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Abstract—Secure compilation studies compilers that generate
target-level components that are as secure as their source-level
counterparts. Full abstraction is the most widely-proven property
when defining a secure compiler.

A compiler is modular if it allows different components to be
compiled independently and then to be linked together to form
a whole program.

Unfortunately, many existing fully-abstract compilers to un-
typed machine code are not modular. So, while fully-abstractly
compiled components are secure from malicious attackers, if
they are linked against each other the resulting component may
become vulnerable to attacks.

This paper studies how to devise modular, fully-abstract
compilers. It first analyses the attacks arising when compiled
programs are linked together, identifying security threats that are
due to linking. Then, it defines a compiler from an object-based
language with method calls and dynamic memory allocation to
untyped assembly language extended with a memory isolation
mechanism. The paper provides a proof sketch that the defined
compiler is fully-abstract and modular, so its output can be linked
together without introducing security violations.

This paper uses colours to distinguish elements of different
languages; please print this in colour.

I. INTRODUCTION

A compiler is a tool that, among other things, translates
programs written in a source language into programs written
in a target language. A compiler is secure when it preserves all
security properties of the components (i.e., partial programs)
it inputs in the components it outputs. Secure compilation
studies compilers that generate target-level components that
are as secure as their source-level counterparts. Full abstraction
is the most widely-adopted property to prove when defining
a secure compiler [1], [2], [3], [4], [5], [6], [7], [8], [9],
[10], [11]. A fully-abstract compiler preserves and reflects
observational equivalence between the source components it
inputs and the target components it produces. Observational
equivalence captures security properties such confidentiality,
integrity, etc, and since a fully-abstract compiler preserves all
of them, it is a secure compiler.

A compiler is modular when it operates on components and
its output can be linked together into larger components (and
possibly into whole programs).

With the advent of machine-code level security architectures
(e.g., protected modules architectures (PMA) [12], [13], [14],
capability machines [15], [16], micro-policies enforcing archi-
tectures [17], address space layout randomisation [2], etc.) re-
searchers have investigated secure (fully-abstract) compilation
to such architectures [2], [3], [4], [18].

For secure compilation to PMA (informally, a low-level
memory isolation mechanism), only compilation of a single
protected module has been considered. Generalizing this to
multiple modules, supporting modular compilation and linking
of protected modules at machine code level, would be useful
for a number of reasons: (i) code is easier to develop and
distribute in standalone components and (ii) merging modules
in a single one is not always possible nor desirable. Concerning
(i), standard arguments for separate compilation apply. Partic-
ularly, it is more efficient to compile only the modules that
changed and link it against the previously compiled other code
as opposed to recompiling the entire code base. Moreover, it
is common in practice and useful to use libraries that are built
from safe source code but only available in compiled form.
When targeting PMA with attestation capabilities, a benefit
of having each module in a different protected module is that
this makes it possible to attest them independently. Concerning
(ii), there can be several reasons why merging more modules in
a single one is not desirable; even with a secure compiler, it
can still be useful to protect securely compiled components
from each other. Consider a source language that allows
programmers to write both safe and unsafe code at the same
time (e.g., Rust, C# unsafe blocks or the language considered
by Juglaret et al. [19]). A desirable property for a compiler for
such a language is that unsafe code does not affect the safe
one. In this case, one can foresee splitting the safe and the
unsafe program parts in two different modules and using the
secure compiler presented in this paper for the safe part. In
this way, both the safe and the unsafe code cannot be directly
tampered with by an attacker and the unsafe code can not
affect the safe one. Another setting where merging multiple
modules is undesirable is when a programmer provides a hand-
optimised securely-compiled component that performs better
than the ones obtained by a secure compiler, but with the same
security guarantees. In this case, merging such a component
with other ones in a single module seems undesirable, as
the hand-made assembly can be error-prone and maliciously-
crafted. However, by using a modular secure compiler, other
components can still interact with the hand-optimised one and
no one’s security can be tampered.

Extending the compiler to support modular compilation is,
however, surprisingly complicated for a number of reasons:

1) with a single protected module, all run-time meta infor-
mation about the execution that needs to be protected
(e.g., the call stack, or dynamic type information) can



be stored within that single protected module. For a
modular compiler, that state must be divided over the
various protected modules, or – possibly – stored in a
centralized trusted protected module.

2) with a single protected module, object references are
either private to the module or public. With support for
multiple protected modules, object references can also
be shared between some modules and still be unknown
to other ones. This requires a mechanism for protecting
object references that is more elaborate than what the
existing secure compiler to PMA uses.

There are several interesting approaches to address these
challenges. This paper investigates how these issues can be
addressed constructing a modular fully-abstract compiler for
PMA in the style of Intel SGX [14] without additional
hardware support. Even if this turns out to be intricate, we
believe there is value in this approach, as this kind of hardware
support is available on commercially available systems today,
whereas more advanced hardware support is only available in
research prototypes.

An alternative approach to modular, secure compilation
would be to investigate what kind of novel hardware security
architectures can help in addressing these challenges. This is
the approach taken by Juglaret et al. [18] and it can likely
lead to a secure compilation scheme. An important downside
is that it may take a while before such hardware extensions
are available in mainstream systems.

The main contribution of this paper is J · KJEMAIL , a modular
and fully-abstract compiler to SGX-like PMA. The source
language of J·KJEMAIL is JEM, an object-based imperative language
with method calls and dynamic memory allocation. The target
language of J · KJEMAIL is AIL, untyped assembly language with
an explicit linking mechanism extended with PMA. JEM,
AIL and PMA are formalised in Section II. Explicitly con-
sidering linking between assembly components generates a
number of previously-unobserved problems that are presented
in Section III. The main contribution of this paper is the
formalisation of J · KJEMAIL , presented in Section IV. Supporting
additional language features is discussed in Section V. The
proof sketch of J · KJEMAIL being fully-abstract and modular
is presented in Section VI. Finally, Section VII discusses
related work and Section VIII concludes. Complete language
formalisations, proofs, sketches and technical formalities can
be found in the companion technical report [20].

II. LANGUAGES FORMALISATION

This section describes JEM (Section II-A) and AIL (Sec-
tion II-B), respectively the source and the target language of
the secure compiler J · KJEMAIL .

A. The Source Language JEM

JEM is a strongly-typed, single-threaded, object-based im-
perative language that has private fields and public meth-
ods; it does not allow any undefined behaviour to arise. JEM
is presented in a green font (Figure 1).

component C ::= C

classes C ::= import I;X; class c{K Ft M};O
objects O ::= object o : t{F}
class

declarations
I ::= class-decl c{m : Mt}

object
declarations

X ::= obj-decl o : t;

methods M ::= public m(x) : Mt {return E; }
signatures Mt ::= t(t)→ t

fields F ::= private f = v

field types Ft ::= f : t

constructors K ::= c(f : t) {this.f ′ = f}
types t ::= Unit | Bool | Int | c | Obj
values v ::= unit | true | false | n | o
operations op ::= + | − | == | · · ·
expressions E ::= v | x | E.f | E.f = E | E.m(E)

| E op E | new t(E) | E;E | this
| if (E) {E} else {E} | exit E
| instanceof(E : c) | var x : t = E

Figure 1. Syntax of JEM; lists of elements a1 · · · an are denoted as a.

A class C declares (external) classes and objects it requires
(these are called import requirements) then it defines its
constructor, fields, methods and objects implementing that
class. Objects of a class can only be allocated by methods of
that class (so cross-component memory allocation happens via
factory methods). Class declarations I define class signatures,
i.e., the class name and the methods implemented by that class.
Object declarations X are references to objects implementing
a different class. A JEM component C is a collection of classes
C. If all import requirements of C are satisfied by some other
class in C, then C is a whole program. Two components C1
and C2 satisfy each other, denoted with C1_ C2, if all import
requirements of C1 are classes and objects in C2 and vice-versa.

The top of the JEM class hierarchy is Obj, a class defining
no methods. All classes implicitly extend Obj; JEM does not
provide any other form of inheritance. Primitive types are
Unit, inhabited by unit, Bool, inhabited by true and false
and Int, inhabited by natural numbers n. Identifiers for classes
c, objects o, methods m, fields f and variables x are taken
from distinct denumerable sets.

The semantics of JEM is standard and unsurprising; it is
omitted for space reasons.

The security mechanism of JEM is given by private fields,
which can be used to define security properties such as
confidentiality and integrity (as defined in Section III-A).

1) Contextual Equivalence for JEM: To reason about the
behaviour of JEM components, contextual equivalence is
used [21]. Contextual equivalence is the coarsest relation that
tells when two components are behaviourally equivalent; its



definition (Definition 1) is rather standard [2], [3], [4], [5],
[6], [7], [11], [22], [23].

Contexts C are partial programs with a hole ([·]), formally
C ::= C[·]. The plugging of a component C in a context C,
denoted as C[C], returns a whole program C; C. There are two
(common) assumptions for the plugging to succeed. The first
one is that C_C, the second one is that C and C are well-
typed. If any assumption is not upheld, the plugging returns
the empty program.

Definition 1 (Contextual equivalence for JEM). C1'ctx C2 ,
∀C,C[C1]⇑ ⇐⇒ C[C2]⇑, where ⇑ means divergence, i.e., the
execution of an unbounded number of reduction steps.

B. PMA and the Target Language AIL

AIL (acronym of Assembly plus Isolation and Linking) is
a low-level language that models a von Neumann machine
enhanced with PMA (Section II-B1), with an idealised form
of cryptographic nonces (Section II-B2) and with an explicit
linking mechanism (Section II-B3). AIL is the adaptation of
an analogous language that had no linking mechanism, no
idealised cryptographic nonces and a single PMA module [4],
[24]. After presenting PMA and AIL, this section describes the
semantics (Section II-B4) and contextual equivalence for AIL

(Section II-B5).
1) PMA: PMA is an assembly-level isolation mechanism

based on program counter-based memory access control. PMA
can be implemented in software (e.g., via a hypervisor) [12],
[25], [26] or in hardware [13], [14], [27]; Intel is bringing
it to mainstream processors with the Intel SGX instruction
set [14]. PMA logically divides the memory space into several
protected and one unprotected section; a protected section is
called protected module, each module has a unique module
id. All protected sections are further divided into a code and a
data section. Code sections contain a variable number of entry
points: the only protected addresses to which instructions in
unprotected memory or in other protected sections can jump.
Entry points allow code from within the module to interoperate
with external code. Data sections are only accessible from
within the protected code section of the same module. The
table below summarises the PMA access control model.

From \
To Unprotected Protected

Entry Point Code Data
Unprotected r w x x

Protected r w x

Same id
r x r x r w

Different id
x

2) Core AIL: AIL is presented in a pink font (Figure 2).
Words w are either natural numbers n (including instruction

encodings and module ids), symbols σ (explained in Sec-
tion II-B3) or symbolic nonces π. Addresses a are pairs of
natural numbers and module ids, so a module with id id has
an infinite memory starting from address (id, 0). Unprotected
memory has id 0. The registers file r contains an unbounded

numbers n ::= n ∈ N
words w ::= n | σ | π
addresses a ::= (id, n)

memories m ::= a 7→ w

flags f ::= ZF 7→ 0 | 1;SF 7→ 0 | 1
register files r ::= r 7→ w

module ids id ∈ ID ⊂ N
symbolic nonces π ∈ Π

module descriptors s ::= (id, nc, n)

nonce oracles h ::= π

symbols σ, ι ∈ S
instructions i ∈ I ⊂ N

Figure 2. Formalisation of AIL (part 1: language).

number of registers r. The flags register f contains a sign
(SF) and a zero flag (ZF) that are set by arithmetic and testing
instructions. Memories m are lists of bindings from addresses
to words. Module descriptors s are triples that define a module
memory layout: id indicates the id of the module, nc is the
length (in number of addresses) of the code section and n is
the number of entry points. Between each entry point there are
a fixed amount of addresses that are not entry points, indicate
this number of addresses with Nw. The first entry point is
located at address 0, the second one at address Nw and so on;
the last one is located at address n ·Nw such that n ·Nw < nc.
Symbolic nonces π are non-guessable, unforgeable tokens;
they model what a program could create using cryptographic
primitives or unguessable randomisation [28], [29]. For the
sake of simplicity, they are considered to be 0 for arithmetic
operators.1 Nonce oracles h are used as suppliers of fresh
nonces for the new instruction (see Rule Eval-new in Figure 4).
Instructions i are elements of the set I (Table I) that define
the programming language executed on the architecture.

3) Modules, Programs and Linking (Figure 3): To deal
with linking, AIL has symbols σ, ι. Symbols in a module are
placeholders for words that will be filled when the module is
linked against another one; symbols can be found in memory
and in the symbol table. A symbol table t contains exported
method and object bindings as well as required method and
object bindings. An exported method binding EM (resp.
object binding EO) maps a method name m and its type
Mt (resp. an object name o and its class c) to the address a
where the method (resp. class) is located. A required method
binding RM (resp. object binding RO) maps a method name
m and its type Mt (resp. an object name o and its class c)
to the id symbol ι and the number symbol σ used for it. A
method (resp. object) export binding fulfils a method (resp.

1 Having arithmetic operations affect nonces would only let us model
guessing attacks on them, but they are assumed to be resilient to these attacks
so we chose this option for simplicity.



movl rd rs ri Load the word from the address in regis-
ters (rs,ri) into register rd.

movs rd rs ri Store the contents of register rs at the
address found in registers (rd,ri).

movi rd k Load the constant value k into register rd.
add rd rs Write rd + rs into register rd and set the

ZF flag accordingly.
sub rd rs Write rd − rs into register rd and set both

the ZF and the SF flags accordingly.
cmp rs rd Compare rs and rd and set the flags ac-

cordingly.
jmp rd ri Jump to the address located in register rd

in the module with id ri.
je fi ri If flag fi is set, jump to the address in

register ri in the current module.
zero Set all registers to 0.
new rd Initialise register rd with a fresh symbolic

nonce.
halt Stop the execution.

Table I
INSTRUCTION SET I .

object) requirement if both bind the same method name and
type (resp. object name and class).

modules M ::=(m; s; t) programs P ::=(m; s; t)

symbol tables t ::= EM ;EO;RM ;RO

exported methods EM ::= m : Mt 7→ a

exported objects EO ::= o : c 7→ n

required methods RM ::= m : Mt 7→ ι;σ

required objects RO ::= o : c 7→ σ

Figure 3. Formalisation of AIL (part 2: linking).

A single AIL module M is a triple listing a memory m, its
module descriptor s and a symbol table. An AIL program P is a
collection of modules whose module descriptors are listed in s.
If the required bindings of a program are empty lists, then the
program is whole. When a program is not whole it is partial,
i.e., it is a collection of modules with a symbol table with
unfulfilled requirements. Informally, two AIL programs P1 and
P2 satisfy each other, denoted with P1

_P2, if all the required
bindings of P1 are fulfilled by a binding in P2 and vice-versa.
Modules and programs are well-formed if the only symbols
in their memory are those captured in the symbol table. In
the following, we only consider well-formed programs and
modules.

Two memories (resp. two module descriptors) agree if their
domains are disjoint (resp. if their ids are distinct). Two
AIL modules P1 and P2 can be joined together, denoted
with P1+P2, only if the two memories and if the memory
descriptors agree. Joining of modules results in a program that
is the concatenation of the memories, memory descriptors and
symbol tables of P1 and P2. Joining of symbol tables results
in a new symbol table. If a requirement (method or object) is
fulfilled by a requirement in another table, that requirement is
removed from the resulting table. Moreover, in the resulting

(Eval-new)
p = (id, n) m(p) = new rd r′ = r[rd 7→ π] π /∈ h

(p, r, f ,m, s, π;h)
id−−→→ ((id, n+ 1), r′, f ,m, s, h)
(Eval-module)

(p, r, f ,m, s, h)
id−−→→ (p′, r′, f ′,m′, s′, h′)

p ` currentModule(s, s) p = (id, n)

(p, r, f ,m, s, h)→→ (p′, r′, f ′,m′, s, h′)
(Eval-movs)

p = (id, n) m(p) = (movs rd rs ri)
s ` writeAllowed(n, (r(rd), r(ri)))
m′ = m[(r(rd), r(ri)) 7→ r(rs)]

(p, r, f ,m, s, h)→→ ((id, n+ 1), r, f ,m′, s, h)
(Eval-jmp)

p = (id, n) m(p) = (jmp rd ri) n′ = r(rd)
id′ = r(ri) r′ = r′[r0 7→ id] s ` validJump(p, (id′, n′))

(p, r, f ,m, s, h)→→ ((id′, n′), r′, f ,m, s, h)

Figure 4. An excerpt of the dynamic semantics of AIL

memory, all symbols of fulfilled requirements are replaced
with what is bound by the fulfiller requirement. Consider P1

to require method m : Mt 7→ ι;σ and P2 to export method
m : Mt 7→ (id, n). When merging P1 and P2, all occurrences
of ι and σ in the memory of P1 will be replaced with id and
n, respectively. The resulting symbol table will no longer have
the requirement for m : Mt as that has been fulfilled.

4) Dynamic Semantics of AIL: The dynamic semantics of
whole programs (→→) relates program states (p, r, f ,m, s, h)
where p is the program counter (i.e., an address). This seman-
tics relies on another one for modules ( id−−→→); the latter tells
when a module with id id performs a reduction (Rule Eval-
module). Figure 4 shows an excerpt of the reduction rules.
Memory access is indicated as: m(a) = w; memory update
is indicated as m[a 7→ w]. The same notation is adopted for
register files and flags register access and update. Assumptions
of the form s ` name(a, a′) model the enforcement of the
PMA access control policy; their names are self-explanatory.
For example, s ` writeAllowed(n, n′) tells if an address n′ can
be written from another address n and s ` validJump(a, a′)
tells if address a′ is executable (x) from address a. p `
currentModule(s, s) tells whether the program counter p is
in a specific module whose descriptor is s where s is within
s. Instruction jmp is the only instruction that can perform
cross-module jumps (Rule Eval-jmp). When a cross-module
jump is performed, the PMA architecture inserts the id of
the caller in register r0. This functionality is called caller-
callee authentication; some PMA implementations provide
it [12], [13] and it is achievable on Intel SGX by means of
the EREPORT instruction [30]. Whenever the execution of
an instruction violates the PMA access control policy (e.g.,
jumping to a module address that is not an entry point), the
execution is terminated.

5) Contextual Equivalence for AIL: Analogously to JEM,
to reason about AIL components we define when they are
contextually equivalent. Contexts P are partial programs with a
hole ([·]) that can be filled with a component in order to create



a whole program, formally P ::= P [·]. Plugging a component
P in a context P, denoted as P[P ], returns a whole program
P+P , given that P _P.

Contextual equivalence for languages with oracles relies on
a notion of contextual preorder [31] which is needed to ensure
obvious equivalences are satisfied (Example 1).

Example 1 (Need for preorders). Consider a module Pn2 that
generates two nonces and returns only one and another one
Pn1 that generates and returns one nonce only. These pro-
grams are intuitively equivalent, but a contextual equivalence
definition analogous to that for JEM simply does not yield this
fact because we cannot quantify over all oracles and use the
same oracle for both programs. Given that Pn1 runs with an
oracle h1, Pn2 has the same behaviour if it runs with an oracle
h2 that has all elements of h1 interleaved with fresh elements.
Dually, given that Pn2 runs with an oracle h2, Pn2 has the
same behaviour if it runs with an oracle h1 that has only the
even-numbered elements of h2. �

Definition 2 (Contextual preorder for AIL). P1
<∼P2 ,

∀P, h1,∃h2.P[P1], h1⇑ ⇒ P[P2], h2⇑, where P[P ], h indicates
the initial state of P+P with oracle h.

Definition 3 (Contextual equivalence for AIL). P1'ctx P2 ,
P1

<∼P2 and P2
<∼P1.

III. SECURITY PITFALLS

This section describes the threat model considered in this
paper (Section III-A) and the security pitfalls that arise when
linking is explicitly considered (Section III-B).

A. The Threat Model

The goal of this section is to familiarise the reader with the
security aspects of secure compilation that are relevant for this
paper. We do not provide an in-depth analysis of these aspects
as they are not the focus of this paper, though we believe these
insights can be helpful for many readers.

Secure compilation papers generally consider a threat model
for an attacker with target-level code injection capabilities that
operates, for example, by exploiting a bug in the system and
injecting or loading arbitrary target programs. His goal is to
violate the security properties of compiled programs found in
the system. Specifically, in this paper we consider an attacker
that can load arbitrary malicious code.

In this paper, the system is the von Neumann machine
formalised by the AIL language, where multiple protected
modules are found. The compiled programs that the attacker
wants to violate span some of the protected modules, as
explained in Section I; their security properties must not be
violated. The attacker is modelled as code (and data) that spans
unprotected memory as well as other protected modules; thus
the attacker is modelled as an AIL context. This attacker can
interact with any of the compiled programs whose security
is of interest in any way that the assembly language (and the
PMA access control policy) allow him. Thus, the attacker must
respect the processor-enforced PMA access control policy and,
most importantly, he cannot tamper with it.

We are interested in program security properties that can be
expressed by means of contextual equivalence; some examples
include confidentiality and integrity. A value is confidential
if it cannot be discerned by other components than the one
declaring it. In other words, a value v in a component C
is confidential if C is contextually-equivalent to C′ which is
C with a different value for v. Integrity of a value means
that it cannot be modified by other components than the one
declaring it. In other words, a value v in a component C has
integrity if C is contextually-equivalent to C′ which is C where
every interaction with other component is followed by a check
that the value of v is the same as before the interaction.

The goal of the paper is to provide a compiler J · KJEMAIL

that produces secure AIL modules. Thus, J · KJEMAIL takes JEM
components that possibly has some security properties and
outputs AIL modules that has the same security properties. If
this holds, then the attacker’s goal is nullified.

As compiler full-abstraction is preservation and reflection
of contextual equivalence, proving J · KJEMAIL to be fully-abstract
implies that J · KJEMAIL is secure.

B. Security Problems Related to Linking

Problems 1 to 4 are full-abstraction violations that arise in
the presence of linking. Any full-abstraction violation can be
lead back to confidentiality or integrity violations.

Problem 1 (Object id guessing). Consider an object allocated
at address a in module M1 and that is only shared between
two modules M1 and M2. As object ids are just addresses in
memory, nothing prevents another module M3 to guess address
a and call methods on it. Note however, that this violates the
intended confidentiality of a, that is supposed to be visible
only to M1 and M2.

A naïve solution to this problem is tracking which module
will receive a certain object id in order to detect and stop
guesses from modules that have not received that object id.
However, this does not scale to the case where M2 forwards
a to M3. Since the forwarding is done outside of M1, M1

has no way of adding M3 to the modules that are allowed
to access a. As this may not be known statically, a different
solution is needed.

To address this concern, target-level object ids must be
unguessable. �

Problem 2 (Call stack shortcutting). As all assembly lan-
guages, AIL calls and returns are jumps to addresses in
memory. Consider the following sequence of cross-module
function calls: M2 → M → M1 → M ′, where primes are
used to denote subsequent calls to the same module.
M ′ can return to M2, as it learnt the address to return

there when M2 called it. However, that instruction bypasses
the rest of the call stack and particularly M1 in a way that is
not possible in the source language, where control flow follows
a well-bracketed sequence of calls/returns.

To address this concern, securely compiled code must ensure
a well-bracketed traversal of the stack. �



Problem 3 (Types of objects in other modules). Consider an
object of type t′ allocated at address a in module M1 and
a method m compiled in a different module M2 that takes
a parameter of type t. t and t′ are different. A third module
M3 could pass a as an argument to the compilation of m,
violating the JEM assumption that only well-typed programs
are executed. A dynamic check on the type of a should be
made, but the code of m resides in M2 and it has no way to
access a, which resides in module M1.

To address this concern, dynamic typechecks must be made
on all objects that are passed and received via methods and the
encoding of the class of an object must be accessible outside
of the module containing the object. �

Problem 4 (Existence of objects in other modules). Analo-
gously, to Problem 3, in place of an object of the wrong type,
M3 code can call the compilation of m by passing a non-
existent object id. A non-existent object id is a non-null object
id that does not point to an object, so that calling methods on
it will fail.

To address this concern, when securely compiled code
receives an object from another module, it must assess whether
that object exists or not. �

IV. A SECURE COMPILER FROM JEM TO AIL

J · KJEMAIL is a modular, two-step compiler that inputs a JEM
class C and returns two AIL modules. Formally:

JCKJEMAIL = protect((|C|))+JSysKJEMAIL .

J · KJEMAIL consists of a call to the (| · |) function (Section IV-A),
followed by a call to the protect( · ) one (Section IV-C).
The result is joined with an additional module JSysKJEMAIL

(Section IV-B).
Intuitively, (| · |) is a compiler responsible for correctly trans-

lating classes, methods and objects to assembly. protect( · )
is a wrapper around the code generated by (| · |) that prevents
direct access to that code and ensures that any interaction
with that code is regulated to behave as valid JEM code.
This wrapping ensures that the output of J · KJEMAIL is secure.
JSysKJEMAIL is a central, trusted module that operates as a
monitor, regulating the structure of function calls and keeping
information of allocated objects.
J ·KJEMAIL is modular, i.e., it can be applied to JEM components

C. In this case J · KJEMAIL recursively calls itself on all classes
composing the JEM component. The secure linker link( · )
combines all compiled components to a low-level component
(Section IV-D). Formally:

JC1; · · · ;CnK
JEM
AIL = link(JC1K

JEM
AIL , · · · , JCnK

JEM
AIL )

The overall structure of the compiler proposed in this paper
is similar to the one for a single-module version of PMA [4],
but two important extensions are needed to handle the issues
(Items 1 and 2) mentioned in Section I:

1) we introduce a small centralized trusted module
JSysKJEMAIL that keeps information about the global con-
trol flow of the program, and about types of objects

shared between multiple modules. A key challenge is to
design this module such that the information it exposes
does not break full abstraction (Section IV-B).

2) we introduce unforgeable object references. Since we
do not want to assume hardware support for this (as
is done for instance in capability machines), we solve
this by assuming the existence of a secure random
number generator that can create unguessable random
numbers (nonces) that are sufficiently large to make
brute-force attacks infeasible (as achievable via the
rdrand instruction of intel processors [32]). We model
these nonces symbolically (i.e., π) and use them to
represent references to objects outside of the module
where the object is defined (Section IV-C1).

A. The First Step: (| · |)
(| · |) is a compiler that translates a single JEM class to AIL

code, data and a symbol table. Instead of giving a specific
instance of (| · |), we define what assumptions (Assumption 1,
2 and 4) such a compiler must uphold for the full-abstraction
result to hold. The full-abstraction result is achieved paramet-
rically for any (| · |) that upholds those assumptions.

Assumption 1 (Output of (|·|)). The compilation of a JEM class
returns a memory mc providing code implementing methods
M , a memory md providing data implementing objects O and
a symbol table t. t contains exported and required methods and
objects bindings sorted lexicographically by class and then
method or object name [4].

The produced code and data implement a class-local stack
that is used to perform calls and returns between methods.

(|·|) is multi-entry i.e., it exports an address for each method
that can be called. (| · |) is single-exit i.e., all jumps outside the
code are performed by a common piece of code located in a
known part of the produced code: mexit. (| · |) expects the ad-
dress where instanceof is implemented to be supplied later,
so a call to instanceof is compiled to symbols (ιinst, σinst)
which capture both parts of the address where instanceof
is. This is captured by the required bindings with a binding
of the form instanceof : Obj(Obj, Obj)Bool 7→ (ιinst, σinst)
which must be in t.
JEM object ids o are compiled to numbers n that point to a

memory region with type information and fields.
Formally: (|import I;X; class c{K Ft M};O|) = (mc +

mexit +minst;md; t).

We overload the (| · |) notation and use it to indicate values
as are compiled by (| · |). Indicate the compilation of unit as
(|unit|) and the compilation of true as (|true|). Analogously,
indicate the encoding of JEM types t in AIL as (|t|). For example,
indicate the encoding of Unit as (|Unit|) and the encoding of
a class type c as a natural number (|c|) = n.

Assumption 2 (Calling convention of (|·|)). Registers are used
according to the following calling convention. r0 is used by
caller-callee authentication to store the caller module id. r1
to r4 are used as general working registers, so they do not



contain relevant information. r5 identifies the return address
in a jmp that models a method call; if r5 is 1, then that
jmp is interpreted as a return. r6 identifies the current object
(this) in a target-level method call or the returned value in
a target-level return. r7 onwards are used to communicate
method parameters.

Assumption 3 (Restrictions of (| · |)). Compiled components
do not use the exit E expression. Addiitonally, they do not
read nor write to unprotected memory.

Assumption 4 (Correctness of (| · |)). (| · |) must be correct and
adequate, i.e., it translates any JEM expressions and values
into AIL code that behaves in the same way [33], [34], [35].

B. The System Module: JSysKJEMAIL

The system module JSysKJEMAIL is a central, trusted module
that provides functionality used by all securely-compiled com-
ponents. JSysKJEMAIL contains: a global store G (Section IV-B1),
a global call stack S (Section IV-B2) and functionality to in-
teract with G and S (Section IV-B3); its definition is provided
last (Section IV-B4).

In the following, when code aborts we mean that all
registers and flags are reset, then halt is executed.

1) The Global Store G: G tracks globally-known object ids
(i.e., ids that are not just local to a module), their type and the
module id where the object resides. Formally G = w 7→ w′, id,
where w is an object id and w′ is a class encoding. Retrieval
from G is denoted with G(w) and addition to it is denoted
with G + (w 7→ w′, id).
JSysKJEMAIL provides two entry points where the fol-

lowing procedures are implemented: testObj(w,w′) and
registerObj(w,w′). The former tells if an object w exists
and implements a certain class w′. The latter adds a new
binding to G, the new binding is added for the module whose
id is in r(r0), i.e., for the module that calls registerObj( · ).
Parameters w and w′ for these procedures are expected re-
spectively in registers r7 and r8.

testObj(w,w′)
if w /∈ dom(G) then abort
if G(w) ≡ (w′, _) then

return 0
else return 1

registerObj(w,w′)
if w ∈ dom(G) then abort
G + w 7→ w′, r(r0)
return 0

2) The Global Call Stack S: S tracks all AIL-level function
calls. Formally, S = (a).
JSysKJEMAIL provides the following procedures implemented

at entry points: forwardCall() and forwardReturn().
Both procedures use the following helper functions:
resetFlags( · ) sets flags to 0, resetRegisters( · ) in-
puts the registers that need to be reset to 0 and
resetRegistersExcept( · ) inputs the registers that need not
be reset to 0.
forwardCall() reads an address from r3 and r4 and

forwards the call there. Before forwarding, it stores in S the
addess where to return as passed via registers r0 and r5.
In order to ensure a correct return, the procedure stores the

address of the entry point for forwardReturn() (i.e., 3∗Nw)
in r5. Since the caller id is placed in r0 by the caller-callee
authentication mechanism of PMA, it cannot be tampered
with. This procedure aborts if the module jumping here is
the one that jumped here last (if any) or if the address where
the call is forwarded is inside JSysKJEMAIL .

forwardCall()
If S 6= ∅

Let S = (id, _);S ′
if r(r0) == id then abort

if r(r3) == 1 then abort
Push (r(r0), r(r5)) on S
Set r5 to 3 ∗ Nw

resetFlags()
resetRegisters(r0, r1, r2)
jmp r3 r4

forwardReturn() pops the head of the stack and returns
there, setting r5 to 1 as expected in the case for returns. If
the call stack is empty, it aborts to prevent returning when no
code was called. If the id of the caller module stored on S is
different from the id of the module jumping to this procedure,
it aborts, as it detects a non-well-bracketed execution flow.

forwardReturn()
If S = ∅ then abort
Pop (id,n) from S into r2 and r1
if id 6= r(r0) then abort
Set r5 to 1;
resetFlags()
resetRegistersExcept(r1, r2, r5, r6)
jmp r1 r2 // i.e., jump to address (id,n)

The calling convention is updated as follows: calls to
different modules must go via JSysKJEMAIL , with registers r3
and r4 set to the method that needed to be called. Both these
procedures do not use registers r6 onwards, so they do not
alter the calling convention regarding parameters and returned
values.

3) Functionality of JSysKJEMAIL : The addition of JSysKJEMAIL

may seem to violate full abstraction as it provides target-level
functionality that are not available in JEM [1]. Let us now see
why this is not the case.

Procedure testObj( · ) is analogous to the instanceof
expression in JEM. This procedure aborts when the object id
parameter is not registered in G i.e., an ill-formed execution
of instanceof. Aborting in this case lets JSysKJEMAIL prevent
object id guessing (Problem 1).

Procedure registerObj( · ) is analogous to object creation.
This procedure aborts when the object id is already registered;
aborting in this case ensures that object ids are globally unique.

Procedure forwardCall( · ) is analogous to performing a
function call. This procedure aborts when the same module
performs two calls in a row without there being a return
in between or if it performs a call to JSysKJEMAIL as those
behaviours are not available in JEM.

Procedure forwardReturn( · ) is analogous to returning
from a function call. This procedure aborts when a return is



not made by the module who was called last. This enforces
well-bracketed control flow, preventing Problem 2 as well as
external code returning when no method was called.

All the procedures implemented in JSysKJEMAIL add func-
tionality in AIL that is already available in JEM, so adding
JSysKJEMAIL when linking AIL components does not violate full-
abstraction.

4) JSysKJEMAIL Definition: Assume the functions provided by
JSysKJEMAIL span memory m, whose size is n addresses. Let
the data needed by these functions plus the initialisation of G
and S span memory m′. JSysKJEMAIL is always compiled to a
module with id 1 (since 0 is the id of unprotected code) and
it is defined as follows:

(m+m′; (1, n, 4);EMto, EMro, EMrc, EMtr; ∅; ∅; ∅)

JSysKJEMAIL exports a method binding for each procedure it
defines; it has no exported object bindings and no required
bindings.
• EMto = testObj : Obj(Obj, Obj)Bool 7→ (1, 0)
• EMro = registerObj : Obj(Obj, Obj)Unit 7→ (1,Nw)
• EMrc = forwardCall : Obj(·)Unit 7→ (1, 2 ∗ Nw)
• EMtr = forwardReturn : Obj(·)Unit 7→ (1, 3 ∗ Nw)

J · KJEMAIL knows the offset of all procedures defined in
JSysKJEMAIL , so it can perform calls to them. For example a
call to registerObj( · ) is a jmp rd ri where r(rd) 7→ Nw

and r(ri) 7→ 1.

C. The Second Step: protect( · )
The protect( · ) function is a wrapper that takes the

memory generated by (| · |) and adds checks to it, making it
secure. This section first presents the required helper func-
tions to compile JEM features: dynamic memory allocation
(Section IV-C1), function calls (Section IV-C2) and outcalls
(Section IV-C3). The definition of protect( · ) is provided
last (Section IV-C4).

1) Dynamic memory allocation: Dynamic memory alloca-
tion is the creation of objects at runtime via the new expression
in JEM. The representation of an object id within a compiled
component does not change. To ensure security of object ids
when communicated between AIL modules, object ids are no
longer just an address in memory, they are symbolic nonces.
The latter are called cross-module object ids and they are
denoted with JoKJEMAIL . Formally: JoKJEMAIL = π. Symbolic nonces
cannot be forged nor guessed, so the format of cross-module
object ids addresses Problem 1. Cross-module object ids being
a symbolic nonce instead of an address does not disrupt the
functionality of compiled JEM code, which functions in the
same way as before.

To relate cross-module and internal object ids within a mod-
ule, masking tables are used [4]. A masking table, indicated
with T , is a bidirectional hash map between internal object
id representations and cross-module ones; each module has
its own masking table. Formally T ::= w 7→ π. Before an
(internal) object id w is first passed to external code, it is
placed in the table. This process is called masking, thus the
passed id π is called the mask. Denote the retrieval of a mask

π with T (π) and the retrieval of an internal object id w
with T (w). Any retrieval causes abortion if the element to
be retrieved is not in T . Adding an internal object id w to a
table T is denoted with T +w; the binding w 7→ π, where π
is fresh, is added to T .

Next are the functions used to manage masking tables.
A compiled component must store the encoding of the

class it contains for helper functions to rely on. Function
classOf(n) returns the encoding of the class implemented
by the object compiled at address n in the current module.
Function isInternal(w) takes a class type encoding and
returns true if the current module implements that class.

Function updateMaskingTable(w, n) inputs a pair of an
internal object id and a class type encoding. This function
is invoked before releasing an object to external code to add
the id of freshly-allocated object to the masking table. This
function retrieves the class of the object and then checks if that
object id is already in the masking table; if not, it adds the id to
the table and registers its cross-module id globally. Retrieving
the class object may be necessary, as some arguments may
have formal type Obj. A crucial part of this function is the
call to registerObj(T (w), n′), which makes the information
that object w, with cross-module id T (w), implements class
n′ globally available via JSysKJEMAIL .

updateMaskingTable(w, n)
if n is a class type encoding then

let n′ = classOf(w)
if isInternal(n′) and if w /∈ dom(T ) then
T +w ; registerObj(T (w), n′)

Function loadObjects( · ) loads the internal object ids of
the masking indexes that are passed as input into the related
register.

loadObjects(π1, · · · , πn)
∀i ∈ 1..k r(ri) 7→ T (πi)

Function maskingTable(EO) creates the masking table for
all exported objects bindings listed in EO.

maskingTable(o1 : c1 7→ n1, · · · , ok : ck 7→ nk) = T
∀i ∈ 1..k let wi = new r0 T = n1 7→ w1, · · · , nk 7→ wk

2) Function calls: Function calls are calls from outside to
within a compiled module. The PMA access control policy
ensures that these calls can only be calls to entry points.
Therefore, an entry point is created for all methods [4].
Function methodEP(Mt, n) creates the code to be placed at a
method entry point for a method with signature Mt whose
implementation is located at address (id, n) in the current
module with id id. Following is the pseudo-code of method
entry points; notation n 7→ code means that n is the address
where code is located.

Upon jumping to an entry point, a check is made that the
jump comes from the JSysKJEMAIL module and that the return
address is the forwardReturn( · ) address (i.e., 3 ∗ Nw in a
module whose id is 1). If this is not the case, execution is



methodEP(t(t1, · · · , tk)→ t′, n) =
If r(r0) 6= 1 or r(r5) 6= 3 ∗ Nw then abort
loadObjects(r(r6), r(r7), · · · , r(r6+k))
dynamicTypechecks(r(r6), (|t|))
for i = 1 to k
dynamicTypechecks(r(r6+i), (|ti|))

n′ 7→ Set r5 to n′ + 1 and jump to module-local address n
updateMaskingTable(r(r6), (|t′|))
maskObjectId(6)
Set r5 to 1 and jmp to the address (1,3*Nw)

aborted as some code is trying to bypass JSysKJEMAIL . All data
needed for this check is known statically Then, masked object
ids are loaded via function loadObjects( · ). Only parameters
of object type are loaded; if a parameter could not be loaded,
the execution is aborted. Once the objects are loaded, dynamic
typechecks are made via function dynamicTypechecks( · )
(explained below). These checks are located inside the module
where class t is compiled, so checking that the current object
(r6) is of type (|t|) is equivalent to checking that the current
object implements the current method. Then the code jumps
to the method body located at address n setting r5 to the
address where that code must return. There, current argu-
ments are placed on the module-local stack alongside other
information required by function activation records. When the
method body returns (to address n′ + 1), the masking table is
(possibly) updated with the value to be returned (in r6) via
function updateMaskingTable( · ) and internal object ids in
registers are masked via function maskObjectId( · ).

Let us now provide details about the auxiliary functions.
dynamicTypechecks( · ) ensures that each parameter in-

habits its type. Unit-typed values are checked to be (|unit|)
and Bool-typed ones are checked to be either (|true|) or
(|false|) [4], [7]. Objects are dynamically typechecked by
means of the testObj( · ) function (as discussed in Sec-
tion IV-B). If any check fails, the execution is aborted. By
checking the existence and types of all parameters, securely
compiled code is resilient to Problems 3 and 4.

dynamicTypechecks(w, n)
if n ≡ (|Unit|) then if w 6= (|unit|) then abort
if n ≡ (|Bool|) then if w 6= (|true|) and w 6= (|false|) then abort
if n is a class type and w 6= (|null|) then

if testObj(w, n) == 1 then abort

Function maskObjectId( · ) inputs the index of the register
to mask and loads a cross-module object id there.

maskObjectId(n)
r(rn) 7→ T (r(rn))

3) Outcalls: Outcalls are the dual of function calls, i.e.,
they are calls from within to outside a module. To allow
returning from outcalls, a specific entry point must be created:
the return entry point [4].

Function preamble( · ) returns what all code must execute
before making an outcall, function returnEP( · ) returns the
code m to be placed at the return entry point.

preamble() =
Let a be the address where the external method is; a ≡ (id, w)
signatureOf(a) = (|t|)((|t1|), · · · , (|tn|))→ (|t′|)
storeData(r(r6), (|t′|), r(r5))
for i = 1 to n
updateMaskingTable(r(r6+i), (|ti|))
maskObjectId(6 + i)

resetRegistersExcept(r0, · · · , r6+n)
Set r(r3) to id and r(r4) to w
Call forwardCall( · )

The preamble code is executed before jumping to an
external method located at address a, assume this address
is communicated via registers r0 and r1. Compiled code
will execute the preamble( · ) before jumping outside to
ensure the right checks are made. signatureOf( · ) is used
to determine the signature of the compiled method related
to a. All method signatures are known statically so their
signature encoding can be stored in a table mapping addresses
to signature encodings; the table is placed in the data section
of the module. This data is communicated to protect( · )
via the required method bindings RM returned by (| · |).
preamble() then calls to storeData( · ), which stores the
current object r6, the expected return type (|t′|), and where
to resume the execution after the outcall, an address that is
assumed to be passed in r5. For any parameter, the masking
table is updated with any possible newly created object via
function updateMaskingTable( · ) and their ids are masked
with function maskObjectId( · ). Then, registers that are not
used to convey parameters nor the address where to jump
are reset to 0 by function resetRegistersExcept( · ) in
order not to leak information (JSysKJEMAIL will erase unused
registers with index less than 6). This ensures that r5 contains
0, so JSysKJEMAIL will return to the return entry point located at
address 0 when forwarding the return after this call. Finally the
code sets r3 and r4 as expected by JSysKJEMAIL , then it jumps
to the proxy function for method calls: forwardCall().

returnEP() =
0 7→ If r(r0) 6= 1 then abort

loadData() // access wo, (|t′|), n′
loadObjects(r(r6))
dynamicTypechecks(r(r6), (|t′|))
Resume execution from address n′ with current object wo

When a return is made, if the module returning is not
JSysKJEMAIL (i.e., a module with id 1), then the code aborts,
as some code is trying to bypass JSysKJEMAIL . Then, the current
object wo, the expected return type (|t|) and the address where
to resume execution n′ are loaded from the module-local stack
via function loadData( · ) into registers r7 onwards (since
these registers are unused). Finally, the returned value r6 is
checked to be of the expected type. Execution aborts if any
check fails, otherwise it resumes within the module with the
loaded current object.

4) The protect( · ) function: protect( · ) is formalised
in Rule protect( · ) definition.

To ensure that the compiler is correct, protect( · ) needs



to provide an implementation of instanceof, addressing
Problem 5 below.

Problem 5 (Using instanceof). Consider a module M that
contains object o implementing class c. Another module M1

executes the following code: instanceof(o : c). In order to
tell if the test succeeds or not, the code of M1 must know the
class of o. However, with the strong encapsulation provided
by PMA, that information resides in the memory of M , which
is not accessible by M1. �

To correctly implement cross-module instanceof, the class
of an object needs to be publicly known, which is a function-
ality provided by JSysKJEMAIL . When calling instanceof on
an object whose type is implemented in another module, it
suffices to call testObj( · ) to know if the test succeeds or
not. To ensure this happens, the required method binding for
instanceof is replaced with a method binding for the same
symbols to testObj( · ). Linking to JSysKJEMAIL will ensure that
those symbols are replaced with the address of testObj( · ).

(protect( · ) definition)
(|C|) = (mc +mexit;md;EM ;EO;RM +RMi;RO)
EM = m1 :Mt1 7→ (id, n1), · · · ,mk :Mtk 7→ (id, nk)

EM ′ = m1 :Mt1 7→ a1, · · · ,mk :Mtk 7→ ak
EO = o1 : c1 7→ n′′1 , · · · , oj : cj 7→ n′′j

EO′ = o1 : c1 7→ T (n′′1 ), · · · , oj : cj 7→ T (n′′j )
RMi = instanceof : Obj(Obj, Obj)Bool 7→ (ιinst, σinst)
RM ′i = testObject : Obj(Obj, Obj)Bool 7→ (ιinst, σinst)
s = (id, n′, k + 1) maskingTable(EO) = T
mm = implementationOf(T ) mr = returnEP()
mce = extraCode() mde = extraData()

∀i ∈ 1..k ai = (id, i · Nw) mi = methodEP(Mti, ni)
m′exit = append(mexit, preamble( · ))

mcode = m1 + · · ·+mk +mr +mc +m′exit +mce

n′ = |mcode| m = mcode +md +mde +mm

protect((|C|)) = m; s;EM ′;EO′;RM +RM ′i ;RO

protect( · ) calculates the memory layout s based
on the functionality listed in EM . The memory cre-
ated by protect( · ) contains the following functionality.
Each method exported to external code is given an en-
try point with code created with the methodEP( · ) func-
tion. Function returnEP( · ) yields memory mr for the
return entry point. The code section of m is com-
pleted with the extraCode( · ), containing the implemen-
tation of all the helper functions described above (e.g.,
dynamicTypechecks( · ), resetFlagsAndRegs( · ) etc.) and
with mc, the code generated by (| · |). Additionally, the code
section appends the preamble( · ) procedure at the exit-point
code provided by (| · |) to ensure that it is always executed
before exiting the module. After the code section, m contains
extraData( · ), i.e., all the data needed by the helper functions
(e.g., the encodings of method signatures and of types) and by
md, the data generated by (|·|). Finally the data section contains
the masking table mm, which is obtained with function
maskingTable( · ); as memories are infinite, the data section
of a module has no boundaries.

What protect( · ) returns exports the same methods and
objects as (| · |). The former are bound to entry points and the
latter have their ids masked.

D. The Secure Linker: link( · )
This section presents function link( · ), which inputs and

returns AIL modules; it is formalised as follows:

link(P , P ′) = M1 ] · · · ]Mn ]M ′1 ] · · · ]M ′m
where P ≡M1 ] · · · ]Mn

and P ′ ≡M ′1 ] · · · ]M ′m

Modules Mi are obtained through calls to J · KJEMAIL , they all are
a pair of a compiled JEM class and an instance of JSysKJEMAIL .
Informally, the ] operator does the following:
• it performs AIL-level joining of modules (+, presented

in Section II-B2) ensuring that only one occurrence of
JSysKJEMAIL is present in the resulting component;

• it initialises the resulting JSysKJEMAIL table G with all
exported object bindings for all Mi, so that static objects
are registered in G.

V. DISCUSSION

This section presents how to extend J · KJEMAIL to a source
language supporting object-orientation (Section V-A) and how
to support multi-register data (Section V-B).

A. Supporting Object-Orientation

JEM can be made object-oriented by adding support for in-
terfaces, inheritance and dynamic dispatch. We suggest doing
this by adding interfaces to JEM, making class types private to a
component and only using interface types in the types of cross-
component method calls and returns [4], [36]. Since different
JEM components can implement the same interface, a number
of concerns arise. Nevertheless, we believe the concerns can be
adequately addressed and this section also describes a possible
change to our compiler which we believe is a way to solve
the concerns.

Problem 6 (Module id at the target level). Consider two
modules M1 and M2 containing the compilation of two classes
that implements the same interface i. Code in another module
M could input objects of that interface. However, M cannot
be sure of where the object id is located unless it indicates
its module id. In fact, all that M knowns when receiving an
argument is the type i, but both M1 and M2 implement it. �

To address Problem 6, cross-module object ids need to state
the module id where they reside; formally JoKJEMAIL = π, id.
Unless AIL is extended to merge this information in nonces,
object ids span multiple words (Section V-B describes how to
securely compile them).

Often, object-oriented languages implements dynamic dis-
patch as vtables that are located at the address where an object
is compiled. With PMA, M1 has no access to the vtable of o
if o is allocated in M2. The single-module version of AIL [4]



used entry points as a vtable but this does not hold when
multiple modules are considered.

Problem 7 (Dynamic dispatch). Consider two modules M1

and M2 containing the compilation of two classes implement-
ing the same interface Bank. Module M1 also implements
interface Account while module M2 also implements interface
Currency. Since methods need to be sorted alphabetically
based on their namespaces (which include interface names),
methods for Bank in M1 will have different entry points than
the same methods in M2.

A module M interacting with M1 and M2 however should
not need to know the full specification of which component
contains which interfaces, as this would defeat the purpose of
object orientation. All that M knows is that somewhere outside
its memory, interface Bank is implemented. When receiving
an object from M1 or from M2 that implements the Bank
interface, M needs to be able to calculate where to jump in
order to call methods on it. �

To address Problem 7, a single method entry point is
created at address Nw instead of an entry point per method
implemented in a component. That entry point serves as a
dynamic dispatch entry point. All cross-module method calls
update the calling convention to use r6 as a container for
the encoding of the method to be called. Formally, indicate a
method encoding as follows (|m|) = n.

When a module receives an object id of the form π, id, it
can call method m on it by jumping to address (id, 0) and
setting r6 to (|m|). Parameters and the current object are then
passed via registers r7 onwards.

The dynamic dispatch entry point must perform a new
check: r6 must be a valid method encoding. All methods
implemented in interfaces are known statically, so a module
can save this information in its memory to encode this check.
If this check succeeds, the execution continues by dispatching
to the checks for method entry points of Section IV-C.

B. Supporting Multi-Register Data

In some cases, securely-compiled code needs to commu-
nicate data that spans multiple registers. For example, the
source language could be extended to support computation
on complex numbers, or the format of object ids could
vary (as discussed in Section V-A). Communicating data that
spans multiple registers can be done by extending AIL with
cryptographic functions (either in the form of instructions, as
presented here, or as module-internal procedures).

First, all modules must have a public and a private key,
all modules know each other’s public keys but the private
one is confidential to the module [13]. Second, cryptograhic
functions for signing and verifying signatures are needed.

sign rs re rk rd Sign all registers from rs
to re with the (private)
key found in register rk
and place the result in
register rd.

verify rs re rk rd Set the ZF according
to whether the signature
found in register rd has
been created for all reg-
isters from rs to re with
the dual key of that found
in register rk.

Consider the case of multi-register object ids of Sec-
tion V-A; cross-module object ids need to be changed into
a triplet, so they span three registers. The triplet consists of:
a masking index (as in Section IV-C), a type encoding and a
signature of the two; the signature prevents Problem 8 below;
Formally: JoKJEMAIL = π, n,w.

Problem 8 (Object-id shuffling). Consider two objects o1 and
o2 residing in two modules M1 and M2 implementing two
different classes. Without signatures, those objects would have
the following cross-module object ids: Jo1K

JEM
AIL = π1, n1 and

Jo2K
JEM
AIL = π2, n2. An attacker can forge new object ids as

follows: π1, n2 and π2, n1. Another module M3 receiving the
forged objects from the attacker has no way to tell whether
they are forged by inspecting them. �

With the signature in place, the object ids of o1 and o2
change as follows: Jo1K

JEM
AIL = π1, n1, w1 and Jo2K

JEM
AIL =

π2, n2, w2. An attacker can still forge object ids by creating
π1, n2, w2, but M3 can verify the signature part of the triplet,
therefore finding out when forgery has taken place.

With this approach, some auxiliary functions need to be
changed. Function loadObjects( · ) needs to verify that the
object ids of all externally-located modules have been signed
with the proper key and that the key corresponds to the module
that implements the class n mentioned in the object id. As a
module implements a single class, the type encoding tells a
module which public key to use for the verification. Function
updateMaskingTable( · ) needs to ensure that communicated
cross-module object id are signed.

Concerning JSysKJEMAIL , registerObj( · ) is not needed and
the pseudo code inserted by protect( · ) does not call it.
Procedure testObj( · ) can be implemented locally in a
module, since due to the new cross-module object ids the type
of an object is part of its id.

VI. FULL-ABSTRACTION AND MODULARITY OF J · KJEMAIL

As stated in Section I, a compiler is fully-abstract if it
preserves and reflects contextual equivalence of source and
target components. This section briefly discusses how con-
textual equivalence is reflected (Section VI-A) and preserved
(Section VI-B) for J·KJEMAIL . Then it concludes by presenting the
proof sketch of full-abstraction and modular full-abstraction of
J · KJEMAIL (Section VI-C).



A. J · KJEMAIL Reflects Contextual Equivalence

Proving that J · KJEMAIL reflects contextual equivalence (Theo-
rem 1) is analogous to proving that it is correct and adequate.

Theorem 1 (J · KJEMAIL preserves behaviour).
∀C1, C2.JC1KJEMAIL 'ctx JC2KJEMAIL ⇒ C1'ctx C2.

Intuitively, given Assumption 4, this holds because neither
protect( · ) nor the addition of JSysKJEMAIL change the seman-
tics of compiled programs.

B. J · KJEMAIL Preserves Contextual Equivalence

Proving that J·KJEMAIL preserves contextual equivalence (Theo-
rem 2) is analogous to proving that J·KJEMAIL is secure. Theorem 2
intuitively states that JEM abstractions are preserved in the AIL

output J · KJEMAIL produces.

Theorem 2 (J · KJEMAIL is secure). ∀C1, C2.C1'ctx C2 ⇒
JC1KJEMAIL 'ctx JC2KJEMAIL .

For Theorem 2 we proceed as follows. First, we devise a
notion of trace equivalence T

= for securely-compiled compo-
nents; this is a slight adaptation of a similar trace semantics
for the single-module version of AIL [24]. Intuitively the trace
semantics describes the behaviour of a set of modules with sets
of traces, i.e., concatenation of actions such as call and return.
Most importantly, trace semantics lets us disregard contexts
when reasoning about modules behaviour. We assume that T

=
is equivalent to 'ctx , so the two notions can be exchanged.

Assumption 5 (Trace semantics coincides with contex-
tual equivalence for securely compiled JEM components).
∀C1, C2.JC1KJEMAIL 'ctx JC2KJEMAIL ⇐⇒ JC1KJEMAIL

T
= JC2KJEMAIL .

Then we re-state Theorem 2 in contrapositive form:

∀C1, C2.JC1KJEMAIL
T
=/ JC2KJEMAIL ⇒ C1 6'ctx C2

To achieve C1 6'ctx C2 we need to show (by negating Defini-
tion 1) that there exist a context that, wlog, terminates with
C1 and diverges with C2. This context is said to differentiate
between C1 and C2. For this, we devise an algorithm 〈〈·〉〉
that can always generate such a differentiating context given
two JEM components whose compiled counterparts are trace-
inequivalent [4], [24], [37]. Since 〈〈·〉〉 is sketched to be correct
(Theorem 3), we can use it to witness that two JEM components
are contextually-inequivalent if their compiled counterparts are
trace-inequivalent.

Theorem 3 (Algorithm correctness). ∀C1, C2, αα1 ∈
TracesAIL(JC1KJEMAIL ), αα2 ∈ TracesAIL(JC2KJEMAIL ), α1 6= α2,
〈〈C1, C2, αα1, αα2〉〉 = C such that C[C1]⇑ ⇐⇒/ C[C2]⇑.

C. Full-Abstraction and Modularity

By the theorems of Sections VI-A and VI-B, J · KJEMAIL is
fully-abstract (Theorem 4).

Theorem 4 (J · KJEMAIL is fully-abstract). ∀C1, C2.
C1'ctx C2 ⇐⇒ JC1KJEMAIL 'ctx JC2KJEMAIL .

The novel result we are after for J · KJEMAIL is modular
full-abstraction, i.e. components can be compiled separately
and linked together afterwards without compromising security.
Indicate the linking of two AIL components P1 and P2 as
link(P1, P2). This definition is derived from Ahmed’s defini-
tion of horizontal compiler compositionality [38]; it states that
we can create source-level components by joining an arbitrary
number of them and by compiling them individually and
then linking the result. Additionally, we prove this result for
arbitrary target-level components P and P ′ that are equivalent
to securely-compiled ones. P and P ′ can be seen as hand-
optimised versions of C2 and C4 that respect the behaviour
imposed by J · KJEMAIL . Formally, we have that Corollary 1 is a
corollary of Theorem 4.

Corollary 1 (Modular full-abstrac-
tion). ∀C1, C2, C3, C4. ∀P .JC2KJEMAIL 'ctx P ,

∀P ′.JC4KJEMAIL 'ctx P
′, C1; C2'ctx C3; C4 ⇐⇒

link(JC1KJEMAIL , P )'ctx link(JC3KJEMAIL , P
′).

The companion technical report [20] contains proofs
sketches for Theorem 1 based on Assumption 2, for Theorem 2
based on Assumption 5, Theorems 3 and 4 as well as proofs for
Corollary 1 (and for related helper lemmas). The assumption
that T

= is equivalent to 'ctx is left to prove for future work.

VII. RELATED WORK

Secure compilation through full-abstraction was pioneered
by Abadi [1] and successfully applied to many different
settings [2], [3], [4], [5], [6], [7], [10], [11]. Parrow proved
which conditions must hold in source and target languages to
provide a fully-abstract compiler between the two [23]. Gorla
and Nestmann concluded that full-abstraction is meaningful
when it entails properties like security [22].

A large body of research provided secure compilers for a
variety of languages with different language features. Three
works are closely related to the present one. The first one is
the fully-abstract compilation scheme of single-module code
to single-module PMA of Patrignani et al. [4], where linking
is not explicitly considered. The second one is the secure
compiler targeting an extension of the PUMP machine (a tag-
based assembly-level architecture that enforces micro-policies
with each instruction) [17] by Juglaret and Hritcu [18]. This
work considers a very similar source language, so it incurs
in very similar problems to what discussed here. Intuitively,
Juglaret and Hritcu use tags to create PMA-like modules
(with their local stacks) where jumps can only be done at
specific addresses. By relying on a very different architecture,
their solution differs significantly from ours. For example,
to address Problem 2, they rely on linear tags for return
addresses. Their tags also capture type information, so that
dynamic typechecks (as needed for Problem 3) are made based
on tags. As stated in Section I, the main difference between the
two works is in the architecture they target: while SGX-like
PMA is readily available, it may be a while before PUMP-like
machine hit the market. The third closest secure compilation



result is the (probabilistic) fully-abstract compiler to ASLR-
enhanced target languages, which also does not explicitly con-
sider linking [2], [3]. ASLR prevents some linking problems
(e.g., object guessing) but not all of them (e.g., call stack
shortcutting). We expect that ASLR-based secure compilation
can be made resilient to all linking related attacks by adopting
analogous countermeasures to those described in this paper.

Most secure compilation works adopt the fully-abstract
compilation notion of Abadi [1]. These works achieve security
by relying on type systems for the target language [5], [6],
[7], cryptographical primitives [8], [9], [39] and the already
mentioned ASLR [2], [3] and PMA [4]. Additionally, certain
works provide secure compilers by means of type-preserving
compilers [40], [41], [42], though they require the target
language to be well-typed. Of all these works, only Abadi et
al. [8] consider multiple modules, but in a distributed setting
rather than on a single machine, so that presents different
vulnerabilities than the ones considered in this paper.

VIII. CONCLUSION AND FUTURE WORK

This paper presented a secure compilation scheme from
JEM, an object-based imperative language to AIL, an untyped
assembly language enhanced with PMA. Because AIL ex-
plicitly deals with linking, the secure compiler developed
in this paper faces a number of threats that no previous
work considers. This paper formalised the compiler J · KJEMAIL

and explaind how it withstands these new threats. Finally, it
presented how J · KJEMAIL is fully-abstract and modular, so that
the additional threats arising from linking cannot be exploited
by a malicious attacker.

The authors foresee a number of future research trajec-
tories for this work: integrating a garbage collector with
securely compiled programs, supporting secure compilation
for concurrent programs and developing secure compilation
schemes for emerging security architectures such as capability
machines [15], [16].
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