ensures that a TPC
compiler is correct. The second part of the union, BC, contains
only traces that contain at least one invalid input (inputs that
are not related to anything in the source) and specifies how
the compiled code must react to such inputs. Specifically, we
require that the output in response to an invalid input be fresh
and opaque. Fresh means that the output must not be related
to a source symbol (to prevent outputting of symbols that
are forbidden by a source safety property of interest, as in
Example 2), while opaque means that the output must not
depend on any hidden internal state (to prevent information
leaks, as in Example 3). We denote such a fresh and opaque
output with a

√
.

Example 4 (Invalid traces). Consider the following trace for
the source language of Example 1, the target language λN

from Example 2 and the same coding ≈ of Example 2. Let
√

be any output in the target that is not related under ≈ to any
source symbol.

αvalid = id(false)? ret false! · · ·
αinvalid = id(3)? ret false! · · ·

αtick = id (3)?
√
· · ·

αvalid is a valid source trace, while αinvalid is a trace that
cannot exist in the source. Due to the definition of ≈, αtick is a
good example of an invalid target trace (as we mean them), as
no trace in the source relates to it and it reveals no information
about the program’s internal state. �

The idea to respond in a fresh and opaque way to ill-formed
inputs is not novel. Existing fully abstract secure compilers
already react to invalid inputs in this way [38], [40], [24], [5],
[27], [31]. Our contribution is in formalizing this idea and in
establishing formally what it means in terms of preservation
of classes of hyperproperties.

Concretely, we identify two different ways to respond to
invalid inputs:

1) halting the component forever;
2) disregarding the invalid input.

Item 1 is the strategy used by the prior work mentioned above;
it does not return control to the attacker. This strategy also
encompasses divergence on an invalid input.

Item 2 covers a different scenario, where the availability
of the component is crucial and therefore it must not stop
responding in the future. A number of real world applications
fall in this scenario, most predominantly servers, which need
to continue running even if malformed (possibly malicious)
input is received. A possible implementation of this scenario
could be that a trusted kernel is notified on invalid input and
the kernel resets the compiled component to a known good
state. These two ways of responding to invalid inputs yield
two different variants of TPC, which we call the “halting”
and “disregarding” variants.

A simple way to realize TPC in a compiler is to correctly
compile a component (not worrying about security) and then
wrap the compiled component in a layer that detects invalid
inputs and reacts to them using one of the two strategies
listed above. Only valid inputs are passed to the actual
component. Although this strategy has runtime overhead, it is,
in fact, how the existing compilers mentioned above attain full
abstraction (which is why these compilers also have TPC—
see Section V).

Having defined the formal setting and the intuition behind
the contribution of this work, we now define TPC formally.

III. TRACE-PRESERVING COMPILATION

This section defines TPC in both its halting and disregard-
ing variants (Definition 7 and Definition 8, respectively).

We introduce some notation used in the remainder of this
paper.

Notation 1 (Notation for traces and other formal details).
• given a trace ᾱ = α1?, α1!, α2?, α2!, . . ., define functions
ᾱ|I and ᾱ|O to project its inputs and outputs as follows:
ᾱ|I = α1?, α2?, . . . and ᾱ|O = α1!, α2!,

• denote a set of elements of type t as t̂ or {t}.
• denote the cardinality of a set t̂ as ||t̂||.
• denote a set of traces as ̂̄α.
• denote a set of sets of traces as T (so it should be

̂̂̄
t).

• indicate finite traces prefixes (sometimes called just traces
or finite traces with some abuse of terminology) using the
metavariable m̄.

• m̄≤ ᾱ′ means that m̄ is a prefix of ᾱ′, so ᾱ′ ≡ m̄ᾱ′′ for
some ᾱ′′.

• lift the prefix notion to sets of traces as follows: ̂̄m≤ ̂̄α′
if ∀m̄ ∈ ̂̄m,∃ᾱ′ ∈ ̂̄α′.m̄≤ ᾱ′.

• define the set of odd-length prefixes of a set of traces as
follows: op(̂̄α) = {m̄α? | m̄α?≤ ̂̄α}.

• define the observables of a trace as all the even-
length, finite prefixes of that trace: obs(ᾱ) =
{m̄′α?α! | m̄′α?α!≤ ᾱ} ∪ {ε}

• lift relation ≈ to sets, denoted as ̂̄α∼∼∼ ̂̄α, as: ∀ᾱ ∈ ̂̄α.∃ᾱ ∈̂̄α.ᾱ≈ ᾱ and ∀ᾱ ∈ ̂̄α.∃ᾱ ∈ ̂̄α.ᾱ≈ ᾱ.

The first definition of TPC this section formalises is TPH ,
the halting variant of TPC.

Definition 7 (TPC, halting). J · KST ∈ TPH
def
= ∀C

TR(JCKST) = {ᾱ | ∃ᾱ ∈ TR(C).ᾱ≈ ᾱ}∪
{m̄α?

√
ᾱ′ | ∃m̄ ∈ obs(TR(C)).m̄≈ m̄

and ∀α′ ∈ ᾱ′|O.α′ ≡
√

and @m̄α? ∈ op(TR(C)).m̄α?≈ m̄α?}
The first component of the union is the set of valid traces,

i.e., those that have a source-level counterpart. We often refer
to this set as GC, so GC = {ᾱ | ∃ᾱ ∈ TR(C).ᾱ≈ ᾱ}. The
second component of the union, which we refer to as BC, is
the set of invalid traces, which contain a prefix of a valid trace
(m̄) followed by an invalid action (α?) which is responded to
with

√
. From there on (ᾱ′), all outputs must be

√
, i.e., the

trace stutters on
√

, which is a terminating symbol. From the
formal language perspective, we have that

√
∈ O.

To define the “disregarding” version of TPC, which we
write TP , we need additional machinery. Two prefixes are
up-to-tick equivalent, written m̄ f m̄′, if they are the same
once they are stripped of all their

√
s and of the input

actions immediately preceding them. Let
√̂
⊆ O be a set

of target output actions that have no source counterparts and
let
√

1,
√

2, . . . be any ordered sequence of actions from
√̂

whose elements need not be distinct.

Definition 8 (TPC, disregarding). J · KST ∈ TP
def
= ∀C

TR(JCKST) = {ᾱ | obs(ᾱ) =
⋃
n∈N

intn(C)} where

int0(C) = {m̄ | ∃m̄ ∈ obs(TR(C)), m̄≈ m̄}
intn+1(C) = {m̄ | m̄ ≡ m̄1α?

√
n+1m̄2 and m̄1m̄2 ∈ intn(C)

and ∀m̄′ f m̄1,@m̄α? ∈ op(TR(C)).

m̄α?≈ m̄′α? and ∀α! ∈ m̄2|O.α! 6∈
√̂
}

To contemplate all possible interleavings of all possible
bad actions, we consider all observables of all actions that
a compiled components must have. These observables are
defined inductively. The base case identifies the same set
GC as in Definition 7. The inductive case adds one more
invalid action with a

√
response in response to the last invalid

input on the trace. Intuitively, int0(·) yields all traces with
a source-level counterpart, while intn(·) yields all traces
that contain exactly n invalid inputs, to which the compiled
program responds with

√
1, . . . ,

√
n respectively.

√
s must be

used monotonically based on the ordering of the sequence
because they should convey only information that is already
available to the environment after an interaction, i.e., the
number of past interactions.

By definition, the halting version of TPC implies the
disregarding one. To see this, given a

√
in the halting version,

one can choose
√̂

= {
√
} and the sequence [

√
,
√
, . . .] in the

disregarding version.

Theorem 1 (Halting implies disregarding). J · KST ∈ TPH ⇒
J · KST ∈ TP .

Next, we relate TPC to refinement: If a compiler is TP ,
then the behaviours of a source program are contained in the

behaviours of the compiled program (up to ≈). Let ⊂∼ denote
⊆ ◦≈.

Theorem 2 (Source programs refine their compiled counter-
parts). ∀J · KST ∈ TP ,∀C.TR(C) ⊂∼ TR(JCKST).

The next theorem states that equivalent programs have the
same set of invalid traces.

Theorem 3 (Equivalent programs have the same invalid
traces). ∀C1,C2. C1

T
= C2 ⇒ BC1 = BC2 .

IV. TRACE-PRESERVING COMPILATION AND
HYPERPROPERTY PRESERVATION

This section describes hyperproperties and their subclasses
(Section IV-A). Then it proves what two security-relevant
subclasses of hyperproperties, namely safety and hypersafety,
are preserved by TPC (Section IV-B). Finally, it describes
some classes of hyperproperties that are not preserved by
TPC (Section IV-C).

A. Hyperproperties

Hyperproperties [19] are a formal representation of predi-
cates on programs, i.e., they are predicates on sets of traces.
They capture many security-relevant properties including not
just conventional safety and liveness (i.e., predicates on traces),
but also properties like non-interference (i.e., predicates on sets
of traces).

Denote the set of hyperproperties as HP. An element of
this set is denoted P ∈ HP. So, P = { ̂̄mi}i∈I where I is
countable. A program C has a hyperproperty P if TR(C) ∈ P.

The following formalisation is taken from the work of
Clarkson and Schneider [19] and adapted to our notion of
traces. Denote a sequence of infinite observables with ᾱω and
of finite observables with ᾱn (for some natural number n).
The set of infinite traces is denoted with Φinf while that of
finite traces is denoted with Φfin . We lift these concepts to
the hyperproperty level by introducing Prop and Obs . Let
P denote the powerset function and Pf the set of all finite
subsets.

Definition 9 (Φinf ,Φfin ,Prop and Obs).

ᾱω = {ᾱ | @n ∈ N.ᾱ ≡ α1, · · · , αn}
ᾱn = {ᾱ | ᾱ ≡ α1, · · · , αn ∧ n ∈ N}

Φinf
def
= {ᾱ | ᾱ ∈ ᾱω} Φfin

def
= {ᾱ | ᾱ ∈ ᾱn}

Prop
def
= P(Φinf) Obs

def
= Pf (Φfin)

Two core classes of hyperproperties exist: safety hyperprop-
erties (also called hypersafety) and liveness hyperproperties
(also called hyperliveness), which are described below.

Given a property p its equivalent hyperproperty, called its
lift, is denoted dpe. By definition, dpe = P(p).

1) Hypersafety: A hyperproperty is hypersafety if it does
not allow bad things to happen. Let SHP denote the set of
all safety hyperproperties.

Definition 10 (Hypersafety). P ∈ SHP
def
= ∀̂̄α ∈ Prop. ̂̄α /∈

P ⇒ (∃ ̂̄m ∈ Obs. ̂̄m≤ ̂̄α and (∀ ̂̄α′ ∈ Prop. ̂̄m≤ ̂̄α′ ⇒ ̂̄α′ /∈
P)).

Intuitively, for a hyperproperty to be hypersafe, all the sets
of traces in it must not contain all prefixes in any of the ̂̄m’s
that specify “bad things”. The set of all the ̂̄m’s characterizes
the hypersafety property. The lift of safety properties is a
subset of SHP and it is denoted as dSe.

Example 5 (SHP examples). Examples of SHP include
termination-insensitive non-interference, observational deter-
minism and all safety properties [19]. �

2) Hyperliveness: A hyperproperty is hyperlive if it always
allows for a good thing to happen (Definition 11). Let LHP
denote the set of all safety hyperproperties.

Definition 11 (Hyperliveness). L ∈ LHP
def
= ∀ ̂̄m ∈ Obs.

(∃ ̂̄α′ ∈ Prop. ̂̄m≤ ̂̄α′ ∧ ̂̄α′ ∈ L).

Every hyperproperty is the intersection of a safety hyper-
property and a liveness hyperproperty.

Theorem 4 (HP composition [19]). ∀P ∈ HP. ∃S ∈
SHP,L ∈ LHP. P = S ∩ L.

B. Preserving hypersafety via TP

The question that we want to address next is: how can
one translate a property from a source language to a target
language and preserve it (up to the translation) via com-
pilation? “Meaning preservation” is the trickier part of the
question, because the two languages are often so different
that this is unclear. In fact, we do not believe that there is a
general way to translate arbitrary (hyper)properties. Here, we
restrict attention to two subclasses of hyperproperties—safety
and hypersafety—which are (a) relevant for many security
applications, and (b) easy to treat formally since they can be
characterized uniformly: a safety (hypersafety) property can be
expressed as a set of bad prefixes (set of set of bad prefixes).
For each of the two subclasses, we describe how to translate
source properties to the target and show that any TPC
compiler preserves the properties under this translation. Note
that our technical development for hypersafety subsumes that
for safety; we present the latter separately only for exposition
purposes.

1) Safety Preservation: We now present our result about
safety properties. Informally, a safety property prevents bad
things from happening [9]. Formally a safety property S (a
set of traces) is characterized as follows:

∀ᾱ. if ᾱ /∈ S then (∃m≤ ᾱ and ∀ᾱ′. if m≤ ᾱ′ then ᾱ′ /∈ S)

A trace (ᾱ) is not valid if it has a “bad” prefix m that no valid
trace has.

Since the m is quantified for all ᾱ, we can redefine a safety
property by relying on a set of bad prefixes ̂̄m that is the set
obtained by taking all the existentially-quantified m. A safety
property S is thus redefined as follows. Let ̂̄m :: S denote that

̂̄m is the set of all bad prefixes that characterises the safety
property S.

if ̂̄m :: S then ᾱ /∈ S iff ∃m ∈ ̂̄m.m≤ ᾱ
In this way we can define a safety property by the set of

all possible bad prefixes that a good trace must not have.
Next, we need to translate a safety property from a source to

a target language. To do so, we translate the set of bad prefixes
from the source to the target language and obtain a set of bad
prefixes expressed in the target language. However, there is
still a concern: the target language can have more actions that
are not expressible in the source—the invalid input actions—
and outputs produced in response to them. Ideally, we would
like to be conservative with respect to these invalid actions
and add any prefix with an invalid input to the set of bad
prefixes in the target. This ensures that all good traces in the
target safety property relate good traces in the source safety
property. This is a safe choice.

However, this ideal translation is unrealisable since the
adversarial environment, not the compiled program, provides
invalid inputs. Thus, if we call all traces with invalid inputs
“bad”, then we cannot ever hope to preserve safety properties.
To still achieve this, we create a small exception: we admit
traces with invalid inputs, if the invalid inputs are immediately
succeeded by

√
outputs. This is a reasonable compromise

since
√

outputs have no source counterparts (so the source
property could not possibly be talking about them), and they
reveal no information by definition. This can be generalized
to allow the ith invalid input to be followed by

√
i for some

pre-determined sequence
√

1,
√

2, . . . of possibly different
√

s.
This idea of translating safety properties is formalised in

Definition 12.

Definition 12 (Safety relation). Two sets of prefixes define
the same safety property, denoted as ̂̄m SP≈ ̂̄m if:̂̄m = {m̄ | ∃m̄ ∈ ̂̄m.m̄≈ m̄}

∪ {m̄α?α! | ∃m̄ ∈ ̂̄m, m̄′.m̄≈ m̄′ f m̄

and @m̄α? ∈ op(̂̄m).m̄α?≈ m̄′α?

and α! 6=
√

i+1

where ||m̄|O ∩
√̂
|| = i}

Theorem 5 states that a trace-preserving compiler preserves
safety properties in the sense of Definition 12.

Theorem 5 (Safety preservation). Let J · KST ∈ TP . Let S, ̂̄m
be such that ̂̄m :: S. Take ̂̄m and S such that ̂̄m :: S and
such that ̂̄m SP≈ ̂̄m. Then, for all C, TR(C) ⊆ S implies
TR(JCKST) ⊆ S.

Proof Sketch. Suppose, for the sake of contradiction, that
TR(C) ⊆ S but TR(JCKST) 6⊆ S. Then TR(JCKST) must
have a trace with a prefix in ̂̄m. We consider two cases. If the
prefix contains no invalid input, then by the definition of TP ,
it must correspond to a source prefix in ̂̄m. Moreover, TR(C)
must have a trace that extends ̂̄m. It follows immediately that
TR(C) 6⊆ S. A contradiction. If the prefix has an invalid

input, by J · KST ∈ TP , the ith such input must be followed by
the ith tick from

√̂
(for every i). Hence, the prefix cannot be

in ̂̄m by ̂̄m’s definition. Again, a contradiction. 2

2) Hypersafety Preservation: Next, we turn to the preser-
vation of hypersafety properties. Unlike safety, which is
concerned with single traces, hypersafety is concerned with
multiple traces, which lets it capture properties like non-
interference. The intuition behind hypersafety is that a set of
traces is bad if it has a set of bad prefixes that no good set of
traces has. As we can see, the intuition is just like safety, with
just one more “level” of sets. Formally, a safety hyperproperty
S (a set of sets of traces) is defined as follows:

∀̂̄α if ̂̄α /∈ S

then (∃ ̂̄m. ̂̄m≤ ̂̄α and (∀ ̂̄α′. if ̂̄m≤ ̂̄α′ then ̂̄α′ /∈ S))

We can characterize every hypersafety property based on
the set of set of bad prefixes. We write M :: S to mean that
M is the set of all sets of bad prefixes that characterises the
safety hyperproperty S.

if M :: S then ̂̄α /∈ S iff ∃ ̂̄m ∈M. ̂̄m≤ ̂̄α
We define the translation of the set of sets of source bad

prefixes by translating all of them under ≈. The key technical
difference with respect to safety preservation is that we treat
as bad singleton sets of all traces in which the ith invalid input
is not immediately succeeded by

√
i. The addition of singleton

sets is the minimum addition we can make to the set of invalid
prefixes to ensure that any (translated) program that contains
even one trace wherein a response to an invalid input is not
from

√̂
is considered bad.

This idea of translating hypersafety is formalised in Defini-
tion 13.

Definition 13 (Hypersafety relation). Two sets of sets prefixes
define the same safety hyperproperty, denoted as M SHP≈ M if:

M = { ̂̄m | ∃ ̂̄m ∈M. ̂̄m∼∼∼ ̂̄m}∪
{{m̄α?α!} | ∃ ̂̄m ∈M.∃m̄ ∈ ̂̄m, m̄′.m̄≈ m̄′ f m̄

and @̂̄m′ ∈M.∃m̄′α? ∈ ̂̄m′.m̄′α?≈ m̄′α?

and α! 6=
√

i+1

where ||m̄|O ∩
√̂
|| = i}

Any trace-preserving compiler preserves all hypersafety
properties, as Theorem 6 captures.

Theorem 6 (Hypersafety preservation). Let J · KST ∈ TP . Let
S,M be such that M :: S. Let M and S such that M :: S
and such that M SHP≈ M. Then, for all C, TR(C) ∈ S implies
TR(JCKST) ∈ S.

The proof follows the same intuition as that of Theorem 5.
There is no new fundamental difficulty in proving the theorem.

Remark: It is trivial to prove that all safety hyperprop-
erties are preserved under refinement. An intuitive way to
understand Theorem 6 is as a generalization of this result to
the case where we may have extra actions (invalid inputs)
in the target. Basically, Definition 13 strengthens the source
property by allowing for some extra behaviour in the target,
namely responding to invalid inputs by

√
s. TP can be seen

as a slight weakening of refinement from source to target, that
also allows similar extra behaviour in the target. Theorem 6
then says that this weakened form of refinement preserves the
strengthened source properties.

3) Non-Interference Preservation: Theorem 6 states that a
TP compiler preserves hypersafety properties under a specific
translation. An obvious question is whether that translation
itself is meaningful, in the sense that it preserves the intents
of the source hypersafety properties. While a generic answer
to this question is impossible to provide (since intent is
property-specific), we show here that for a widely considered
hypersafety property, namely, non-interference, this is the case
under a specific condition on ≈. Non-interference is a security
policy for information flow control which says that the public
(low) outputs of a program must be independent of secret
(high) inputs. In other words, in any two traces that agree
on all low inputs, all high outputs must also be the same.

To formalize the property, assume that in both the source
and the target, inputs and outputs are classified into low and
high. Define an equivalence of actions =L as follows:

(Low-equiv. on low actions)

α, α′ are low α ≡ α′

α=L α
′

(Low-equiv. on high actions)

α, α′ are high
α=L α

′

Then, NI can be defined as follows by overloading the =L

notation to lift point-wise to sets of actions.1

Definition 14 (NI as a hyperproperty). Recall that ᾱ|I and
ᾱ|O extract inputs and outputs of ᾱ.

NI def
= {̂̄α | ∀ᾱ1, ᾱ2 ∈ ̂̄α.

if ᾱ1|I =L ᾱ2|I then ᾱ1|O =L ᾱ2|O}

NI is a safety hyperproperty. A pair of trace prefixes is bad
if the prefixes agree on low inputs but disagree on low outputs.
The following theorem shows that a source’s NI when trans-
lated as described in Theorem 6 yields a hyperproperty that is
contained in the target’s NI, if ≈O satisfies a specific injectivity
condition. This immediately implies that if a source program
satisfies NI then compiling it through a TP compiler yields a
program that satisfies NI. The injectivity condition means that
every source symbol is related to a unique target symbol. This
is required to prevent the compiler from encoding secrets in
different representations of the same low output. Additionally,
all elements of

√̂
are considered to be observable, i.e., tagged

as low.

1This is just one possible definition of NI in a reactive setting. See the
work of Bohannon et al. [16] for a detailed discussion of definitions of NI in
a reactive setting.

Definition 15 (Injectivity). We say that ≈ is injective if
α≈α1 and α≈α2 imply α1 = α2.

Theorem 7 (Non-interference is preserved). Let M :: NI and
≈O be injective. Let M SHP≈ M and let S be a hyperproperty
such that M :: S. Then, ∀̂̄α ∈ S, ̂̄α ∈ NI.

C. Limitations of TPC and Secure Compilation

Like most work on secure compilation, TPC does not aim
to preserve liveness properties. In fact, it seems impossible
to preserve liveness properties in general since the program’s
low-level context can always starve the program of valid
inputs. However, it may be possible to prove that liveness
properties are preserved under fair contexts that always even-
tually provide a valid input. (Our technical report develops this
point further.)

Going beyond liveness, the larger class of hyperliveness
properties includes properties such as “the average response
time of the program is less than 3 steps of computation”.
Such properties are not preserved by TPC even under fairness
assumptions on the context.

V. TRACE-PRESERVING AND
FULLY ABSTRACT COMPILATION

This section proves that trace preservation and full abstrac-
tion are not equivalent: a TP compiler is FA but not vice-versa
(Section V-A). Then, it defines fail-safe behaviour (FSB), an
additional property that, if satisfied by a correct compiler,
implies that the compiler also has TPH , the halting variant of
TPC (Section V-B).

A. Relation between TP and FA

In order to relate TP and FA, for the rest of this section
we assume that ≈ is injective as in Definition 15. This
is not an unrealistic assumption, since many existing fully
abstract compilers based on contextual equivalence satisfy
this assumption and, in fact, it seems that writing a fully
abstract meaningful compiler without this assumption may be
impossible, as illustrated in the following example.

Example 6 (FA requires injectivity). Consider the source
language of Example 3 and the two programs λx.true
and λx.(true ∨ false) that implement the constant function
that returns true. These two programs are (trivially) trace-
equivalent. Suppose this language is compiled to λN and that,
for the sake of argument, the relation ≈ is not injective: it
relates false≈ 0 and true≈ 1, 2, Consider a compiler that
maps the two source functions to λx.1 and λx.2, respectively.
By having multiple mappings for true the target equivalence
is broken and this compiler is trivially not FA: the two target
programs are not trace equivalent, even though the two source
programs are. �

With injectivity, trace-preserving compilation implies fully
abstract compilation (Theorem 8).

Theorem 8 (TP implies FA). ∀J · KST , J · KST ∈ TP ⇒ J · KST ∈
FA.

The converse of Theorem 8 is false because there are fully
abstract compilers that are not trace-preserving.

Theorem 9 (FA does not imply TP). ∃J · KST ∈ FA. J · KST /∈
TP .

Proof. There are many compilers that are in FA but not in
TP . The compiler of Example 2 is one such example. Here,
we present a second, non-trivial example. Consider a source
language λB , which is a generalisation of the language of
Example 1 that allows arbitrary operations on booleans and the
target language λN from Example 3, which now includes min
and max operations on natural numbers. While both languages
are λ-calculi with higher-order functions, we restrict top-level
programs in λB to input and output booleans, i.e., to the
type Bool→ Bool. Similarly, top-level λN programs input
and output numbers, i.e., they have the type N→ N. The top-
level programs of the two languages are denoted C and C,
respectively. The type system of both languages is omitted for
brevity, but the syntax is shown below.

C ::= f(x) = t C ::= f(x) = e

t ::= true | false | x | t t | λx : τ.t | t ∧ t | t ∨ t | f
e ::= n ∈ N | x | e e | λx.e | min(e, e) | max(e, e) | f

Both languages follow a call-by-value reduction which is
straightforward but for the evaluation of min() and max(). The
former follows Rule λN-eval-min as presented below, while the
latter follows an analogous rule.

(λN-eval-min)
if v1 ∈ N then v1 = v1 else v1 = 1
if v2 ∈ N then v2 = v2 else v2 = 1
if v1 > v2 then v = v1 else v = v2

min(v1, v2) ↪→ v

The relation between the languages is that of Example 3:
it includes true≈ 1 and false≈ 0 and is defined inductively
on other terms based on their type.

Consider the two-step compiler J·KλB

λN from λB to λN shown
in Figure 2. The compiler maps Bool to N. At the top-level, in
the translation of f(x) = t, it modifies the input x to min(x, 1)
before passing it to the translation of t. So, the translation of
t only receives valid inputs (0 or 1).

Jf(x) = tKλ
B

λN = (f(x) = JtKλ
B

λN [min(x, 1)/x])

JtrueKλ
B

λN = 1 JxKλ
B

λN = x

JfalseKλ
B

λN = 0 JfKλ
B

λN = f

Jλx : τ.tKλ
B

λN = λx.JtKλ
B

λN Jt t′Kλ
B

λN = JtKλ
B

λN Jt′Kλ
B

λN

Jt1 ∧ t2Kλ
B

λN = min(Jt1Kλ
B

λN , Jt2Kλ
B

λN)

Jt1 ∨ t2Kλ
B

λN = max(Jt1Kλ
B

λN , Jt2Kλ
B

λN)

Fig. 2. Example of a fully abstract compiler.

It is straightforward to prove that J·KλB

λN is correct and that it
is fully abstract (as proven in the technical report). However,
the compiler is not trace-preserving. On an invalid input like

2 every compiled program still produces either 0 or 1, both of
which correspond to source values and, hence, are not

√
s.

In fact, this compiler does not preserve all safety prop-
erties in the sense of Theorem 5. Consider the source pro-
gram f(x) = x. This program satisfies the safety property
“Output true only in response to true.” Its translation
f(x) = min(x, 1) does not satisfy the translation of this safety
property. In fact, it outputs 1 (the translation of true) in
response to input 7. The translation of the safety property
in Theorem 5 will require that the program produce

√
in

response to the input 7.

B. FA Can Imply TPC

Many existing fully abstract compilers actually satisfy
TPC. This is because they either prevent invalid inputs by
using a target-level type system [8], [7], [17], [24] or halt the
program on invalid inputs [38], [5], [27], [21]. In this section,
we characterize this kind of enforcement of full abstraction
as another property we call fail-safe behaviour or FSB , and
prove that together with compiler correctness it implies TPH .

Intuitively, “fail-safe behaviour” (FSB) means that the
program halts (stutters with non-source outputs forever) after
an invalid input.

Definition 16 (Fail-safe-behaviour compiler). J · KST ∈ FSB
def
=

∀C. ∀ᾱ ∈ TR(JCKST). if @ᾱ ∈ TR(C).ᾱ≈ ᾱ, then
ᾱ ≡ m̄1α?

√
ᾱ2 and ∃m̄1 ∈ obs(TR(C)). m̄1≈ m̄1 and

@α?≈α? and @
√
∈ m̄1 and ᾱ2|O =

√
.

FSB is very similar to the halting version of TPC. We
formalise FSB this way since it is the one most similar to
what existing secure compilers do. We rely on this definition
to prove that a compiler that is both FSB and CC is
TPH (Theorem 10).

Theorem 10 (Correctness and fail-safe behaviour imply
trace-preservation). ∀J · KST . if J · KST ∈ CC and J · KST ∈ FSB
then J · KST ∈ TPH .

VI. BEYOND REACTIVE PROGRAMS

In this section we discuss how our results apply to a
non-reactive setting, where the focus is not the program’s
I/O behaviour but its code. This is the setting for a lot of
existing work on secure compilation. We set up some formal
background in Section VI-A and generalize some of our
definitions to the non-reactive setting in Section VI-B. We
then prove that an existing secure (fully abstract) compiler is
actually FSB , thus showing that it also has the halting variant
of TPC (Section VI-C).

A. Formal Tools for Non-Reactive Languages

Several existing work on secure compilation is for se-
quential programs [7], [8], [17], [5], [27], [29], [24], [38],
[40], [31]. In these cases, program are related via a notion
of contextual equivalence (Section VI-A1) or well-behaved
contextual equivalence (Section VI-A2). The behaviour of
programs can also be described via traces (Section VI-A3),

but additional properties need to be proven in order for the
trace semantics to be meaningful.

1) Contextual Equivalence: Contextual equivalence is the
coarsest program equivalence that the operational semantics
of a language yield [43]. It is used to reason about programs
of the same language.

As the name suggests, contextual equivalence relies on the
notion of context. A (program) context is a partial program
with a hole ([·]), so it follows the same syntax and typing
(if any) of programs. Formally, C def

= C[·]. The hole in the
context can be filled by another program; this results in a
whole program that can be executed according to the language
semantics.

Informally, two partial programs C are contextually equiv-
alent if they have the same behaviour for any possible context
C that they are plugged to. Having the same behaviour means
that the two programs cannot be distinguished just by looking
at the outputs.

Definition 17 (Contextual equivalence [43]). C1'ctx C2
def
=

∀C,C[C1]⇑ ⇐⇒ C[C2]⇑, where ⇑ indicates divergence,
i.e., the execution of an unbounded number of reduction
steps. Divergence can be replaced by termination; the two
formulations are equivalent.

2) Well-Behaved Contexts: Reasoning about programs writ-
ten in different languages is often done by means of a cross-
language relation ∼. Unlike relations ≈I and ≈O (from
Section II-B), relation ∼ is not only defined on inputs and
outputs, but on all language-related elements (values, terms,
contexts, etc). Often such a relation is instantiated with a cross-
language logical relation [26], [13], [14], [6], [34], [35]. ∼
lets us define the set of well-behaved target contexts w.r.t. the
source language, i.e., target-level contexts that have a source-
level counterpart (Definition 18).

Definition 18 (Well-behaved T contexts w.r.t. S). WBctxST =
{C | ∃C.C∼C}

Example 7 (Well-behaved contexts). Consider the source
language of Example 2 and the target language λN. Assume
∼ contains the following: true∼ 1 and false∼ 0.

Consider the context [·] 1, whose hole expects a function;
this is well-behaved, since it is related to the source-level
context [·] true. On the other hand, the context [·] 3 is not
well-behaved. No source-level context relates to it, as no
source-level context ever applies a value related to 3 to a
function. �

3) Trace Semantics: Trace equivalence is another tool to
reason about two partial programs written in the same lan-
guage, and it is often simpler to reason with than contextual
equivalence [39], [38], [5], [27], [28]. Trace equivalence
relates two components that exhibit the same trace semantics,
i.e., whose behaviour can be described with the same set of
traces (as in Definition 2).

Formally, in the sequential setting, a trace semantics is a
triple: TR

def
= {Σ;α;

ᾱ
==⇒⇒}. Σ is the set of states of the trace

semantics. Σ must include two kinds of states: operational
semantics states and “unknown” ones. The former model exe-
cution within the component while the latter model execution
outside of it. α are the actions that can be generated by the
semantics, they follow the formalisation of actions and traces
presented in Definition 2. ᾱ

==⇒⇒ ⊆ Σ× ᾱ× Σ is a relation that
specifies how actions are concatenated into traces ᾱ.

The trace semantics of a program C, denoted TR(C), is
the set of traces it can generate from its starting state Σ0(C).

Definition 19 (Trace semantics). TR(C)
def
=

{ᾱ | ∃Σ.Σ0(C)
ᾱ

==⇒⇒ Σ}.

Two programs are trace equivalent if their trace semantics
coincide, as already formalised in Definition 3.

When a language is defined, its operational semantics yield
contextual equivalence. Many applications of trace semantics
require showing that trace equivalence coincides with contex-
tual equivalence. Formally, this is called full abstraction of
the trace semantics (Definition 20).2 Let FAT be the set of
all fully abstract trace semantics.

Definition 20 (Fully abstract trace semantics). TR ∈ FAT
def
=

∀C1, C2. C1'ctx C2 ⇐⇒ C1
T
=C2

The simplest way to develop a fully abstract trace semantics
is by construction, i.e., to devise traces from the operational
semantics. However this is not always possible nor simple, so
devising a fully abstract trace semantics for complex systems
is an active research topic [28], [39], [30], [46].

B. Non-Reactive Trace-Preserving Compilation

To make TPC meaningful in a non-reactive setting, both
the source and the target languages must have fully ab-
stract trace semantics, with which their hyperproperties are
expressed. This can be expressed through two assumptions.

Assumption 1 (The source-level trace semantics TR is fully
abstract). TR ∈ FAT .

Assumption 2 (The target-level trace semantics TR is fully
abstract). TR ∈ FAT .

Assumption 2 does not need to hold in general but just for
compiled components, i.e., for a subset of the programs of T ,
the target language.

No existing work on secure compilation satisfies both these
assumptions as no existing work was interested in understand-
ing the connection to hyperproperties so far. Some existing
work, however, satisfies Assumption 2, as they equip the target
language with fully abstract trace semantics for simplifying
their proofs of full abstraction [27], [38], [40], [39], [31].

1) Non-Reactive Fail-Safe Behaviour: Definition 21 rede-
fines FSB from Definition 16 without traces. Let C_C
indicate that C and C are compatible, so C can fill the hole of
C.

2Standard terminology may be confusing since full abstraction is used for
both compilers and semantics. When the qualifier ‘compiler’ or ‘semantics’
is omitted, it should be clear from the context which notion is meant.

Definition 21 (Fail-safe-behaviour compiler (without traces)).
J · KST ∈ FSB

def
= ∀C /∈ WBctxST , ∀C. if C_ JCKST , then

C[JCKST] ↪→ ∗ t and ∃tstuck. t'ctx tstuck and ∀C′. C′[tstuck]6↪→.

The intuition for Definition 21 is that for any invalid
interaction (i.e., an interaction with a context C that is not
well-behaved) a compiled component reduces to a term t that
is equivalent to a term tstuck that cannot reduce any further (in
any context). tstuck, and its equivalent terms, correspond to

√
.

This models what some existing fully abstract compilers do—
they halt when some invalid interaction is detected. Instead of
enforcing that t is stuck, we require it to be equivalent to a
stuck term to model, for example, reduction to a function that
will get stuck when it is applied.

C. TPC for an Existing Fully Abstract Compiler

Many existing fully abstract compilers actually achieve
TPC. In this section, we substantiate this point on one fully
abstract compiler, that of Devriese et al. [21], by showing that
it is FSB according to Definition 21. Thus, if fully abstract
trace semantics were given to the languages (to reason about
hyperproperties), it would be TP . We work with this compiler
since it is simple enough to prove Definition 21 easily.

For the compiler of this section, the source language λτ is
a simply-typed λ-calculus with booleans, unit and a fixpoint
operator while the target language λu is an untyped λ-calculus
with primitive boolean and unit literals. The operational se-
mantics of both languages is unsurprising and, like the syntax,
in large part omitted here. The only interesting cases are the
reduction of fix in λτ and how λu treats non well-formed
arguments, which are presented below (the latter is presented
only in the case of sequencing and if-then-else).

(λτ -Eval-fix)

fixτ1→τ2 (λx : τ1 → τ2. t) ↪→
t[(λ y : τ1. fixτ1→τ2 (λx : τ1 → τ2. t) y)/x]

(λu-Eval-seq-next)
v ≡ unit⇒ t′ ≡ t

v 6≡ unit⇒ t′ ≡ wrong

v; t ↪→ t′

(λu-Eval-if-v)
v ≡ true⇒ t′ ≡ t1
v ≡ false⇒ t′ ≡ t2

(v 6≡ true ∧ v 6≡ false)
⇒ t′ ≡ wrong

if v then t1 else t2 ↪→ t′

J · Kλτ

λu is the fully abstract compiler from λτ and λu; it is
defined as follows:

if t : τ then JtKλ
τ

λu = protectτerase(t)

where erase() is a type-erasing function and protect is a
dynamic typechecker on arguments received from the context
whose definition is shown in our technical report. Any argu-
ment that does not respect the expected structure will cause
protect to reduce to wrong, without executing the securely-
compiled code. Intuitively, wrong is the

√
(or the term t from

Definition 21).
The compiler is correct (Theorem 11) and FSB (Theo-

rem 12), so it is trace-preserving (Theorem 13).

Theorem 11 (J · Kλτ

λu is correct). J · Kλτ

λu ∈ CC .

Proof. See [21].

Theorem 12 (J · Kλτ

λu has fail-safe behaviour). J · Kλτ

λu ∈ FSB .

Proof Sketch. Intuitively, all ill-behaved interactions either
reduce to wrong immediately or reduce to functions whose
body will reduce to wrong once an argument is supplied.
Consider the term true; its compilation is (λx. x) true. Con-
sider the following non-well-behaved context for the term
above which tries to use it as a function instead of as a
Boolean: C = [·] true. Once the compiled term is plugged
into C, the resulting term performs the following reductions:
((λx. x) true) true ↪→ true true ↪→ wrong. 2

Theorem 13 (J · Kλτ

λu is trace-preserving). J · Kλτ

λu ∈ TPH .

VII. RELATED WORK

Prior work has mostly used either full abstraction or nonin-
terference preservation as the criterion for soundness of secure
compilers.

Compiler full abstraction was introduced by Abadi [1], to
argue against the compilation of inner classes in an early
version of the JVM and as a way to show the soundness
of a compilation of the π-calculus into the SPI-calculus.
Papers that prove full abstraction achieve this by relying on
different target-language features: type systems [8], [7], [17],
cryptographic primitives [18], [20], [2], memory protection
techniques [5], [27], [38], [40] and dynamic checks [21],
[24]. Two main approaches exist to proving compiler full
abstraction: cross-language logical relations [8], [17], [7], [21]
and target-level trace semantics [27], [38], [28]. The conditions
that make fully abstract compilation between two languages
possible have been identified by Parrow [37]. Gorla and Nest-
mann [25] concluded that full abstraction is meaningful only
when it entails properties such as security, thus supporting the
motivation for our work. No existing work argues for a general
connection between full abstraction (or secure compilation)
with hyperproperties. The closest pieces of work related to
hyperproperty preservation via compilation are those whose
proof is based on trace semantics, as they already fulfil some
of the requirements of TPC.

Some prior work [10], [11], [12] provides secure com-
pilers that preserve specific hyperproperties, notably non-
interference. In all cases, the target language is assumed to be
well-typed. Since both the source and target type systems im-
ply non-interference, compiler type preservation implies non-
interference preservation. Tse and Zdancewic present a non-
interference-preserving secure compiler from the dependency
core calculus (DCC) to System F [45].

Recently, secure compartmentalizing compilation (SCC) has
also been proposed as a criterion for secure compilation. SCC
addresses some limitations of “vanilla” compiler full abstrac-
tion related to modularity [29]. The main differences between
TPC and SCC are that (i) SCC considers non-deterministic
source languages, and (ii) SCC enforces a fixed structure on
the components that encompasses the whole source program.
SCC additionally considers modular compilers, but TPC can

also be adapted to modular compilers (see the technical report
for details). In the SCC work, the authors suggest a way
to turn compiler full abstraction into SCC by handling the
aforementioned issues. We believe that the same approach
can be taken with TPC to ensure that it also implies SCC.
Concerning (i), the non-determinism in source languages for
SCC compilers is restricted to affect just the component where
the non-determinism happens. Concerning (ii), the notion of
plugging programs and contexts is made to adhere to a given
shape (or interface), which specifies how the rest of the
program is compartmentalised. We believe that by adding the
same restriction to the source languages, TPC can scale
to non-deterministic languages and to programs that have a
stipulated structure.

TPC (and more generally secure compilation) also bears
a close connection with security policies enforcement by
means of runtime monitors. Literature on enforcing security
properties has developed several automata to enforce safety
properties. The seminal work of Schneider [44] defines trunca-
tion automata, which terminate a program when an undesired
action is encountered. Ligatti et al. [33] define suppression
automata, which prevent specific program actions but do not
alter program behaviour otherwise. The latter kind of automata
were further studied by Bielova and Massacci [15] in the con-
text of suppressing behaviour but resuming again from a good
program state. The halting variant of TPC can be seen as a
truncating automaton wrapped around compiled code while the
disregarding variant can be seen as a suppression automaton
wrapped around compiled code. However, the aforementioned
work does not consider a cross-language setting.

Trace semantics have been used to reason about the security
properties of reactive systems [47], [23]. We believe that such
work can be a good starting point for understanding how to
expand the results of this paper to non-deterministic systems.

In this work, as in many others on fully abstract compilation,
we consider possible optimisations to be a part of J ·KST . Thus,
these results can be made to scale to optimizing compilers as
long as the optimisations respect the assumptions needed by
TPC. The work of D’Silva et al. [22] studies the problem
of securing compiler optimisation as a separate phase, clearly
identifying which compiler optimisations would violate such
assumptions.

VIII. CONCLUSION

This paper presented a new correctness criterion, TPC,
for secure compilation. We show that this criterion preserves
safety and hypersafety properties under suitable source-to-
target translations of the properties. We show that the criterion
is stronger than full abstraction for compilers, but can be
attained with little more effort beyond that needed to attain
full abstraction. At least one existing fully abstract compiler
already attains TPC.

We believe that this paper clarifies what secure compi-
lation means in terms of preservation of security-relevant
(hyper)properties. Additionally, it clarifies the limitations and

relevance of fully abstract compilation in the context of
security.

Acknowledgments: We would like to thank Amal Ahmed,
Gilles Barthe, William Bowman, Dominique Devriese, Cătălin
Hriţcu, Max New, Frank Piessens and Tamara Rezk for in-
teresting discussions on the subject of this paper, as well as
several anonymous reviewers for useful feedback that helped
improve the presentation of the paper.

REFERENCES

[1] M. Abadi, “Protection in programming-language translations,” in Secure
Internet programming. Springer-Verlag, 1999, pp. 19–34.

[2] M. Abadi, C. Fournet, and G. Gonthier, “Secure communications pro-
cessing for distributed languages,” in IEEE Symposium on Security and
Privacy, 1999, pp. 74–88.

[3] ——, “Authentication primitives and their compilation,” in POPL ’00.
ACM, 2000, pp. 302–315.

[4] ——, “Secure implementation of channel abstractions,” Information and
Computation, vol. 174, pp. 37–83, 2002.

[5] M. Abadi and G. Plotkin, “On protection by layout randomization,” in
CSF ’10. IEEE, 2010, pp. 337–351.

[6] A. Ahmed, “Verified Compilers for a Multi-Language World,” in SNAPL
2015, vol. 32. Dagstuhl, Germany: Schloss Dagstuhl, 2015, pp. 15–31.

[7] A. Ahmed and M. Blume, “Typed closure conversion preserves observa-
tional equivalence,” SIGPLAN Not., vol. 43, no. 9, pp. 157–168, 2008.

[8] ——, “An equivalence-preserving CPS translation via multi-language
semantics,” SIGPLAN Not., vol. 46, no. 9, pp. 431–444, 2011.

[9] B. Alpern and F. B. Schneider, “Defining liveness,” Ithaca, NY, USA,
Tech. Rep., 1984.

[10] I. G. Baltopoulos and A. D. Gordon, “Secure compilation of a multi-tier
web language,” in TLDI ’09. ACM, 2009, pp. 27–38.

[11] G. Barthe, T. Rezk, and A. Basu, “Security types preserving compila-
tion,” ELSEVIER Comlan, vol. 33, pp. 35–59, 2007.

[12] G. Barthe, T. Rezk, A. Russo, and A. Sabelfeld, “Security of multi-
threaded programs by compilation,” ACM TISSEC, vol. 13, pp. 21:1–
21:32, 2010.

[13] N. Benton and C.-K. Hur, “Biorthogonality, step-indexing and compiler
correctness,” SIGPLAN Not., vol. 44, no. 9, pp. 97–108, Aug. 2009.

[14] N. Benton and C.-k. Hur, “Realizability and compositional compiler
correctness for a polymorphic language,” MSR, Tech. Rep., 2010.

[15] N. Bielova and F. Massacci, “Iterative enforcement by suppression:
Towards practical enforcement theories,” J. Comput. Secur., vol. 20,
no. 1, pp. 51–79, Jan. 2012.

[16] A. Bohannon, B. C. Pierce, V. Sjöberg, S. Weirich, and S. Zdancewic,
“Reactive noninterference,” in CCS ’09. ACM, 2009, pp. 79–90.

[17] W. J. Bowman and A. Ahmed, “Noninterference for free,” in ICFP ’15.
New York, NY, USA: ACM, 2015.

[18] M. Bugliesi and M. Giunti, “Secure implementations of typed channel
abstractions,” in POPL ’07. ACM, 2007, pp. 251–262.

[19] M. R. Clarkson and F. B. Schneider, “Hyperproperties,” J. Comput.
Secur., vol. 18, no. 6, pp. 1157–1210, Sep. 2010.

[20] R. Corin, P.-M. Deniélou, C. Fournet, K. Bhargavan, and J. Leifer, “A
secure compiler for session abstractions,” Journal of Computer Security,
vol. 16, pp. 573–636, 2008.

[21] D. Devriese, M. Patrignani, and F. Piessens, “Secure Compilation by
Approximate Back-Translation,” in POPL 2016, 2016.

[22] V. D’Silva, M. Payer, and D. X. Song, “The correctness-security gap
in compiler optimization,” in 2015 IEEE S& P Workshops, SPW 2015,
2015, pp. 73–87.

[23] R. Focardi and R. Gorrieri, “A classification of security properties for
process algebras,” J. Comput. Secur., vol. 3, no. 1, pp. 5–33, Jan. 1995.

[24] C. Fournet, N. Swamy, J. Chen, P.-E. Dagand, P.-Y. Strub, and
B. Livshits, “Fully abstract compilation to javascript,” in POPL ’13.
ACM, 2013, pp. 371–384.

[25] D. Gorla and U. Nestman, “Full abstraction for expressiveness: History,
myths and facts,” Math Struct Comp Science, 2014.

[26] C.-K. Hur and D. Dreyer, “A Kripke logical relation between ML and
Assembly,” SIGPLAN Not., vol. 46, no. 1, pp. 133–146, Jan. 2011.

[27] R. Jagadeesan, C. Pitcher, J. Rathke, and J. Riely, “Local memory via
layout randomization,” in CSF ’11, USA, 2011, pp. 161–174.

[28] A. Jeffrey and J. Rathke, “Java Jr.: Fully abstract trace semantics for
a core Java language,” in ESOP’05, ser. LNCS, vol. 3444. Springer,
2005, pp. 423–438.

[29] Y. Juglaret, C. Hriţcu, A. Azevedo de Amorim, and B. C. Pierce,
“Beyond good and evil: Formalizing the security guarantees of com-
partmentalizing compilation,” in CSF 2016, 2016.

[30] J. Laird, “A fully abstract trace semantics for general references,” in
Automata, Languages and Programming, ser. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2007, vol. 4596, pp. 667–679.

[31] A. Larmuseau, M. Patrignani, and D. Clarke, “A secure compiler for
ML modules,” in APLAS 2015, 2015, pp. 29–48.

[32] P. Laud, “Secure Implementation of Asynchronous Method Calls and
Futures,” in Trusted Systems, ser. LNCS, C. J. Mitchell and A. Tomlin-
son, Eds. Springer Berlin Heidelberg, 2012, vol. 7711, pp. 25–47.

[33] J. Ligatti, L. Bauer, and D. Walker, “Edit automata: Enforcement
mechanisms for run-time security policies,” Int. J. Inf. Secur., vol. 4,
no. 1-2, pp. 2–16, Feb. 2005.

[34] J. Matthews and R. B. Findler, “Operational semantics for multi-
language programs,” ACM Trans. Program. Lang. Syst., vol. 31, no. 3,
pp. 12:1–12:44, Apr. 2009.

[35] G. Neis, C.-K. Hur, J.-O. Kaiser, C. McLaughlin, D. Dreyer, and
V. Vafeiadis, “Pilsner: A compositionally verified compiler for a higher-
order imperative language,” in ICFP 2015. ACM, 2015, pp. 166–178.

[36] M. New, W. J. Bowman, and A. Ahmed, “Fully-abstract compilation via
universal embedding,” in ICFP ’16. ACM, 2016.

[37] J. Parrow, “General conditions for full abstraction,” Math Struct Comp
Science, 2014.

[38] M. Patrignani, P. Agten, R. Strackx, B. Jacobs, D. Clarke, and
F. Piessens, “Secure Compilation to Protected Module Architectures,”
ACM Trans. Program. Lang. Syst., vol. 37, no. 2, pp. 6:1–6:50, 2015.

[39] M. Patrignani and D. Clarke, “Fully abstract trace semantics for pro-
tected module architectures,” ELSEVIER Comlan, vol. 42, no. 0, pp. 22
– 45, 2015.

[40] M. Patrignani, D. Devriese, and F. Piessens, “On Modular and Fully
Abstract Compilation,” in CSF 2016, 2016.

[41] M. Patrignani and D. Garg, “Secure Compilation and Hyperproperty
Preservation,” MPI-SWS, Tech. Rep. MPI-SWS-2017-002, 2017.

[42] F. Piessens, D. Devriese, J. T. Muhlberg, and R. Strackx, “Security
guarantees for the execution infrastructure of software applications,” in
IEEE SecDev 2016, 2016.

[43] G. D. Plotkin, “LCF considered as a programming language,” Theoret-
ical Computer Science, vol. 5, pp. 223–255, 1977.

[44] F. B. Schneider, “Enforceable security policies,” ACM Trans. Inf. Syst.
Secur., vol. 3, no. 1, pp. 30–50, Feb. 2000.

[45] S. Tse and S. Zdancewic, “Translating dependency into parametricity,”
SIGPLAN Not., vol. 39, pp. 115–125, Sep. 2004.

[46] Y. Welsch and A. Poetzsch-Heffter, “A fully abstract trace-based se-
mantics for reasoning about backward compatibility of class libraries,”
Science of Computer Programming, vol. -, no. 0, pp. –, 2013.

[47] A. Zakinthinos and E. S. Lee, “A general theory of security properties,”
in IEEE S& P, ser. SP ’97, 1997, pp. 94–.

