
Secure Compilation

of Object-Oriented Components

to Untyped Machine Code

Marco Patrignani Dave Clarke
Frank Piessens

Report CW630, January 2013

Katholieke Universiteit Leuven
Department of Computer Science

Celestijnenlaan 200A – B-3001 Heverlee (Belgium)

Secure Compilation

of Object-Oriented Components

to Untyped Machine Code

Marco Patrignani Dave Clarke
Frank Piessens

Report CW630, January 2013

Department of Computer Science, K.U.Leuven

Abstract

A fully abstract compilation scheme prevents high-level code se-
curity features from being bypassed by an attacker operating at a
lower level. This paper presents a fully abstract compilation scheme
from a realistic object-oriented language with dynamic memory allo-
cation to untyped machine code. Full abstraction of the compilation
scheme relies on enhancing the low-level machine model with a fine-
grained, program counter-based memory access control mechanism.
This paper contains the outline of a formal proof of full abstraction
of the compilation scheme, guaranteeing that low- and high-level
attackers have the same power.

Secure Compilation
of Object-Oriented Components

to Untyped Machine Code

Marco Patrignani ?, Dave Clarke, and Frank Piessens

iMinds-DistriNet, Dept. Computer Science, Katholieke Universiteit Leuven
{first.last}@cs.kuleuven.be

Abstract. A fully abstract compilation scheme prevents high-level code
security features from being bypassed by an attacker operating at a lower
level. This paper presents a fully abstract compilation scheme from a
realistic object-oriented language with dynamic memory allocation to
untyped machine code. Full abstraction of the compilation scheme relies
on enhancing the low-level machine model with a fine-grained, program
counter-based memory access control mechanism. This paper contains
the outline of a formal proof of full abstraction of the compilation scheme,
guaranteeing that low- and high-level attackers have the same power.

1 Introduction

Modern high-level languages such as ML, Java or Scala offer security features
to programmers in the form of type systems, module systems, or encapsulation
primitives. These mechanisms can be used as security building blocks to with-
stand the threat of attackers acting at the high level. For the software to be
secure, attackers acting at the low level need to be considered as well. Thus
it is important that high-level security properties are preserved after the high-
level code is compiled to machine code. Such a secrecy-preserving compilation
scheme is called fully abstract [1]. An implication of such a compilation scheme
is that the power of a low-level attacker is reduced to that of a high-level one.
The notion of a fully abstract compilation scheme is well suited for expressing
the preservation of security policies through compilation, as it preserves and re-
flects contextual equivalence. Contextual equivalence is a relation between two
programs that cannot be distinguished by a third one. Security policies can be
modelled by using contextual equivalence as follows: saying that variable f of
program C is confidential is equivalent to saying that C is contextually equiv-
alent to any program C ′ that differs from C in its value for f . A fully abstract
compilation scheme does not eliminate high-level security flaws. It is, in a sense,
conservative, it introduces no more vulnerabilities to the low-level than the ones
already exploitable at the high-level.

Fully abstract compilation of modern high-level languages is hard to achieve.
Compilation of Java to JVM or of C# to the .NET framework [13] are some of the
? Marco Patrignani holds a Ph.D. fellowship from the Research Foundation Flanders (FWO).

examples where compilation is not fully abstract. Recent techniques that achieve
a fully abstract compilation rely on address space layout randomisation [2,10],
type-based invariants [4,9], and enhancing the low-level machine model with a
fine-grained program counter-based memory access control mechanism [3].

The threat model considered in this paper is that of an attacker with low-
level code execution privileges. Such an attacker can inject and execute malicious
code at machine level. That malicious code can violate the secrecy properties
of the machine code generated by the compiler if the compiler generates unsafe
code that does not preserve high-level language security features.

In order to withstand such a low-level attacker, high-level security features
must be preserved in the code generated during compilation. To this end, this pa-
per presents a fully abstract compilation scheme from a high-level object-oriented
language with dynamic memory allocation to low-level untyped machine code.
Full abstraction of the compilation scheme is achieved by enhancing the low-level
machine model with a fine-grained program counter-based memory access con-
trol mechanism inspired by existing systems [15,16,19,20]. This paper extends
the work of Agten et al. [3] in two ways: (i) it considers a high-level language with
dynamic memory allocation and (ii) it adopts a more formal and more precise
approach to the definition of the languages and in the proof of full abstraction
of the compilation scheme. The closest result to that presented here is that of
Jagadeesan et al. [10]. Instead of relying on address space layout randomisation,
the compilation scheme presented here relies on a protection mechanism that can
be implemented in hardware. This minimises software threats to attacks at the
high-level, at hardware level and side-channels attacks. This paper also adopts a
low-level model similar to a modern processor, so the compilation scheme han-
dles subtleties such as flags and registers that an implementation would have to
face. More precisely, this paper makes the following contributions:

– a secure compilation scheme from a real-world object-oriented language with
dynamic memory allocation to low-level untyped machine code;

– the outline of a formal proof of full abstraction for this compilation scheme.

A limitation of the presented work is the lack of a prototype to evaluate the per-
formance of the compilation scheme. However, as the current implementations of
low-level mechanisms are rather costly, we conjecture that the additional over-
head of the presented compiler is negligible. Another limitation is that the high-
level language could adopt more powerful language constructs; this is discussed
in Section 7.

The paper is organised as follows. Section 2 presents the high-level language.
Section 3 presents the low-level language. Section 4 presents an informal overview
of how to achieve a fully abstract compilation scheme and how to prove that
result. Section 5 describes the compilation scheme. Section 6 presents the proof
of full abstraction for the compilation scheme. Section 7 discusses extensions to
the high-level language and to the behaviour of compiled components. Section 8
discusses related work and Section 9 concludes.

2 High-Level Language

After an informal introduction, this section formally presents the high-level lan-
guage used herein: Java Jr. [12], alongside its syntax, static, dynamic and trace
semantics. Most of the concepts are taken from [12], with some corrections as to
fill the missing bits of the formalisation.

2.1 Informal Overview of Java Jr.

Java Jr. [12] is a strongly-typed, single-threaded, component-based, object-oriented
language that enforces private fields and public methods. Java Jr. supports all
the basic constructs one expects from a modern programming language, includ-
ing dynamic memory allocation. A program in Java Jr., called a component,
is a collection of sealed packages that communicate via interfaces and public
objects. Java Jr. enforces a partition of packages into import and export ones.
Import packages are analogous to the .h header file of a C program; they de-
fine interfaces and externs, which are references to external objects of unknown
implementation. Export packages define classes and objects; they provide an im-
plementation of an import package. Listing 1.1 illustrates the package system of
Java Jr. as well as its syntax.

1 package pi;
2 interface Foo {
3 public createFoo() : Foo;
4 public getCounter() : Int;
5 }
6 extern extFoo : Foo;
7
8 package pe;
9 class FooClass implements pi.Foo {

10 FooClass() { counter = 0; }
11 public createFoo() : Foo { return new pe.FooClass(); }
12 public getCounter() : Int { return counter; }
13 private counter : Int;
14 }
15 object extFoo : FooClass;

Listing 1.1: Example of the package system of Java Jr.

Listing 1.1 contains two package declarations: pi is an import package and pe is
an export package implementing pi. Object extObj allocated in pe implements
the extern with the same name defined in pi.

In Java Jr., ground values, types and operations on them are assumed to be
provided by a System package, whose name is omitted for the sake of brevity.
Since the focus of this paper is security, we will write access modifiers for methods
and fields even though the syntax of Java Jr. does not require them.

The security mechanism of Java Jr. is given by private fields, which can
be used to denote secrets. In Java Jr., classes are private to the package that
contains their declarations. Objects are allocated in the same package as the
class they instantiate. Due to this packaging system, a package can be compiled

just by having only the import packages of any package it depends on, adopting
the principle of separate compilation. As a result, formal parameters in methods
have interface types, since classes that implement those interfaces are unknown.
This leads to the discipline of “programming to an interface”. An implication of
this discipline is that cross-package object allocation is achieved through factory
methods. For example, the name of class FooClass from Listing 1.1 is not visible
from outside package pe, thus expressions of the form new pe.FooClass() cannot
be written outside pe. A limitation of the language is that classes cannot extend
other classes defined in different packages.

2.2 Syntax

Assume the presence of an infinite set of package names Pn ranged over by p, q,
class and interfaces names Cn ranged over by c, i, t, u, object names On ranged
over by o, field names Fn ranged over by f, g, h, variable names Vn ranged over
by x, y, z and method names Mn ranged over by m. Names in a package are
always pairwise distinct. Integers, unit and other ground types are considered to
be implemented in a System package, alongside operations on them. The root of
the class hierarchy is indicated with Obj. Values of the language,denoted with
v, are object identifiers p.o and ground-typed values such as Unit and natural
numbers. The syntax of Java Jr. is presented in Figure 1.

C ::= P components

P ::= {package p;D} packages

D ::= class c extends t implements t {K Ft M} declarations

| object o : t implements t {F}
| interface i extends t {Mt}
| extern o : t;

K ::= c(f : t, h : u) {super(f); this.g = h} constructors
F ::= f = v; fields
Ft ::= f : t; field types
M ::= public m(x : t) : t {return E; } methods
Mt ::= m(x : t) : t; method types

E ::= v | x | E.f | E.f = E | E.m(E) | new t(E) expressions
| (E == E?E : E) | E;E | E in p

t ::= p.c | p.i | p.c in p | p.c in ∗ | Obj types

Fig. 1: Syntax of Java Jr.

2.3 Notation

Before presenting the static semantics, we shall introduce some auxiliary func-
tions. These are taken from Java Jr. [12].

Define D1 ≡ D2 whenever two sequences of declarations are equal up to
reordering:

D1D2D3 ≡ D2D1D3

Define P 1 ≡ P 2 when two sequences of package definitions are equal up to
reordering of packages and of declarations:

P 1P 2P 3 ≡ P 2P 1P 3

{package p;D1} ≡ {package p;D2} if D1 ≡ D2

Define dom() as:

dom(P1 . . . Pn) = dom(P1) ∪ . . . ∪ dom(Pn)

dom({package p;D}) = {p.n | n ∈ dom(D)} ∪ {p}
dom(D) = {name(D)}

The domain of a list of elements is the set of elements obtained by applying the
domain function to all elements of the list.

Define name() as:

name(class c . . .) = c name(object o . . .) = o

name(interface i . . .) = i name(extern o : t;) = o

name(public m. . .) = m name(m(x : t) : t;) = m

name(f : t) = f name(f = v) = f

Use n to range over names. Define fn() as the free names of an entity, namely
its name and the names of all other syntactic categories it contains.

Define C.p as:

C.p = {package p;D} if {package p;D} ∈ C

Define C.p.n (or C.t where t ≡ p.n) as:

C.p.n = {package p;D} if {package p;D} ∈ C,D ∈ D, name(D) = n

Define C.t.superTypes as:

C.Obj.superTypes = ε

C.t.superTypes = t′, t

if C.t = {package p; class c extends t′ implements t{K Ft M}}
C.t.superTypes = t

if C.t = {package p; interface i extends t{Mt}}

A component C is acyclic when for all types t defined in C, given the super-
types of t as C.t.superTypes = t, there is no u ∈ t that is a supertype of another
supertype of t. For the remainder of the paper assume components to be acyclic.

Define the addition of components C + C ′ as:

C + ε = C

C + ({package p;D}, C ′) = (C, {package p;D}) + C ′ if p /∈ dom(C)

(C1, {package p;D}, C2) + ({package p;D′}, C ′) = (C1, {package p;D +D
′}, C2) + C ′

Define the addition of sequences of declarations D +D
′
as:

D + ε = D

D + (D,D′) = (D,D) +D
′

if name(D) /∈ dom(D)

(D1, D,D2) + (D′, D
′
) = (D1, D

′, D2) +D
′

if name(D) = name(D′)

M +M ′, Mt +M ′t , F + F ′ and Ft + F ′t are defined analgously.
Define C.t.hdrs as:

C.Obj.hdrs = ε

C.t.hdrs = C.t′.hdrs+M.hdrs

if C.t = {package p; class c extends t′ implements t{K Ft M}}
C.t.hdrs = C.t.hdrs+Mt

if C.t = {package p; interface i extends t{Mt}}

Define M.hdrs as:

public m(x : t) : t{return E; }.hdrs = m(x : t) : t;

Define t.hdrs as:

t1.hdrs+ . . .+ tn.hdrs if t = t1 . . . tn

M.hdrs is defined analogously.
Define compatibility among headers N when: if a method name occurs more

than once, it has the same signature. Formally:

m(x : t) : t;∈ N and m(y : u) : u;∈ N ⇒ t ≡ u and t ≡ u

Define C.t.flds as:

C.Obj.flds = ε

C.t.flds = C.t′.flds+ Ft

if C.t = {package p; class c extends t′ implements t{K Ft M}}

Define C.t.mths as:

C.Obj.mths = ε

C.t.mths = C.t′.mths+M

if C.t = {package p; class c extends t′ implements t{K Ft M}}

Define C.t.super as the supertype of type t in component C. Formally:

C.Obj.super = ε

C.t.super = t′

if C.t = {package p; class c extends t′ implements t{K Ft M}}

Define C.p is an export (package) if there is a n such that C.p.n = {package p;D}
where D is either a class or an object declaration. Define C.p is an import (pack-
age) if it is not an export (package).

Define C.p.exports to be the component containing all the export packages
for C, and analogously for C.p.imports.

2.4 Static Semantics

The static semantics defines typing relations based on the judgments of Figure 2.
Adopt Γ as the standard type environment that binds variables to types, where

` C : cmp well-typed component C
C ` P : pkg well-typed package P
C ` D : dec in p well-typed declaration D in package p
C ` t : type in p t is a valid type in package p
C ` c : cls in p c is a valid class in package p
C ` i : itf in p i is a valid interface in package p
C ` t <: t′ in p t is subtype of t′ in package p
C ` v : t in ∗ value v has type t in the whole component
C ` K : cnstr in p well-typed constructor K in package p
C `Mt : hdr in p.i well-typed method header Mt of interface i in package p
C `M : mth in p.c well-typed method M of class c in package p

C;Γ ` E : t in p well-typed expression E in package p

Fig. 2: Typing judgments of Java Jr.

variables cannot be repeated. Additionally, the component C is added to the
typing environment to act as a reference to the standard class table. To preserve

the encapsulation principle given by packages, types are annotated with package
names; thus an expression does not simply have type t but type t in p.

Figure 3 and Figure 4 present the typing rules as from the original Java Jr.
work [12]. They are mostly standard, except for few modifications. Modifications
were made to rules Declaration-class, Declaration-object, Declaration-interface and
Method-Types to ensure the “programming to an interface” paradigm is enforced.
Rules Expr-concat and Scope-all have been devised by the authors as they were
not presented in the original paper.

(Programs)

C ≡ P
C ` P : pkg

` C : cmp

(Packages)

C ` D : dec in p

C ` {package p;D} : pkg
(Declaration-class)

C ` t : cls in p name(K) = c C ` t : itf in ∗
C ` K : cnstr in p C `M : mth in p.c
∀u ∈ {t, t} C.u.hdrs ⊆ C.p.c.hdrs

C ` class c extends t implements t {K Ft M} : dec in p
(Declaration-object)

C ` t : cls in p C ` t <: t in p C ` t : itf in ∗
C.t.flds = {f : t

′} C ` v : t
′
in p

C ` object o : t implements t {f = v} : dec in p

(Declaration-interface)

C ` t : itf in ∗ C `Mt : hdr in p.i
∀t ∈ t C.t.hdrs ⊆ C.p.i.hdrs

C ` interface i extends t {Mt} : dec in p

(Declaration-extern)

C ` t : type in ∗
C.t.hdrs are compatible

C.p is an import

C ` extern o : t; : dec in p
(Classes)

C.t = {package p; class c extends t′ implements t {K Ft M}}}
C ` t : cls in p

(Classes-Obj)

C ` Obj : cls in p
(Interfaces)

C.t = {package p; interface i extends t {Mt}}
C ` t : itf in p

(Types-class)

C ` t : cls in p
C ` t : type in p

(Types-interface)

C ` t : itf in p
C ` t : type in p

(Subtype-refl)

C ` t : type in p

C ` t <: t in p

(Subtype-trans)

C ` t <: t′′ in p
C ` t′′ <: t′ in p

C ` t <: t′ in p

(Subtype-obj)

C ` t : type in p

C ` t <: Obj in p

(Subtype-def)

C ` t : type in p
t′ ∈ C.t.superTypes
C ` t <: t′ in p

(Scope-all)

C.p = {package p;D}
v /∈ fn(C \ p)
C ` v : t in p

C ` v : t in ∗

Fig. 3: Java Jr. typing rules, part one.

(Constructors)

C ` u : type in p C.c.flds = {g : u}
C.p.c.super.flds = {f ′

: t}
C ` c(f : t, h : u){super(f); this.g = h} : cnstr in p

(Method-Types)

C ` t : itf in ∗
C ` t : itf in ∗

C ` m(x : t) : t; : hdr in p

(Methods)

C;x : t, this : p.c ` E : t in p
C ` t : type in p C ` t : type in p

C ` public m(x : t) : t {return E; } : mth in p.c
(Expr-val-obj)

C.v = {package p; object o : t implements t{F}}
C;Γ ` v : t in p
(Expr-val-obj-itf)

C.v = {package p; object o : t implements t{F}} t′ ∈ t
C;Γ ` v : t′ in p

(Expr-val-extern)

C.v = {package p; extern o : t; } t ∈ t
C;Γ ` v : t in p

(Expr-var)

x : t ∈ Γ
C ` t : type in p

C;Γ ` x : t in p

(Expr-fld)

C;Γ ` E : t′ in p
f : t ∈ C.t′.flds
C;Γ ` E.f : t in p

(Expr-fldup)

C;Γ ` E : u in p
C;Γ ` E′ : t in p
f : t ∈ C.u.flds

C;Γ ` E.f = E′ : t in p

(Expr-meth)

C;Γ ` E : u in p
C;Γ ` E : t in p

m(x : t) : t ∈ C.u.hdrs
C;Γ ` E.m(E) : t in p

(Expr-new)

C ` c : cls in p
C ` E : t : in p
C ` C.p.c.flds : t

C;Γ ` new p.c(E) : p.c in p
(Expr-if)

C;Γ ` E : u in p C;Γ ` E′ : u in p
C;Γ ` ET : t in p C;Γ ` EF : t in p

C;Γ ` (E == E′?ET : EF) : t in p

(Expr-concat)

C;Γ ` E : u in p
C;Γ,E : u in p ` E′ : t in p

C;Γ ` E;E′ : t in p
(Expr-coercion)

C;Γ ` E : t in p
C ` t : type in q

C;Γ ` E in p : t in q

(Expr-subsumption)

C;Γ ` E : t in p
C ` t <: u in p

C;Γ ` E : u in p

Fig. 4: Java Jr. typing rules, part two.

Type soundness The type system enjoys the progress and preservation prop-
erties as proven in the original Java Jr. work [12].

2.5 Dynamic Semantics

The dynamic semantics is given in terms of a relation (C ` E)→ (C ′ ` E′) that
models the evolution of component C executing expression E to C ′ executing E′.
The expression that is executed is immersed in an evaluation context E, which

models the environment in which the evaluation takes place. The syntax of an
evaluation context is:

E ::= [] | E.m(E) | E.m(v,E, E) | E.f | E.f = E | v.f = E | new t(v,E, E)

| (E == E?ET : EF) | (v == E?ET : EF) | E;E | E in p

Rules for reductions of the form (C ` E) → (C ′ ` E′) are presented in
Figure 5.

(Eval-method)

C.v = {package p; object o : t implements t{F}}
public m(x : t) : t{return E; } ∈ C.t.mths

(C ` E[v.m(v)])→ (C ` E[E[v/this, v/x] in p])
(Eval-field)

C.v = {package p; object o : t implements t{F}}
f = w ∈ F

(C ` E[v.f])→ (C ` E[w])
(Eval-field-update)

C.v = {package p; object o : t implements t{F}}
(f = u;) ∈ F

C′ = C + {package p; object o : t implements t{F ′}}
F

′
= F + (f = w)

(C ` E[v.f = w])→ (C′ ` E[w])
(Eval-new)

C.p.c.flds = f : t p.o /∈ dom(C)

C′ = C + {package p; object o : p.c implements ε{f = v}}
(C ` E[new p.c(v)])→ (C′ ` E[p.o])

(Eval-coercion)

(C ` E[v in p])→ (C ` E[v])

(Eval-if-true)

(C ` E[(v == v?E : E′)])→ (C ` E[E])
(Eval-if-false)

v 6= w

(C ` E[(v == w?E : E′)])→ (C ` E[E′])

(Eval-concatenation)

(C ` E[v;E])→ (C ` E[E])

Fig. 5: Dynamic semantics of Java Jr.

2.6 Trace Semantics

As Section 4.1 presented, full abstraction between two entities is achieved by
showing contextual equivalence of the involved entities. In this case, contexts C
can be thought as components, the expression C[C] denoting the merging of two
components C, C, more details can be found in [12].

The paper presenting Java Jr. [12] establishes a full abstraction result be-
tween contextual equivalence and trace semantics, denoted TracesH(C), making
the two notions identical. Two well-typed components that have the same trace
semantics are thus also contextually equivalent. Formally:

if ` C1 : cmp and ` C2 : cmp then TracesH(C1) = TracesH(C2) ⇐⇒ C1 ' C2

Let us now define the details related to the trace semantics of Java Jr.
The trace semantics of a component C is a set of sequences of labels, actions

that can be executed by C when interacting with another unknown piece of
code. In this setting, labels are method calls and returns, possibly preceded by
a number of binders that bind names of newly introduced objects.

Labels L that define actions are presented in Figure 6 alongside the function
for calculating free names in traces, τ is the internal silent action. Decorations ?

L ::= a | τ fn(v.m(v)) = {v} ∪ {vi | vi ∈ v}
a ::= g? | g! fn(return v) = {v}
g ::= v.m(v) | return v | new(v).g fn(new(v).g) = fn(g) \ {v}

Fig. 6: Labels and free names in labels definition for the trace semantics of
Java Jr.

and ! express the “direction” of the action: from the testing environment to the
component under test or vice-versa.

Traces are sequences of a’s: visible actions that are considered the same up
to α-equivalence of newly defined names. Denote two α-equivalent traces a1, a2
as a1≡α a2. Labels of the form new(v).g act as binders for v in g.

Following are the downcasting rules for imported (C + extern v : t;) and
exported (C + object v : t;) names. These downcasting rules define how to
update objects and externs allocated inside components.

C + extern v : t; = C if C ` v : t in ∗
C + extern v : t; = C + {package p; extern o : t, t; }

if C.v = {package p; extern o : t; }
and C.t.hdrs ∪ C.t.hdrs are compatible

C + object v : t; = C if C ` v : t in ∗
C + object v : t; = C + {package p; object o : u implements t, t{F}}

if C.v = {package p; object o : u implements t{F}}
and C ` u <: t in p and t 6= ε

Notice that the downcasting rules allow ground-typed variables to be treated as
objects and externs simply via the first rule of each downcasting.

Definition 1 (High-level state). The state of a high level component C, de-
noted Σ, is defined as follows:

Σ ::= (C ` blk� E : t→ t
′
)

| (C ` E : t� E : t→ t
′
)

where E is an expression of C, blk is a marker indicating that control is outside
of C and E models the evaluation stack, every entry Ei of E having a hole of
type ti, yielding a result of type t′i.

The state Σ models whether an external testing component is executing code
(blk) or the component under test is executing (E). When blk is executing, it
may call methods of the component which is being tested: C.

The relation Σ
a

=⇒ Σ′ is defined in Figure 7, it describes the sequence of
actions a well-typed component can engage in.

The trace semantics of a component C is:

TracesH(C) = {a | (C ` blk� ε : ε)
b

=⇒ Σ and a ≡α b}

Let us conclude this section with Example 1, which provides an example of
the trace semantics.

Example 1 (Trace semantics & new labels). Consider the code presented in List-
ing 1.1, adopt C to refer to that code, the following is a trace it can generate.

(C ` blk� ε : ε)

extFoo.createFoo()?
=============⇒(C ` extFoo.createFoo()� ε : ε)

new(o).return o!
==========⇒(C ` blk� ε : ε)

o.getCounter()?
===========⇒(C ` o.getCounter()� ε : ε)

return 0!
======⇒(C ` blk� ε : ε)

An example that shows the usage of the stack E can be found in [12].

3 Low-Level Language

The following section presents the low-level machine model. Most of these con-
cepts introduced here are taken from [3], some are more properly formalised and
corrected.

(Trace-silent)

(C ` E)→ (C′ ` E′)

(C ` E : t� E : t→ u)
τ−−→ (C′ ` E′ : t� E : t→ u)

(Trace-method-call)

C.p.v = {package p; object v : u implements Obj {F}} C ` v : u in ∗
m(x : s) : t′;∈ C.u.hdrs C′ = C + extern v : s;

(C ` blk� E : t→ u)
v.m(v)?−−−−−−→ (C′ ` v.m(v) : t′ � E : t→ u)
(Trace-returnback)

C′ = C + extern v : t;

(C ` blk� E,E : t→ u, t→ u)
return v?−−−−−−−→ (C′ ` E[v] : u� E : t→ u)

(Trace-method-callback)

C.p.v = {extern v : u, Obj} C ` v : u in ∗
m(x : s) : s;∈ C.u.hdrs C′ = C + object v : s;

(C ` E[v.m(v)] : t� E : t→ u)
v.m(v)!−−−−−−→ (C′ ` blk� E,E : s→ t, t→ u)

(Trace-return)

C′ = C + object v : t;

(C ` v : t� E : t→ u)
return v!−−−−−−→ (C′ ` blk� E : t→ u)

(Trace-fresh-extern)

C.p is an import p.o /∈ dom(C) p.o ∈ fn(g?)
C′′ = C + {package p; extern o : Obj; }

(C′′ ` blk� E : t→ u)
g?−−→ (C′ ` E′ : t′ � E′

: t
′ → u′)

(C ` blk� E : t→ u)
new(p.o).g?−−−−−−−−→ (C′ ` E′ : t′ � E′

: t
′ → u′)

(Trace-fresh-object)

C.p.o = {package p; object o : u implements ε{F}} p.o ∈ fn(g!)

C′′ = C + {package p; object o : u implements Obj{F}}
(C′′ ` E : t� E : t→ u)

g!−−→ (C′ ` blk� E′
: t

′ → u′)

(C ` E : t� E : t→ u)
new(p.o).g!−−−−−−−→ (C′ ` blk� E′

: t
′ → u′)

(Trace-refl)

Σ
ε

=⇒ Σ

(Trace-trans)

Σ
a

==⇒ Σ′′ Σ′′ a′
==⇒ Σ′

Σ
aa′

===⇒ Σ′

(Trace-tau)

Σ
τ−−→ Σ′

Σ
ε

=⇒ Σ′

(Trace-action)

Σ
a−−→ Σ′

Σ
a

==⇒ Σ′

Fig. 7: Trace semantics for Java Jr.

3.1 Syntax

The low-level language adopted here is very similar to that presented in the
work of Agten et al. [3]. It models a standard Von Neumann machine consisting
of a program counter, a registers file, a flags register and a memory space. The
registers file contains 12 general purpose registers R0 to R11 and the stack pointer
SP. The flag register contains the zero flag ZF and the sign flag SF. The memory
space m is a function that maps addresses to words. Assume a finite number of
addresses A, ranged over by a, p, they are sequences of bits. Low-level values v
are sequences of bits, Figure 8 presents the syntax for instructions I and words

are either values v or instructions I. Addresses, registers, instructions and values
are 32 bits wide, memory is also addressed in multiples of 32 bits.

movl rd rs Load the word from memory address in register rs into register rd.
movs rd rs Store the contents of register rs in the address found in register rd.
movi rd i Load the constant value i into register rd. Notice that i < 32.
add rd rs Write rd + rs mod 232 to register rd and set the ZF flag accordingly.
sub rd rs Write rd − rs mod 232 to register rd and set the ZF flag accordingly.
cmp r1 r2 Calculate r1 − r2 and set both the ZF and the SF flags accordingly.
jmp ri Jump to the address located in register ri.
je ri If the ZF flag is set, jump to the address located in register ri.
jl ri If the SF flag is set, jump to the address located in register ri.
call ri Push the value of the program counter onto the stack and jump to

the address located in register ri.
ret Pop a value from the stack and jump to the popped location.
halt Stop the execution with the result in register R0.

Fig. 8: Syntax of the low-level language.

Denote the protected memory as msec and the unprotected one as mext. A
low-level program is a pair consisting of a memory space msec and a memory
descriptor s associated with it: (msec, s). Define a memory descriptor s as a
quadruple (b, sc, sd, n), where b is the base address of the protected memory,
sc is the size of the protected code section, sd is the size of the protected data
section and n is the number of entry points. Define m(a) as the function that
returns the word stored at address a in memory m. Whenever m is uniquely
identifiable, shorten m(a) with ∗a.

3.2 Dynamic Semantics

The dynamic semantics expresses the actions a low-level evaluation state Ψ can
execute in order to become a new state Ψ ′.

Definition 2 (Low-level state). A low-level execution state, denoted Ψ , is
defined as follows: Ψ = (p, r, f,m, s), where p is the program counter, r is the
register file, f is the flags register, m is the memory and s is the memory de-
scriptor.

Before introducing the semantics, Figure 9 defines a number of auxiliary
functions that will be used by the semantics and the trace semantics.

Figure 10 presents the rules that define the small step semantics of the low-
level language. Let m(p) ∼= inst denote that inst is the word allocated in m(p).
Define an initial configuration Ψ0 as follows:

(Aux-protected)

s ≡ (b, sc, sd, n)
b ≤ p < (b+ sc + sd)

s ` protected(p)

(Aux-unprotected1)

s ≡ (b, sc, sd, n)
p < b

s ` unprotected(p)

(Aux-unprotected2)

s ≡ (b, sc, sd, n)
(b+ sc + sd) < p

s ` unprotected(p)
(Aux-entryPoint)

s ≡ (b, sc, sd, n)
p = b+m ∗ 128
m ∈ N m < n

s ` entryPoint(p)

(Aux-data)

s ≡ (b, sc, sd, n)
(b+ sc) ≤ p

p < (b+ sc + sd)

s ` data(p)

(Aux-returnEntry)

s ≡ (b, sc, sd, n)
p = b+ (n− 1) ∗ 128

s ` returnEntryPoint(p)

(Aux-read-1)

s ` protected(p)

s ` readAllowed(p, a)

(Aux-read-2)

s ` unprotected(p)
s ` unprotected(a)

s ` readAllowed(p, a)

(Aux-write-1)

s ` unprotected(a)

s ` writeAllowed(p, a)

(Aux-write-2)

s ` protected(p)
s ` data(a)

s ` writeAllowed(p, a)

(Aux-entry)

s ` unprotected(p)
s ` entryPoint(p′)

s ` entryJump(p, p′)

(Aux-internal-1)

s ` unprotected(p)
s ` unprotected(p′)

s ` externalJump(p, p′)
(Aux-internal-2)

s ` protected(p)
s ` protected(p′)

s ` internalJump(p, p′)

(Aux-return)

s ` protected(p)
s ` unprotected(p′)

s ` exitJump(p, p′)

(Aux-vj-intern)

s ` internalJump(p, p′)

s ` validJump(p, p′)

(Aux-vj-extern)

s ` externalJump(p, p′)

s ` validJump(p, p′)

(Aux-vj-return)

s ` exitJump(p, p′)

s ` validJump(p, p′)

(Aux-vj-entry)

s ` entryJump(p, p′)

s ` validJump(p, p′)

Fig. 9: Auxiliary functions for the low-level language semantics.

Ψ0 = (p0, r0, f0,m, s) where s = (b, sc, sd, n)

p0 = (b+ sc + sd)%232

r0 = [SP 7→ p0;Ri 7→ 0] i = 0..11

f0 = [ZF 7→ 0;SF 7→ 0].

The evaluation of a low-level program is a sequence of steps that take an initial
configuration to a final configuration: (p0, r0, f0,m, s) →∗ (−1, r, f,m′, s), with
the result of the computation stored in R0. Notice that in order to capture
termination, the program counter is set to −1 whenever the halt instruction
is encountered, in that way no rule for further progress can ever be applied as
m′(−1) would not return a valid operation.

3.3 Trace Semantics

A different syntactic category (Λ) is used to denote low-level traces in order to be
able to differentiate immediately whether the focus is on high-level or low-level
traces. Labels exhibited by the lo-level trace semantics are defined according to

(Eval-movl)

m(p) ∼= (movl rd rs)
s ` validJump(p, p+ 1)
s ` readAllowed(p, ∗rs)

r′ = r[rd 7→ ∗rs]
(p, r, f,m, s)→→ (p+ 1, r′, f,m, s)

(Eval-movs)

m(p) ∼= (movs rd rs)
s ` validJump(p, p+ 1)
s ` writeAllowed(p, ∗rd)

m′ = m[∗rd 7→ rs]

(p, r, f,m, s)→→ (p+ 1, r, f,m′, s)

(Eval-movi)

m(p) ∼= (movi rd i)
s ` validJump(p, p+ 1)

r′ = r[rd 7→ i]

(p, r, f,m, s)→→ (p+ 1, r′, f,m, s)

(Eval-call)

m(p) ∼= (call rd) p′ = ∗rd
s ` validJump(p, p′)

spn = SP− 1 r′ = r[SP 7→ spn]
pr = p+ 1 m′ = m[spn 7→ pr]

(p, r, f,m, s)→→ (p′, r′, f,m′, s)
(Eval-add)

m(p) ∼= (add rd rs)
s ` validJump(p, p+ 1)
v = (rd + rs)%232

f ′ = f [ZF 7→ (v == 0)]
r′ = r[rd 7→ v]

(p, r, f,m, s)→→ (p+ 1, r′, f ′,m, s)

(Eval-sub)

m(p) ∼= (sub rd rs)
s ` validJump(p, p+ 1)
v = (rd − rs)%232

f ′ = f [ZF 7→ (v == 0)]
r′ = r[rd 7→ v]

(p, r, f,m, s)→→ (p+ 1, r′, f ′,m, s)
(Eval-compare)

m(p) ∼= (cmp r1 r2)
s ` validJump(p, p+ 1)

f ′ = f [ZF 7→ (r1 == r2); SF 7→ (r1 < r2)]

(p, r, f,m, s)→→ (p+ 1, r, f ′,m, s)

(Eval-jump)

m(p) ∼= (jmp rd) p′ = rd
s ` validJump(p, p′)

(p, r, f,m, s)→→ (p′, r, f,m, s)

(Eval-je-true)

m(p) ∼= (je ri) f(ZF) == 1
p′ = ri s ` validJump(p, p′)

(p, r, f,m, s)→→ (p′, r, f,m, s)

(Eval-je-false)

m(p) ∼= (je ri) f(ZF) ≡ 0
s ` validJump(p, p+ 1)

(p, r, f,m, s)→→ (p+ 1, r, f,m, s)
(Eval-jl-true)

m(p) ∼= (jl ri) f(SF) ≡ 1
p′ = ∗ri s ` validJump(p, p′)

(p, r, f,m, s)→→ (p′, r, f,m, s)

(Eval-jl-false)

m(p) ∼= (jl ri) f(SF) == 0
s ` validJump(p, p+ 1)

(p, r, f,m, s)→→ (p+ 1, r, f,m, s)
(Eval-ret)

m(p) ∼= (ret) p′ = m(SP)
s ` validJump(p, p′)

spn = SP+ 1 r′ = r[SP 7→ spn]

(p, r, f,m, s)→→ (p′, r′, f,m, s)

(Eval-halt)

m(p) ∼= (halt)

(p, r, f,m, s)→→ (−1, r, f,m, s)

Fig. 10: Dynamic semantics for the low-level language.

Figure 11. Low-level execution states for the trace semantics, still denoted with
Ψ , do not deal with the whole memory but just with a subset of it.

Figure 12 presents the rules that define the relation Ψ a
=⇒⇒ Ψ ′. Assume the

following convention on the usage of registers: R4 is used to identify the current
object on a method call, R5 to R11 are used for parameters. The trace semantics

Λ ::= α | τe | τi α ::= γ? | γ! γ ::= call a(v) | ret v

Fig. 11: Labels for the trace semantics of the low-level language.

(Trace-external)

s ` externalJump(p, p′)

(p, r, f,m, s)
τe−−→→ (p′, r′, f ′,m, s)

(Trace-internal)

(p, r, f,m, s)→→ (p′, r′, f ′,m′, s)
s ` internalJump(p, p′)

(p, r, f,m, s)
τi−−→→ (p′, r′, f ′,m′, s)

(Trace-call)

s ` entryJump(p, p′)
v = R4 v = R5 :: . . . :: R11

(p, r, f,m, s)
call p′(v,v)?−−−−−−−−−→→ (p′, r′, f ′,m, s)

(Trace-returnback)

s ` entryJump(p, p′)
s ` returnEntryPoint(p′) v = R0

(p, r, f,m, s)
ret v?−−−−−→→ (p′, r′, f ′,m, s)

(Trace-callback)

(p, r, f,m, s)→→ (p′, r′, f ′,m′, s)
s ` exitJump(p, p′) m(p) ∼= (jmp)

v = R4 v = R5 :: . . . :: R11

(p, r, f,m, s)
call p′(v,v)!−−−−−−−−−→→ (p′, r′, f ′,m′, s)

(Trace-return)

(p, r, f,m, s)→→ (p′, r′, f ′,m′, s)
s ` exitJump(p, p′)

m(p) ∼= (ret) v = R0

(p, r, f,m, s)
ret v!−−−−−→→ (p′, r′, f ′,m′, s)

(Trace-refl)

Ψ
ε

=⇒⇒ Ψ

(Trace-trans)

Ψ
α

==⇒⇒ Ψ ′′

Ψ ′′ α′
==⇒⇒ Ψ ′

Ψ
αα′

===⇒⇒ Ψ ′

(Trace-tau-e)

Ψ
τe−−→→ Ψ ′

Ψ
ε

=⇒⇒ Ψ ′

(Trace-tau-i)

Ψ
τi−−→→ Ψ ′

Ψ
ε

=⇒⇒ Ψ ′

(Trace-action)

Ψ
α−−→→ Ψ ′

Ψ
α

==⇒⇒ Ψ ′

Fig. 12: Trace semantics for the low-level language.

of a low-level program (msec, s) is defined as follows:

TracesL(msec, s) = {α | (p0, r0, f0,msec, s)
α

==⇒⇒ Ψ ′}.

Since memory allocation is deterministic, low-level traces do not need α-equivalence.
If two low-level traces are syntactically different, they are semantically different.

The trace semantics is compositional to the trace semantics that models
execution from the unprotected program perspective. The trace semantics of
unprotected programs can be obtained from the rules of Figure 12 by swapping
decorations ! and ? on traces, eliminating assumptions of the form Ψ →→ Ψ ′

where present and adding assumptions of the form Ψ →→ Ψ ′ where missing.

3.4 A Fully Abstract Trace Semantics

A trace semantics that captures all communicated information on the labels of
the traces is equivalent to the notion of contextual equivalence [18]. Such a trace
semantics is called fully abstract, and it can always be used where contextual
equivalence is required. A fully abstract trace semantics simplifies the proof of
full abstraction of a compilation scheme, as Section 4.2 explains.

While the trace semantics of the low-level language captures the same ac-
tions of the trace semantic of the high-level language, it is not fully abstract.
In fact, it does not capture all communicated information on the labels of the
trace. For example, low-level programs can read and write outside the protected
memory. Consider two low-level programs M1 and M2 that exhibit the same
trace semantics. If M1 performs a write in unprotected memory but M2 does
not, an external program is able to tell whether it is interacting with M1 or
M2 by monitoring if unprotected memory changes. Similarly, flags and unused
registers can be used to tell M1 or M2 apart.

In order to make the trace semantics fully abstract, two approaches exist:
augmenting the expressivity of the labels or changing the semantics of the lan-
guage [7]. Since the low-level language is used as the output language of a com-
pilation scheme, we choose the second option.

The compilation scheme presented in Section 5 produces compiled compo-
nents, denoted as C↓, whose trace semantics is fully abstract. Compiled compo-
nents never read or write unprotected memory. Moreover, whenever a label is
generated, flags and unused registers that are not used to convey information,
such as the value of a parameter of a function call, are reset to a default value.
Compiled components are also never supposed to execute the halt instruction.
For the sake of simplicity, we omit this feature in the presentation of the main
result and consider this trivial addition in Section 7.

Proposition 1 (Fully abstract low-level trace semantics modulo com-
pilation). For any two low-level components C↓1 and C↓2 obtained from compiling
Java Jr. components C1 and C2 with the compilation scheme of Section 5, we
have that: TracesL(C

↓
1) = TracesL(C

↓
2) ⇐⇒ C↓1 ' C↓2 .

Proposition 1 drives the proof strategy presented in Section 6. This strategy
was inspired by the work of Agten et al. [3] and is classical in the field [8,11].
Future work will present the result of Proposition 1 in more details. We now
drop the terminology fully abstract trace semantics to avoid confusion with the
main result: a fully abstract compilation scheme.

4 Informal Overview

This section briefly presents contextual equivalence as a good candidate for in-
dicating the preservation of security properties. Then, this section provides an
informal description of the proof strategy for the main result and an informal
overview of the compilation scheme.

4.1 Contextual Equivalence: a Security Perspective

Contextual equivalence is widely accepted in the field of secure compilation, its
definition is included in order to familiarise the reader with it [1,2,3,4,9,10,13].

In Java Jr., fields are private, so every allocated object defines a secret
state: the contents of its fields. Some objects can thus be indistinguishable from

an external point of view even though their states differ; they are contextually
equivalent, denoted as C1 ' C2. Formally, for all contexts C with a hole, contex-
tual equivalence is defined as follows: C1 ' C2 , ∀C.C[C1]⇑ ⇐⇒ C[C2]⇑, where
⇑ denotes divergence [18]. Contexts in Java Jr. are components [12].

Contextual equivalence can be adopted to state security properties such as
confidentiality, integrity and invariant definition, as in Figure 13 [2,3]. Classes
are annotated with subscripts for identification but their names are meant to be
the same. Class C1 and C2 in Figure 13 differ in the value stored in secret after a

1 package p;
2 class C1 {
3 secret, min, max:Int=0;
4
5 public m1():Int {
6 secret = 0;
7 return 0;
8 }
9 public m2(arg:D):Int {

10 secret = 0;
11 arg.cb();
12 if (secret==0) { return 0; }
13 return 1;
14 }
15 public m3():Int {
16 if (min ≤ max) { return 0; }
17 return 1;
18 }
19 }

1 package p;
2 class C2 {
3 secret, min, max:Int=0;
4
5 public m1():Int {
6 secret = 1;
7 return 0;
8 }
9 public m2(arg:D):Int {

10 secret = 0;
11 arg.cb();
12 return 0;
13
14 }
15 public m3():Int {
16 return 0;
17
18 }
19 }

Fig. 13: Context equivalence used for security properties enforcement.

call to m1. If they are contextually equivalent then no program interacting with
either of them can infer the value of secret. This is a confidentiality property.
Additionally, C1 checks whether changes to secret have been made during the
call to arg.cb() in method m2. If C1 and C2 are contextually equivalent then
the call to arg.cb() does not modify the value of secret, this is an integrity
property. Finally, when min>max, method m3 of C1 will return 1. If C1 and C2 are
contextually equivalent then the invariant min ≤ max is never violated. This is
an invariant definition property.

From the high-level language perspective, context equivalence holds for the
presented examples. However, when these examples are run on a physical ma-
chine, they are compiled to machine code. As the machine code is not strongly
typed and it allows jumps to all addresses in memory, an attacker with machine
code injection privileges can violate the secrecy properties of these examples [21].

4.2 Proving Full Abstraction of a Compilation Scheme, Informally

The main result proven in Section 6 is that C1 ' C2 ⇐⇒ C↓1 ' C↓2 . The co-
implication is split in two cases. The direction C↓1 ' C↓2 ⇒ C1 ' C2 states that
the compiler outputs low-level programs that behave as the corresponding source
programs. This is what most compilers achieve, even certifying the result [5,14];
we are not interested in this direction. This is thus assumed, the implications
of this assumptions are made explicit in Section 6.3. The direction C1 ' C2 ⇒
C↓1 ' C↓2 states that high-level properties are preserved through compilation to
the low level. Proving this direction requires reasoning about contexts, which
is notoriously difficult [4]. This is even more so in this setting, where low-level
contexts are memories thus they do not provide any inductive structure. To avoid
working with contexts, we exploit Proposition 1 and prove the contrapositive
TracesL(C

↓
1) 6= TracesL(C

↓
2) ⇒ C1'/ C2. This proof is based on an algorithm

that creates a high-level component that differentiates C1 from C2, given that
they have different low-level traces α1 and α2. This proof strategy is classical yet
complex when the high-level language is strongly typed or it includes features
such as dynamic memory allocation [3,8,11].

4.3 Achieving Full Abstraction of a Compilation Scheme, Informally

Let us now informally describe how a compilation scheme can be modified so that
it becomes fully abstract. Find a detailed treatment of this topic in Section 5.

Assume that a correct compiler from Java Jr. to the presented machine code
is given. Thus a component C and its compiled counterpart C↓ behave the same,
from a high-level perspective. For the compilation scheme to be fully abstract,
the information C↓ and external low-level code M exchange must be the same
as that exchanged between C and external high-level components. But this is
not always the case. In fact, external low-level code can perform method calls
on objects of the wrong type and with ill-typed parameters. Consider a Key
class defining a secret as its first field and another class Pair implementing pairs
with methods getFst() and getSnd(). Assuming fields are accessed via offsets,
external low-level code could invoke the getFst() method on an object of type
Key and obtain the secret. Similarly, performing a method call with ill-typed
parameters leads to the same exploit. Moreover, as low-level object identifiers
are the addresses where objects are allocated, communicating them leaks too
much information. An attacker could learn about the compiler allocation scheme
or the size of an object, then it could call methods on objects just by guessing
their address.

For the compilation scheme to be fully abstract, C↓ and M must commu-
nicate only via well-typed method calls, communicated values must be of the
right type and object identifiers must be masked. In order to achieve this, C↓ is
placed in the data section of the protected memory. For each method defined in
an interface of C, a corresponding entry point is created in the code section of
the protected memory. Code at each entry point acts as a proxy to the actual
method implementation.

For method calls to be well-typed, the code at entry points must check that
a method is invoked on objects of the right type, with parameters of the right
type. Similar checks need to be executed also when returning from a callback, so
an entry point for callbacks is provided. These checks can be performed only on
objects whose class is defined in C since they are allocated in protected memory;
no control over externally allocated objects can be assumed.

To mask low-level object identifiers, a data structure O is created; it is a
map between low-level object identifiers and natural numbers. Low-level object
identifiers that are passed to external code are added to O right before the
identifier is passed. The index in the data structure is then passed in place of
the object identifier, the same index is passed whenever the same object should
be. The code at entry points is responsible of retrieving object identifiers from O
before the actual method call. As the only objects in the data structures are the
ones the attacker knows, it cannot guess object identifiers. Moreover, indices in
O are leaked in a deterministic order, based on the interaction between external
and internal code. So the security of the compilation scheme scales to real-world
scenarios where objects are allocated at different addresses in different runs. For
the sake of simplicity, the main result (Theorem 1 in Section 6.3) does not treat
allocation at different addresses directly.

5 Compilation Scheme

This section presents the assumptions made by the high-level language, followed
by the compilation scheme from high- to low-level code. Here the word component
refers to the Java Jr. component that is being compiled into low-level code.

Communication with external code. Assume the component being com-
piled provides one import package without a corresponding export one. Refer to
this package as the import package. The import package contains interface and
extern definitions that specify how the component interacts with external code.
Callbacks from the component are invocations on methods defined in the import
package. External code will provide an implementation of the import package
for callbacks. Listing 1.2 provides an example of an import package.

1 package pimp;
2 interface Bar extends Baz {
3 public createBar() : Bar;
4 public callback(arg : Bar) : Unit;
5 }
6 interface Baz {
7 public lock() : Int;
8 }
9 extern extBar : Bar;

Listing 1.2: Example of an import package.

In order to implement package pimp, there needs to be at least one class imple-
menting Bar and an object named extBar that is subtype of Bar.

Component code is assumed not to implement interfaces defined in the import
package, while code in the import package can implement interfaces defined in
the component. This affects the dynamic dispatch, details are discussed later.

5.1 Compilation Scheme

The compilation scheme extends that of Agten et al. [3], thus it shares some
points with its predecessor. However, the compilation scheme needs to handle
several subtleties that its predecessor does not. For example, it needs to mask ob-
ject identifiers through O, take care of the current object and perform the checks
mentioned in Section 4.3. These additions stem from the fact that Java Jr. fea-
tures dynamic memory allocation. Such additions force the compilation scheme
to face the subtleties of additional attacks as exemplified in Section 4.3, while
its predecessor did not. This makes the presented compilation scheme a novel
contribution and a significant improvement over its predecessor.

General points [3]. Compiled components must be indistinguishable from the
size point of view, thus a constant amount of space is reserved for each compiled
package, independent of its implementation.

All packages, as well as interfaces declared in those packages and methods
declared in those interfaces, are sorted alphabetically. This makes compiled com-
ponents impossible to be distinguished based on the ordering of low-level method
calls. Methods and fields are then given a unique index, starting from 0, based on
their order of occurrence. Those indexes serve as the offset that is used to access
methods and fields. Parameters and local variables are also given a method-local
index to be used as above. Methods that are not inherited from implemented
interfaces are treated classically [6].

The program counter is initialised to a given address in unprotected memory.

Code compilation. Figure 14 shows a graphical representation of the pro-
tected memory section which is generated by the compilation of the component.
Only a single protected memory section is needed, and all classes, objects and
methods defined in the component are placed there. The protected code sec-
tion contains entry points, which are described in the following paragraphs. The
protected data section contains the v-tables, method body implementations, a
procedure for object allocation, a secure stack and a secure heap. The v-tables
are data structures used to perform the dynamic dispatch of methods. They re-
turn the address of the method to be executed on the current object based on
its type and the method name. Assuming the calling convention with the outer
world is known, dynamic dispatch can easily take care of external objects whose
classes implement interfaces defined in the component. Method call implemen-
tation adopted by external code is more complex since function calls must jump
to the correct entry point, but it still can be achieved by adding extra checks
or by implementing object wrappers. For each method body, a prologue and
an epilogue, responsible of allocating and deallocating activation records on the
secure stack, are appended to it. This code is not located at the entry point.
Expressions are compiled in the usual fashion [6].

Entry point for i1.m1

...
Entry point for ih.mn

Returnback entry point

Allocation function

v-tables

Data structure O
Secure stack

Code for c1.m1

...
Code for ck.mn

Other methods

Secure heap

Object o1
...

Object oj

Code Section Data Section

Protected memory

Fig. 14: Graphical representation of a compiled component.

Object identifiers. Assume that, for a given component, static objects are
always compiled to the same address. Thus their low-level identifiers and their
high-level ones are always the same across different runs. Since compilation is
deterministic, dynamically allocated objects will always be placed at the same
address, given the same external program, for the same component under test.

As motivated in Section 2.1, an object identifier is never passed in clear as
a return value from a method call or as a parameter of a callback. Instead, it is
added to the data structure O and its index in O is returned just before being
sent to the external code. The order in which identifiers are added to O is the
order of exposure to the outer world and not the allocation order.

Registers and stack conventions. Registers R0 to R3 are used as working
registers for low-level instructions. Register R4 is used to identify the current
object in a method call. Before a callback, R4 is stored in the secure stack on
order to restore the current object to the right value once the callback returns.
Registers R5 to R11 are used for parameters (for the sake of simplicity the amount
of parameters of a method has a maximum of seven).

The stack is split in a protected and an unprotected one. At each entry
point, the protected stack is set as the active one. When leaving the protected
section the unprotected stack is set to be the active one. In order to implement
stack switches, a shadow stack pointer is introduced, which points to the base
of the protected stack. To prevent tampering with the control flow, the base of
the protected stack points to a procedure that writes 0 in R0 and halts. This
prevents jumping to the returnback entry points when no callback was made [3].

Entry points. As presented in Section 2.1, Java Jr. enforces a “programming
to an interface” style. For the compilation scheme, this means creating method
entry points in protected memory for all interface-declared methods. A return-
back entry point for returning after a callback is also needed. Table 1 describes
the code executed at those points. Both entry points are logically divided in two
parts. The first part performs checks and then jumps either to the code that per-
forms the dynamic dispatch or to the callback. The second part returns control

Table 1: Pseudo code executed at entry points.
Method p entry point Returnback entry point

Load current object v = O(R4) Push current object v = R4

Check that v has method p Push return address a
Load parameters v Push return type m
Check types of v for p Reset flags and unused registers
Unit-typed value checks Replace object identifiers with index in O
Call dynamic dispatch jmp to callback address

Exit point Re-entry point
Reset flags and unused registers Pop return type m and check it
Replace object identifiers with index in O Unit-typed value checks

Pop return address a, current object v
and resume execution

to the location from which the entry point was called; call this the exit point for
method entry points and re-entry point for the returnback entry point.

Let us explain the terminology of Table 1. Loading means that a value is
retrieved from the memory, push and pop are operations on the secure stack.
Resetting flags and registers means setting flags and registers besides R0 and
parameters to 0. Unit-typed value checks indicate that Unit-typed parameters
must have value 0 [3]. Should any check fail, all registers and flags are cleared
and the execution halts.

Similar checks are needed in case Java Jr. is extended with other ground
types. For example, to add booleans, bool-typed parameters must have either
value 1 or 0, which correspond to the high-level values true or false.

6 Full Abstraction of the Compilation Scheme

This section presents a proof of the main result: full abstraction of the compila-
tion scheme. Section 6.1 presents the algorithm mentioned in Section 4.2 through
a series of examples, Section 6.2 provides a transliteration of the algorithm and
Section 6.3 contains the proofs.

6.1 Algorithm

This section describes the algorithm mentioned in Section 4.2. The algorithm
takes as input two low-level traces α1 and α2 and two components C1 and C2.
Traces α1 and α2 were generated by C↓1 and C↓2 when interacting with the same
external memory. The algorithm outputs a high-level component C that differ-
entiates between C1 and C2, called the output component. Instead of presenting
a transliteration of the pseudo-code of the algorithm, which would be difficult
to understand, this section presents several examples of what the expected out-
put of the algorithm is in different cases. The examples illustrate crucial cases

the algorithm needs to consider when creating the output component. The al-
gorithm has been implemented in Scala, and it interacts with Java components
that adhere to the Java Jr. formalisation.1

In the following, the adjective internal denotes objects (classes) that are
allocated (defined) by components C1 and C2. The adjective external denotes
objects (classes) that are allocated (defined) by the output component.

General idea. The algorithm analyses actions in the low level traces α1 and
α2. Those actions can be of four types: call, return, callback, returnback. Actions
that appear at even-numbered positions in a trace are calls or returnbacks, gener-
ated from the external memory. Actions that appear at odd-numbered positions
are returns or callbacks, generated by C1 or C2. This partitioning is because
execution starts in unprotected memory.

Assuming the first different actions are at index i, the algorithm produces
code that replicates the first i − 1 actions. Then, it produces code that, based
on the difference in the i-th action, exits with value 1 or 2 based on which
component it is interacting with. The output produced is given the power to end
the computation via the exit statement to avoid being trapped in infinite loops.

Starting point. The algorithm starts by creating a knowledge base about C1

and C2. The knowledge base contains all signatures of internally- and externally-
defined methods, as well as high- and low-level names of static objects and ex-
terns. This is because the algorithm needs to be able to differentiate, for example,
whether a type is internally or externally defined, or what are the identifiers of
static objects. Then, a code skeleton for the output component is created, based
on the structure of the import package of C1 and C2.

For all interfaces i defined in the import package, a class i_c is created.
An object staticFor_i of type i_c is then created. Classes i_c contain dummy
implementations of all methods defined in i and in all interfaces i extends. These
method implementations return a value whose type matches the expected return
type: 0 for type Int, unit for type Unit and null otherwise. A method called
defaultCreate() is added to all classes i_c, it is implemented as follows:

1 public defaultCreate() : i_c { return new i_c (); }

Methods defaultCreate() are responsible for allocating external objects, they
will be called only on objects staticFor_i. Constructors inside defaultCreate()
are supplied standard values for their parameters: 0 for type Int, unit for type
Unit and null otherwise. Since parameters cannot be accessed by external code,
the value they are initialised to is not important. For the sake of simplicity, the
following examples will have constructors with no parameters.

The output component is extended with extra classes. Firstly, class Tester
containing the main method is added; it is required for the execution to start.
Other needed classes will be introduced and motivated by the following examples.

Code examples. The following examples present different implementations
of C1 and C2, the low-level traces they generate and the output the algorithm
1 Available at http://people.cs.kuleuven.be/∼marco.patrignani/Research.html.

produces after being run. Components C1 and C2 are modifications of the code
in Listing 1.1, whose import package is assumed to be defined in Listing 1.2. C1

is presented on the left while C2 stands on the right. Omitted code is the same
in both components and can be found in Listing 1.1. The examples also present
what the algorithm must do in order to create the correct output.

The reported low-level traces are massaged for better understanding. For
example, given that object extFoo is compiled to address 0x123 and that method
createFoo is associated to address 0x456, the label call 0x456(0x123) is written
as extFoo.createFoo(). Numbers in italic font, e.g. 1 , refer to indexes from O,
while identifiers of externally allocated objects are numbers in hexadecimal.

Example 2 (Different returned values). Consider the following implementations
for C1 and C2. Each code fragment is followed by the low-level trace it generates.

1 private extFoo : FooClass {
2 counter = 1
3 }
4 public getCounter() : Int {
5 return counter;
6 }

1 private extFoo : FooClass {
2 counter = 0
3 }
4 public getCounter() : Int {
5 return counter += 1;
6 }

α1 = extFoo.getCounter()? ret 1! extFoo.getCounter()? ret 1!

α2 = extFoo.getCounter()? ret 1! extFoo.getCounter()? ret 2!

In this example, the produced code needs to differentiate between C1 and C2

based on the type of expected returned values. These types can be either: ground,
internal, external. With ground-typed values the differentiation is based on the
different values returned by C1 or C2, in this case 1 and 2 respectively.

This example highlights how both the algorithm and the produced code need
to keep track of the index of the action they replicate. To that end, the algorithm
maintains a global variable. The produced code is extended with a class Helper
and a static object oc implementing it. Helper contains a field step with methods
getStep() and incrementStep(), the latter increases the value of step by one.
Since oc is static, its fields are global variables for the output component.

The following code is produced by the algorithm for this example:

1 public main (args : String[]) : Unit {
2 if (oc.getStep() == 0) {
3 oc.incrementStep();
4 Int vara = extFoo.getCounter();
5 oc.incrementStep();
6 }
7 if (oc.getStep() == 2) {
8 oc.incrementStep();
9 Int varb = extFoo.getCounter();

10 if (varb == 1) { exit(1); } else { exit(2); }
11 }
12 }

The first actions generate the code in lines 2 to 6, thus it is wrapped in an if-
statement that makes the generated code take place only when the considered

action is the first: e.g. step is 0. The second actions are the responsible for
incrementing step in line 5. The third actions generate the code in lines 7 to 11,
while the fourth actions, the different ones, generate the code in line 10.

The approach of this example is similar to what the algorithm does in case
the difference in the traces is in ground-typed parameters of a callback. In that
case, instead of creating fresh variable varb, the produced code performs the
differentiation by using the name of the parameter which has the different value.

Example 3 (Different method of a callback).

1 public createFoo() : Foo {
2 extBar.lock();
3 }

1 public createFoo() : Foo {
2 Bar b = extBar.createBar();
3 }

α1 = extFoo.createFoo()? extBar.lock()!

α2 = extFoo.createFoo()? extBar.createBar()!

In this example, C1 performs a callback on method lock, while C2 performs it
on method createBar.

To achieve differentiation in this case, the algorithm needs to keep track of
in the current method, since it indicates where the differentiating code will be
placed. The current method is recorded in a stack which is initially set to method
main in class Tester. Callbacks indicate that the current method is changed to a
new entry, returnback indicate that the current method is restored to a previous
one. Thus, whenever a callback to method m of class c is performed, an entry of
the form c.m is pushed on the stack. A returnback pops the head of the current
method stack.

The following code is produced by the algorithm for this example:

1 public main (args : String[]) : Unit {
2 if (oc.getStep() == 0) {
3 oc.incrementStep();
4 Foo f = extFoo.createFoo();
5 }
6 }
7 public createBar() : Bar {
8 if (oc.getStep() == 1) { exit(2); }
9 return null;

10 }
11 public lock() : Int {
12 if (oc.getStep() == 1) { exit(1); }
13 return 0;
14 }

Notice that the if-statements of lines 3 and 7, whose addition was discussed in
Example 2, help the produced code achieve differentiation in this case as well.
Should methods createBar() or lock() be called multiple times, the if-guard
ensures that the differentiation only happens at the right time.

Example 4 (Different internally-typed returned object).

1 public createFoo() : Foo {
2 return this;
3 }

1 public createFoo() : Foo {
2 return new FooClass();
3 }

α1 = extFoo.createFoo()? ret extFoo! α2 = extFoo.createFoo()? ret 1 !

In this case the produced code needs to be able to differentiate between two
return values that are internal objects. They are given different indexes in O.
Here, C1 returns a known static object: extFoo, while C2 returns a new object
whose index in O is 1 .

To achieve differentiation in this case, the produced code needs to keep track
of internally allocated objects. For this it relies on a list internals provided by
oc. In order for internal objects to be accessible, they are wrapped with a new
class: Internal that has two fields. The first, of type Obj, contains a reference to
an internal object. The second, name, can be used to filter the search for objects.
No two objects with the same name can be added to internals. Elements of
this list can be accessed via method getInternByName(n), which returns the
object with name n. Additionally, method getNameByObject(o) returns the
name of object o. The algorithm has a table with the low-level identifier and the
type of all dynamically-allocated objects in order to generate correct code when
retrieving internals as in line 6 in the code below.

The following code is produced by the algorithm for this example:

1 public main (args : String[]) : Unit {
2 if (oc.getStep() == 0) {
3 oc.incrementStep();
4 Foo f = extFoo.createFoo();
5 oc.addInternal(new Intern (f, "extFoo"));
6 if (f == oc.getInternByName("extFoo")) { exit(1); }
7 else { exit(2); }
8 }
9 }

Line 5 has no effect, since internals already has an entry for extFoo. In case C1

and C2 were swapped, line 5 would bind f to name 1 , ensuring the correctness
of the call to getInternByName("1") in line 6.

This example scales to different internally-typed parameters in a callback. In
such cases, the lookup method used is getNameByObject, and the differentiation
is made on the names bound to different internally allocated objects that are
passed as parameters in a callback.

Example 5 (Different callee of a callback).

1 public createFoo() : Foo {
2 Bar b = extBar.createBar();
3 b = b.createBar();
4 }

1 public createFoo() : Foo {
2 Bar b = extBar.createBar();
3 b = extBar.createBar();
4 }

α1 = extFoo.createFoo()? extBar.createBar()! ret 0x6? 0x6.createBar()!

α2 = extFoo.createFoo()? extBar.createBar()! ret 0x6? extBar.createBar()!

In this case the difference is the external object on which a callback is performed.
Here, C1 calls createBar() on 0x6, while C2 calls the same method on extBar.

In order to achieve this differentiation, the produced code needs to keep track
of external objects similarly to how it needed to keep track of internal objects in
Example 4. All external objects must be bound to a name, just as the internally
allocated ones are. For this purpose, a class Listable is created, all the classes
i_c extend Listable. Listable contains a name and a type field, with getters and
setters. It also contains a method setAndRegister(n , t), that sets name = n,
type = t and adds the object to a list of Listable called externals that is kept
in object oc. Object oc contains method getExternal(n , t) to retrieve these
objects based on name and type.

The following code is produced by the algorithm for this example:

1 // same main as in Example 3
2 public createBar() : Bar {
3 if (oc.getStep() == 1) {
4 oc.incrementStep();
5 }
6 if (oc.getStep() == 2) {
7 oc.incrementStep();
8 Bar h = oc.getExternal("0x6", "Bar");
9 if (h == null) {

10 h = staticForBar.defaultCreate();
11 ((Listable) h).setAndRegister("0x6", "Bar");
12 }
13 return h;
14 }
15 if (oc.getStep() == 3) {
16 if (this.getName() == "0x6") { exit(1); } else { exit(2); }
17 }
18 return null;
19 }

Lines 14 to 17 ensure that if an external object is not found in the list externals,
it is allocated by calling to the default factory method and then added to
externals. Fields name and type for external static objects are assumed to be
initialised in the first instructions of the main. That code is omitted for brevity.

Example 6 (Different externally-typed parameter of a callback).

1 public createFoo() : Foo {
2 Bar b = extBar.createBar();
3 b.callback(b);
4 }

1 public createFoo() : Foo {
2 Bar b = extBar.createBar();
3 b.callback(extBar);
4 }

α1 = extFoo.createFoo()? extBar.createBar()! ret 0x6? 0x6.callback(0x6)!

α2 = extFoo.createFoo()? extBar.createBar()! ret 0x6? 0x6.callback(extBar)!

This example presents the expected output in case the difference is in a parame-
ter of a callback. The produced code relies on the notions defined in Example 5,
using the field name of external objects to achieve differentiation.

The following code is produced by the algorithm for this example:

1 // same main and createBar from Example 5,
2 // except that lines 20 - 22 are removed
3 public callback(arg : Bar) : Unit {
4 if (oc.getStep() == 3) {
5 if (((Listable) arg).getName() == "0x6") { exit(1); }
6 else { exit(2); }
7 }
8 }

Casting arg to Listable is needed in order to make sure the call to getName()
succeeds. In fact, arg is known to implement interface Bar, which has no con-
nection with class Listable that defines method getName().

Example 7 (Traces of different length). As mentioned in Section 3.4, compiled
components cannot execute the halt instruction. Additionally, compiled com-
ponents are the result of compiling well-typed, high-level components; well-
typedness ensures that they cannot get stuck [17]. This means that there is
only one way that C↓1 and C↓2 can create traces of different length: C1 diverges
and does not return control to external code while C2 returns control to external
code, or vice-versa. An example of such a behaviour is presented below.

1 public createFoo() : Foo {
2 while (1 == 1) { skip; };
3 return null;
4 }

1 public createFoo() : Foo {
2 return new FooClass();
3 }

α1 = extFoo.createFoo()? α2 =extFoo.createFoo()? ret 1 !

In this case, differentiating between C1 and C2 cannot be done by terminating
with two different results since control is not returned to the output component
when it interacts with C1. Here, differentiation is achieved in a classical sense,
by diverging in any case and terminating in the other [18]. Previous examples
did not adopt this approach since differentiation could be achieved in a simpler
way.

The following code is produced by the algorithm for this example:

1 public main (args : String[]) : Unit {
2 if (oc.getStep() == 0) {
3 oc.incrementStep();
4 Foo f = extFoo.createFoo();
5 exit(2);
6 }
7 }

When control is returned to main after a call to createFoo(), it means that
the output component is interacting with C2. In this case the produced code
terminates via the expression of line 5. Divergence is accomplished by C1.

These examples highlighted the most peculiar difficulties the algorithm needs
to face, which arise from the presence of dynamic memory allocation feature in
Java Jr. For the algorithm to be correct, the code produced for action a must

be proven to generate action α, and α≡a a in the sense of Definition 4 below.
Moreover, the algorithm should be able to differentiate when two different actions
are encountered. We do not provide a formal proof of the correctness of the
algorithm, this fact can be seen from these examples or by consulting Section 6.2.

6.2 Algorithm Transliteration

This section describes in words and pseudo-code the algorithm of Section 6.1.

Notation. Write < x > to indicate the current value of variable x for the
algorithm and indicate syntactical equivalence with ≡.
Starting point. The code skeleton is a single package definition pt containing
the following classes. No packages defined in C1 and C2 are named pt.

Class Listable will be extended by all classes implementing interfaces of the
import package. Listable has two fields: name and type, getters and setters for
them and a method setAndRegister(v,t) that sets name=v, type=t and adds
the current object to the list of external objects in oc (defined below).

Class Intern provides a wrapper for internal objects and the low-level iden-
tifier corresponding to them. Intern has two fields, name and obj; the second is
of type Object since it stores references to internal objects of all types.

Class Helper, and object oc implementing it, provide access to global vari-
ables. Helper has a step variable, which is used to keep track of how many
actions have been evaluated. Helper also has field externals, a list of Listable
where all external objects are stored. Similarly, it has field internals, a list of
Intern where all internal objects are stored. Helper provides the following meth-
ods: addExtern and addIntern to add elements to internals and externals
respectively; getInternByName to retrieve an internal object given its name;
getNameByObj to retrieve an internal object’s name given the object and getExtern
to retrieve an external object given its name and type.

Finally, a Tester class is created, it contains the main method.
The skeleton is then extended based on the import package defined by C1 and

C2. Listing 1.3 presents the skeleton code for the import package of Listing 1.2.

1 package pt;
2 ... // definition of Listable, Helper, Intern, Tester and object oc
3 class Bar_c extends Listable implements Bar {
4 public createBar() : Bar {
5 return null;
6 }
7 public callback(arg : Bar) : Unit {
8 return;
9 }

10 public defaultCreate() : Bar {
11 if (this == staticFor_Bar){
12 return new Bar_c();
13 }
14 return staticFor_Bar.defautCreate();
15 }
16 }
17 class Baz_c extends Listable implements Baz {

18 public lock() : Int {
19 return 0;
20 }
21 public defaultCreate() : Baz {
22 if (this == staticFor_Baz){
23 return new Baz_c();
24 }
25 return staticFor_Baz.defautCreate();
26 }
27 }
28 // fields come from class Listable
29 object staticFor_Bar : Bar_c { name = "staticFor_Bar", type = "Bar" }
30 object staticFor_Baz : Baz_c { name = "staticFor_Baz", type = "Baz" }
31 object extBar : Bar_c { name = "extBar", type = "Bar" }

Listing 1.3: Example of a skeleton code.

For all interfaces i defined in the import package, a class named “i_c" is created.
These classes extend Listable and implement i. These classes are accompanied
by an object named “staticFor_i”. Bodies of these classes are filled with dummy
method implementation that return a value whose type matches the signature:
unit and 0 for types Unit and Int respectively, or null otherwise. These method
bodies will change during construction phase. A new method defaultCreate()
is added, it is a factory method that returns new instances of the class when
called from the static object related to the class. Objects are allocated with
default values in the parameters of constructors, their state is not needed as it
is mimicked by the code generated further on. Finally, for all externs, an object
with the same name is created.

Algorithm variables and data structures. Global variables used by the
algorithm are indicated using an italic font. The counter i is used to count
execution steps: each time the algorithm switches phase it increments i by one.
The flag diff is used to capture that the differentiation has occurred and the
algorithm can produce the output. The stack c.m of method invocations is used
to keep track of what external methods m of class c are called; no information
about the current package is needed since the testing component consists of
a single package. The top of c.m, denoted mc, is referred to as the current
method. The stack n, t is used to keep track of what variable named n of type
t contains the returned value of a call to an internal method. The table AO
records the correspondence between low-level names and types of objects that
are dynamically allocated, either internally or externally. Entries of AO have
form (v, t), where v is the low-level identifier of a dynamically allocated object
o, and t are the interfaces implemented by o. Entries that are added to AO in the
construction phase are entries of externally allocated objects. Conversely, entries
that are added to AO in the execution phase are entries of internally allocated
objects. The tableMB records what the method body of an externally defined
method is. Entries of MB have form (c.m, s), where c.m denotes method m of
class c and s is the body of such a method. The code generated in construction
and execution phase is added to this table, which is then used to generate the
output of the algorithm. All of these data structures are initially empty, save for
c.m that is initialised to Tester.main; i is set to 0 and diff to false.

The algorithm employs other data structures to keep track of static informa-
tion of C1 and C2. Table II contains all internal interfaces. Tables EM and IM
contain all method signatures defined in external and internal interfaces respec-
tively. Table SO contains the high- and low-level identifiers of all static objects.

The low-level value lifting function ↑(v, t) takes a low-level value v, a type
t and returns a corresponding high-level value v′ of type t. This function is
employed to obtain the high-level value corresponding to a low-level one. While
the encoding for ground-typed values is straightforward, non ground-typed need
to be retrieved from the lists that are kept in object oc.

if t = Unit then ↑(v, t) = unit

if t = Int then ↑(v, t) = v

if t = p.i and (vh, v) ∈ SO then ↑(v, t) = vh

if t = p.i and t ∈ II then ↑(v, t) = ((t) oc.getInternByName("v"))

else ↑(v, t) = ((t) oc.getExtern("v" , "t"))

Construction phase. This subroutine creates code to be added in MB for
the entry related to mc based on the type of the actions under consideration.
All generated code is added in the body of the following if statement:

1 if (oc.getStep() == < i >) {
2 oc.incrementStep();
3 // code is added here
4 }

call call a(v, v)?. This is a call to a method m compiled at address a of object
v with parameters v = v0, . . . , vj . Table IM tells that the method being called
has signature m(x0 : t0, . . . , xj : tj) : t and it is defined in interface t′. For all k
from 0 to j the following code is added:

1 tk xk = ↑(vk, tk);

If tk is not ground nor internally defined, the following code is added, and an
entry (vk, t) is pushed in AO, where t are all the interfaces tk implements.

1 if (xk == null) {
2 xk = staticFor_tk.defaultCreate();
3 ((tk_c) xk).setAndRegister(vk , tk);
4 }

Given a fresh name n, the following code is added, and (n, t) is pushed on n, t.

1 t n = ↑(v, t′).m(x0,. . .,xj);

Then the execution phase subroutine is called on the following two actions
of α1 and α2. It will possibly return some code that needs to be added after the
one just generated. Finally, an empty string is returned.

returnback ret(v)?. For an external method returning value v of type t, given
a fresh name n, the following code is added:

1 t n = ↑(v, t);

If t is not ground nor internally defined, the following code is added, and an
entry (v, t) is pushed in AO, where t are all the interfaces t implements.

1 if (n == null) {
2 n = staticFor_t.defaultCreate();
3 ((Listable) n).setAndRegister(v , t);
4 }

Then the following code is added:

1 return n;

Then mc is popped from c.m and the execution phase subroutine is called
on the following two actions of α1 and α2. What is returned from the execution
phase is returned from this phase.

Execution phase. α1(i) and α2(i) can be different actions or the same one.

Different actions, assume wlog α1 = ret(v1)! and α2 = call a2(v2, v2)!
The subroutine adds the following code inMB for the entry related to mc.

1 if (oc.getStep() == < i >) { exit(2); }

Then this subroutine returns the code:

1 exit(1);

returns ret(v1)! and ret(v2)!. If v1 ≡ v2 then the following code is returned,
given (n, t) to be popped from n, t.

1 oc.incrementStep();
2 oc.addInternal(v1 , n);

The second line is added only if t is internally defined, in which case an entry of
the form (v1, t) is added to AO, where t are the interfaces implemented by t.

If v1≡/ v2, the following code is returned and diff is set to true:

1 oc.addInternal(v1 , n);
2 if (n == ↑(v, t)) { exit(1); } else { exit(2); }

callbacks call a1(v1, v1)! and call a2(v2, v2)!.
If a1 ≡ a2 and v1 ≡ v2 and v1 ≡ v2, assume that class c defines method

m that corresponds to a1 and a2, c.m is pushed on c.m. The following code is
added toMB for the entry related to c.m:

1 if (oc.getStep() == < i >) {
2 oc.incrementStep();
3 //code is added here
4 }

For all arguments vj ∈ v1 with type tj where tj is internally defined, the following
code is added after the comment in the previous code and an entry of the form
(vj , t) is added to AO, where t are the interfaces implemented by tj .

1 oc.addInternal(vj , xj);

Then the subroutine invokes the construction subroutine on the following two
actions of α1 and α2 returning what the construction phase returns.

If the only difference is in the value of parameter xj of type tj , that has value
vj in the first trace, three cases arise. In all of them the generated code is added
to MB for the entry related to c.m1, where c is the class defining method m1.
The following code is added in case tj is ground, internally or externally defined.

1 if (xj == ↑(vj , tj)) { exit(1); } else { exit(2); }

1 if (oc.getNameByObject(xj) == vj) { exit(1); } else { exit(2); }

1 if (((Listable) xj).getName() == vj) { exit(1); } else { exit(2); }

If the two method names are different, and they are defined in class c1 and
c2, then the following code is added toMB for the entry related to c1.m1:

1 if (oc.getStep() == < i >) { exit(1); }

The entry for c2.m2 is expanded with analogous code that exits with result 2.
This also applies if two different classes define two methods with the same name.

If the two object names are different, the following code is added to the
implementation of method m:

1 if (oc.getStep() == < i >) {
2 if ((Listable) this).getName() == v1) { exit(1); } else { exit(2); }
3 }

If only one of the two low-level action α1(i) or α2(i) exists, then two cases arise
(assume wlog that it is α1(i)). In this case the algorithm must only create the
code that determines which component is under test, as it sets the diff flag to
true so iteration over the traces will stop.
return ret(v1)!. The subroutine returns the code:

1 exit(1);

callback call a(v, v)!. The subroutine adds the following code inMB for the
entry related to c.m where m is the method corresponding to a and c is the class
defining it, and returns an empty string.

1 if (oc.getStep() == < i >) { exit(1); }

6.3 Full Abstraction of the Compilation Scheme

This section introduces additional definitions and it provides an overview of the
proof strategy. Finally, it states the main result: full abstraction of the compila-
tion scheme (Theorem 2 below).

Definition 3 (Value equivalence). A high-level value vh and a low-level value
vl are equivalent, denoted vh≡v vl, given Σ = (C ` . . .) and Ψ = (p, r, f,m, s)
whenever:

– if vh = unit and vl = 0;
– if vh = v : Int and vl = v;
– if vh = {package p; object o : t . . .}, vl = i ∈ N, vh ∈ C and, given that O

is found in m, O(i) = a and s ` protected(a); or
– if vh = {package p; extern o : t}, vl = a, vh ∈ C and s ` unprotected(a).

Definition 4 (Action equivalence). A high-level action a and a low-level ac-
tion α are equivalent, denoted a≡a α, given Σ and Ψ whenever:

– if a = new v. vh.w(vh)? and α = call p(vl, vl)? and vh≡v vl, vh≡v vl and,
given that Ψ = (. . . ,m′, s), p is the entry point for w in m′;

– if a = new v. vh.w(vh)! and α = call p(vl, vl)! and vh≡v vl, vh≡v vl and, p
is an address in external memory where, according to the calling convention,
a call to method w must be compiled;

– if a = new v. return vh? and α = ret vl? and vh≡v vl; or
– if a = new v. return vh! and α = ret vl! and vh≡v vl.

Figure 15 contains a graphical representation of the proof scheme, where
high- and low-level execution traces of two components are related. High-level
traces model the interaction of a component with the output of the algorithm.
Horizontal lines connect equivalent states and equivalent actions, the key shows
what provides such an equivalence.

Σ0
1

Σ1
1

Σ1′
1

Σ2
1

a01?

τ

a11!

Ψ0′
1

Ψ0
1

Ψ1
1

Ψ1′
1

Ψ2
1

α0
1?

τe

τi

α1
1!

Σ0
2

Σ1
2

Σ1′
2

Σ2
2

a02?

τ

a12!

Ψ0′
2

Ψ0
2

Ψ1
2

Ψ1′
2

Ψ2
2

τe

α0
2?

τi

α1
2!

transition

$ by Assumption 1

≡a by Theorem 1

≡a by Assumption 1

Fig. 15: Graphical representation of the proof scheme.

In Figure 15 two low-level, even-numbered actions are the same by definition,
as they are produced by the same external memory. The corresponding even-
numbered, high-level actions are proven to be the same in Theorem 1 below. This

is because the algorithm outputs a component that replicates even numbered,
low-level actions. Two low-level, odd-numbered actions may be different, in which
case the corresponding high-level actions are different as stated in Assumption 1
below. What needs to be proven here is that the algorithm differentiates between
the components generating those different traces.

In the proof, the algorithm is assumed to receive two different low-level traces
as input. This means that during the interaction between the compiled compo-
nent and external memory, checks at entry points never terminate the execution.

Assumption 1 (Compiler preserves behaviour) The compiler is assumed
to output low-level programs that behave as the corresponding input program.
Thus a high-level expression is translated into a list of low-level instructions that
preserve the behaviour. By this, we mean that the following properties hold:

– C↓1 ' C↓2 ⇒ C1 ' C2.
– There exists an equivalence relation between high-level states Σ and low-level

states Ψ , denoted Σ $ Ψ , such that:
• The initial high- and low-level states are equivalent. Formally: if C↓ =

(m, s) then (C ` blk� ε : ε) $ (p0, r0, f0,m, s), and
• Given two equivalent states and two corresponding internal transitions,
the states these transitions lead to are equivalent. Moreover, given two
equivalent states, given two equivalent actions, the states these tran-
sitions lead to are equivalent. Formally: if Σ $ Ψ,Σ

τ−−→ Σ′
a−−→

Σ′′, Ψ
τi−−→→∗ Ψ ′

α−−→→ Ψ ′′, then Σ′ $ Ψ ′. Moreover, if a≡a α then
Σ′′ $ Ψ ′′.

Notation. Indicate the i-th action of a trace a as a(i).

Property 1 (Low-level traces numbering). Given a low-level trace α, if actions in
the trace are numbered starting from 0, then every even-numbered action is a
call or returnback and every odd-numbered action is a return or a callback.

∀i ∈ N, α(2i) ∈ α⇒ α(2i) = γ? and α(2i+1) ∈ α⇒ α(2i+1) = γ!.

Proof. Straightforward induction on i. ut

Theorem 1 (Algorithm correctness). For any two high-level components C1

and C2 that exhibit two different low-level traces α1 and α2 when interacting with
the same external code m, the algorithm of Section 6.1 outputs a component C
that differentiates between C1 and C2. TracesL(C

↓
1) 6= TracesL(C

↓
2)⇒ C1'/ C2.

Proof. Sincem is the same while interacting with C↓1 and C↓2 , the different action
in α1 and α2 is found at an odd-numbered position. Moreover, by analysing the
code generated in the construction phase of the algorithm, one can see that
the generated component will perform high-level actions that are equal to the
low-level ones. This means that there is at least one high-level trace in the trace

semantics of C1 and C2 whose even-numbered actions are equivalent to the even-
numbered actions of α1 and α2. Call these traces a1 and a2 respectively. Thus
∀i ∈ N, a(2i)1 ≡a α

(2i)
1 ; similarly for a2.

As odd-numbered actions are generated by the compiled components, apply
Assumption 1 to state that the corresponding high-level action will be equivalent
to it. Thus: ∀i ∈ N, a(2i+1)

1 ≡a α
(1i+1)
1 ; similarly for a2.

The execution phase of the algorithm generates code that distinguishes be-
tween C1 and C2 if they perform two different odd-numbered actions, a simple
analysis of the execution phase code presented in Section 6.1 shows that. ut

Theorem 2 (Full abstraction of the compilation scheme). For any two
high-level components C1 and C2, we have (assuming there is no overflow of the
secure stack and of the secure heap). C1 ' C2 ⇐⇒ C↓1 ' C↓2 .

Proof. The if and only if is split in two subpoints. The direction ⇐ holds
due to Assumption 1. The direction ⇒ is reversed to the equivalent state-
ment: C↓1 '/ C↓2 ⇒ C1'/ C2. Apply Proposition 1 to restate the statement as
TracesL(C

↓
1) 6= TracesL(C

↓
2) ⇒ C1'/ C2. Apply Theorem 1 to prove the state-

ment. ut

7 Extensions

The following section informally describes how to include more powerful lan-
guage constructs into the high level language and how to compile them. Then it
describes how to allow compiled components to execute halt instructions.

Inner classes. An instance of an inner class C could access private fields of
its enclosing instance D. To implement this, D is extended with static methods
to access its private fields and code in C replaces fields access with calls to those
methods. Since the newly created static methods are unavailable at the high level,
their presence breaks full abstraction of a standard compilation scheme [1].

However, the presented compilation scheme is fully abstract even if Java Jr.
is extended with inner classes. In fact, those additional static methods do not
occur in the entry points, so external code does not have access to them. So,
what was a breach in full abstraction for previous works [1] is not a breach here.

Cross-Package Class Inheritance. Consider class C extending class D when
C is protected and D is not and vice-versa. In both cases, low-level instances
of the unprotected class must not be able to access the state of the protected
one. Moreover, super calls must be well-typed whenever such calls cross memory
boundaries.

When instantiating class C, two objects are allocated, one for C and one for
D, each object in the memory region where its class is defined. A field is added
to C to refer to the superclass instance. Additional code is needed to ensure
that the current object identifier is always the correct one. If C is protected
and D is not, super calls are compiled as callbacks; otherwise, super calls are

compiled as method calls. In the latter case, the compiled component must keep
another data structure with entries of the form: (asub , asup), where asub is the
address of the externally allocated sub-object and asup is the address of the
corresponding internally allocated super-object. This prevents super calls to be
invoked on objects of the wrong type. External code could supply any address
as the current object in a super call, replicating the security exploits presented
in Section 4.3.

Executing halt from compiled components. In order to allow compiled
components to call to halt, the trace semantics presented in Section 3.3 needs
to be expanded [7]. This extension merely influences the formalisation of the
low-level trace semantics and the proof of full abstraction of the compilation
scheme. The compilation scheme does not need to be changed.

Firstly, a stuck state needs to be defined. A state Ψ is stuck, denoted as Ψ⊥,
if the computation cannot proceed further; the state reached after the execution
of halt is a stuck state. Then, traces need to highlight if the execution reached
a stuck state. For this, an additional label is needed, thus the syntax of α is
expanded as follows: α ::= . . . | √. Figure 16 presents rules for generating

√
on

labels.

(Trace-external-tick)

s ` unprotected(p) (p′, r′, f ′,m, s)⊥

(p, r, f,m, s)
√
−−→→ (p′, r′, f ′,m, s)

(Trace-internal-tick)

(p, r, f,m, s)→→ (p′, r′, f ′,m′, s)
s ` protected(p) (p′, r′, f ′,m′, s)⊥

(p, r, f,m, s)
√
−−→→ (p′, r′, f ′,m′, s)

Fig. 16: Additional rules for the generation of
√

on traces.

Since compiled components can call to halt, compiled components can eval-
uate to stuck states. Otherwise, due to Assumption 1, this could not be possible
since high-level well-typed components cannot get stuck [17]. Example 8 below
discusses how the algorithm can achieve differentiation in this case as well.

Example 8 (Compiled components executing halt).

1 public createFoo() : Foo {
2 exit(0);
3 }

1 public createFoo() : Foo {
2 return new FooClass();
3 }

α1 = extFoo.createFoo()?
√

α2 =extFoo.createFoo()? ret 1 !

Should either C1 or C2 call exit(), control is not returned to the produced
component since exit() is compiled to a halt instruction. In this case, differ-
entiating between C1 and C2 cannot be done by terminating with two different
results, it has to be achieved by termination in one case and divergence in the
other as in Example 7. The component whose trace presents a

√
sooner than

the other trace will cause termination of the execution. The algorithm is thus

responsible of diverging whenever an interaction with the other component is
detected.

The following code is produced by the algorithm for this example:

1 public main (args : String[]) : Unit {
2 if (oc.getStep() == 0) {
3 oc.incrementStep();
4 Foo f = extFoo.createFoo();
5 while (1 == 1) { skip; }
6 }
7 }

The algorithm knows that C1 will call exit() since α1 has a
√

at the end. When
control is returned to main after a call to createFoo(), it means that the output
component is interacting with C2. In this case the produced code diverges via
the expression in line 5.

Extension to the algorithm. If compiled components can call to halt the
following case needs to be considered by the algorithm.

If only one of the two low-level action α1(i) or α2(i) is a
√
, then two cases

arise (assume wlog that α2(i) =
√

and α1 6=
√
). In this case the algorithm must

only create the code that determines which component is under test, as it sets
the diff flag to true so iteration over the traces will stop.
return ret(v1)!. The subroutine returns the code:

1 while (1 == 1) { skip; }

callback call a(v, v)!. The subroutine adds the following code inMB for the
entry related to c.m where m is the method corresponding to a and c is the class
defining it, and returns an empty string.

1 while (1 == 1) { skip; }

8 Related Work

This paper builds on the work of Agten et al. [3], where the same result is
achieved for a simpler high-level language. The presented work adopts an object-
oriented language with dynamic object allocation, which makes the result sig-
nificantly harder to achieve. Moreover, the main result is proved to a higher
degree of formality and precision. A detailed assessment of additional differences
between the two works can be found throughout the paper.

Secure compilation through full abstraction was pioneered by Abadi [1],
where, alongside a result in the π-calculus setting, Java bytecode compilation in
the early JVM is shown to expose methods used to access private fields by private
inner classes. Kennedy [13], listed six full abstraction failures in the compilation
to .NET, half of which have been fixed in modern C# implementations.

Address space layout randomisation has been adopted by Abadi and Plotkin [2]
and subsequently by Jagadeesan et al. [10] to guarantee probabilistic full ab-
straction of a compilation scheme. In both works the low-level language is more

high-level than ours and the protection mechanism is different. Compilation does
not necessarily need to target machine code, as Fournet et al. [9] show by pro-
viding a fully abstract compilation scheme from an ML dialect named F∗ to
JavaScript that relies on type-based invariants. Similarly, Ahmed and Blume [4]
prove full abstraction of a continuation-passing style translation from simply-
typed λ-calculus to System F. In both works, the low-level language is typed
and more high-level than ours; the protection mechanism is the type system.

A large amount of work on secure compilation involved the compilation of
unsafe languages such as C. An extensive survey can be found in Younan et
al. [21]. Instead of focussing on a fully abstract compilation, that research has
been devoted to strengthening the security properties C offers.

A different area of research is devoted to providing security architectures
with fine-grained low-level protection mechanisms. Different security architec-
tures with access control mechanisms comparable to ours have been developed
in the last years: TrustVisor [15], Flicker [16], Nizza [19] and SPMs [20]. The ex-
istence of working prototypes underlines the feasibility of this kind of approach
to bring efficient and secure low-level memory access control in commodity hard-
ware. No results comparable to ours has been proven for these systems.

9 Conclusion and Future Work

This paper presented a fully abstract compilation scheme for a strongly-typed,
single-threaded, component-based, object-oriented programming language with
dynamic memory allocation to untyped machine code. Full abstraction of the
compilation scheme is proven correct, guaranteeing preservation of contextual
equivalence between high-level components and their compiled counterparts.
From the security perspective this ensures that low-level attackers are restricted
to the same capabilities high-level attackers have. To the best of our knowledge,
this is the first result of its kind for such an expressive high-level language and
such a powerful low-level one.

Future work includes extending the results to a language with concurrency
and distribution primitives. Additionally, we plan to provide a fully abstract
trace semantics for the low-level language.

References

1. Martín Abadi. Protection in programming-language translations. In Secure Inter-
net programming, pages 19–34. Springer-Verlag, London, UK, 1999.

2. Martín Abadi and Gordon Plotkin. On protection by layout randomization. In
CSF ’10, pages 337–351. IEEE, 2010.

3. Pieter Agten, Raoul Strackx, Bart Jacobs, and Frank Piessens. Secure compilation
to modern processors. In CSF ’12, pages 171–185. IEEE, 2012.

4. Amal Ahmed and Matthias Blume. An equivalence-preserving CPS translation via
multi-language semantics. SIGPLAN Not., 46(9):431–444, September 2011.

5. Adam Chlipala. A certified type-preserving compiler from lambda calculus to
assembly language. SIGPLAN Not., 42(6):54–65, June 2007.

6. Iain D. Craig. The interpretation of object-oriented programming languages - up-
dated to include C# (2. ed.). Springer, 2002.

7. Pierre-Louis Curien. Definability and full abstraction. Electron. Notes Theor.
Comput. Sci., 172:301–310, April 2007.

8. Frank S. de Boer, Marcello M. Bonsangue, Martin Steffen, and Erika Ábrahám.
A fully abstract semantics for UML components. In FMCO’04, volume 3657 of
Lecture Notes in Computer Science, pages 49–69. Springer-Verlag, 2005.

9. Cedric Fournet, Nikhil Swamy, Juan Chen, Pierre-Evariste Dagand, Pierre-Yves
Strub, and Ben Livshits. Fully abstract compilation to JavaScript. Technical
report, MSR, 2012.

10. Radha Jagadeesan, Corin Pitcher, Julian Rathke, and James Riely. Local memory
via layout randomization. In CSF ’11, pages 161–174. IEEE, 2011.

11. Alan Jeffrey and Julian Rathke. A fully abstract may testing semantics for con-
current objects. Theor. Comput. Sci., 338(1-3):17–63, June 2005.

12. Alan Jeffrey and Julian Rathke. Java Jr.: fully abstract trace semantics for a core
Java language. In ESOP’05, volume 3444 of LNCS, pages 423–438. Springer, 2005.

13. Andrew Kennedy. Securing the .NET programming model. Theor. Comput. Sci.,
364(3):311–317, November 2006.

14. Xavier Leroy. A formally verified compiler back-end. J. Autom. Reason., 43(4):363–
446, December 2009.

15. Jonathan M. McCune, Yanlin Li, Ning Qu, Zongwei Zhou, Anupam Datta, Virgil
Gligor, and Adrian Perrig. Trustvisor: Efficient TCB reduction and attestation. In
SP ’10, pages 143–158. IEEE, 2010.

16. Jonathan M. McCune, Bryan J. Parno, Adrian Perrig, Michael K. Reiter, and Hi-
roshi Isozaki. Flicker: an execution infrastructure for TCB minimization. SIGOPS
Oper. Syst. Rev., 42(4):315–328, April 2008.

17. Robin Milner. A Theory of Type Polymorphism in Programming. Journal of
computer and system sciences, 375:348–375, 1978.

18. Gordon D. Plotkin. LCF considered as a programming language. Theoretical
Computer Science, 5:223–255, 1977.

19. Lenin Singaravelu, Calton Pu, Hermann Härtig, and Christian Helmuth. Reducing
TCB complexity for security-sensitive applications: three case studies. SIGOPS
Oper. Syst. Rev., 40(4):161–174, April 2006.

20. Raoul Strackx, Frank Piessens, and Bart Preneel. Efficient isolation of trusted
subsystems in embedded systems. In SecureComm, pages 344–361, 2010.

21. Yves Younan, Wouter Joosen, and Frank Piessens. Runtime countermeasures for
code injection attacks against C and C++ programs. ACM Computing Surveys,
44(3):17:1–17:28, June 2012.

