
??

Secure Compilation to Protected Module Architectures

Marco Patrignani and Pieter Agten and Raoul Strackx and Bart Jacobs, iMinds-DistriNet,
Dept. Computer Science, KU Leuven, Belgium
and Dave Clarke, Dept. Information Technology, Uppsala, Sweden and iMinds-DistriNet, Dept.
Computer Science, KU Leuven, Belgium
and Frank Piessens, iMinds-DistriNet, Dept. Computer Science, KU Leuven, Belgium

A fully abstract compiler prevents security features of the source language from being bypassed by an at-
tacker operating at the target language level. Unfortunately, developing fully abstract compilers is very
complex, and it is even more so when the target language is an untyped assembly language. To provide a
fully abstract compiler that targets untyped assembly, it has been suggested to extend the target language
with a protected module architecture — an assembly-level isolation mechanism which can be found in next-
generation processors. This paper provides a fully abstract compilation scheme whose source language is an
object-oriented, high-level language and whose target language is such an extended assembly language. The
source language enjoys features such as dynamic memory allocation and exceptions. Secure compilation of
first-order method references, cross-package inheritance and inner classes is also presented. Moreover, this
paper contains the formal proof of full abstraction of the compilation scheme. Measurements of the overhead
introduced by the compilation scheme indicate that it is negligible.

Categories and Subject Descriptors: D.2.3 [Coding Tools and Techniques]: Object-oriented programming;
D.2.4 [Software/Program Verification]: Formal Methods; D.3.4 [Processors]: Compilers; D.4.6 [Secu-
rity and Protection]: Verification

General Terms: Secure compilation, object-oriented programming, untyped machine code, security

Additional Key Words and Phrases: Fully abstract compilation, protected module architecture

ACM Reference Format:
Marco Patrignani, Pieter Agten, Raoul Strackx, Bart Jacobs, Dave Clarke and Frank Piessens, 2014. Secure
compilation to Protected Module Architectures. ACM Trans. Program. Lang. Syst. ?, ?, Article ?? (January
????), 51 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
Modern high-level languages such as ML, Java or Scala offer security features to pro-
grammers in the form of type systems, module systems, encapsulation primitives and
so forth. In order for these high-level programs to be executed, they are input to other
programs: compilers (in certain cases they are given to interpreters which are even-

This work has been supported in part by the Intel Lab’s University Research Office. This research is also
partially funded by the Research Fund KU Leuven, and by the EU FP7 project NESSoS. With the financial
support from the Prevention of and Fight against Crime Programme of the European Union (B-CCENTRE).
Marco Patrignani and Pieter Agten hold a Ph.D. fellowship from the Research Foundation Flanders (FWO).
Raoul Strackx is a Ph.D. fellow of the agency for Innovation by Science and Technology (IWT).
Author’s addresses: Marco Patrignani, Pieter Agten, Raoul Strackx, Bart Jacobs and Frank Piessens, Com-
puter Science Department, KU Leuven, Belgium, email: {first.last}@cs.kuleuven.be. Dave Clarke (Cur-
rent address) Department of Information Technology, Uppsala, Sweden, email: {first.last}@it.uu.se.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© ???? ACM 0164-0925/????/01-ART?? $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, Article ??, Publication date: January ????.

??:2 M. Patrignani et al.

tually compiled). Compilers take programs written in a language, called the source
language, and output other programs written (often) in a different language, called
the target language. The target language is (often) machine code and it can be exe-
cuted directly by the processor. Unfortunately, most target languages do not offer the
same security features as high-level source languages. Consider assembly as the tar-
get language of a compiler. An attacker acting at the assembly level can inspect and
modify the whole memory space, breaking security properties such as confidentiality
and integrity of compiled code. One way to withstand such an attacker is by means of
secure compilation, which makes a compiler produce target-level output as secure as
its source-level input.

A way to achieve secure compilation is through a fully abstract compiler. A fully
abstract compiler preserves (and reflects) all abstractions of the source language in
the target language, including security abstractions. So, when the target of a fully
abstract compiler is assembly, the power of a low-level attacker is reduced to that of a
source-level attacker.

Informally, a compiler is fully abstract when it translates indistinguishable source-
level programs into indistinguishable target-level programs. Formally, a fully abstract
compiler preserves and reflects contextual equivalence between source- and target-
level programs. Two programs are contextually equivalent if they cannot be distin-
guished by a third one. For example, consider two instances P1 and P2 of the same
program which contain two different values in the same variable v. Denote their fully
abstract-compiled counterparts by P ↓1 and P ↓2 . If P1 and P2 are contextually equivalent,
then P ↓1 and P ↓2 must also be. So, if the content of v is confidential (for example, the
value stored in v could be private and never communicated), no program interacting
with P ↓1 or P ↓2 can discern it. Notice that a fully abstract compiler does not eliminate
source-level security flaws. It is, in a sense, conservative, as it introduces no more vul-
nerabilities at the target-level than the ones already exploitable at the source level.

The notion of fully abstract compilation also has consequences for code reasoning,
as it allows source-level reasoning. When writing code, programmers need to consider
both the source-level setting where the code is written and the target-level setting
where the code runs. Source-level reasoning means that a programmer needs only to
reason about the behaviour of source-level code. The target-level code is guaranteed to
behave as its source-level counterpart even in the presence of target-level attacks.

With these premises, it is clear that fully abstract compilation is hard to achieve.
Compilation of Java to JVM or of C# to the .NET framework are some of the examples
where compilation is not fully abstract, as Kennedy presented [Kennedy 2006]. Nev-
ertheless, techniques to achieve fully abstract compilation exist. They rely on address
space layout randomisation [Abadi and Plotkin 2012; Jagadeesan et al. 2011], type-
based invariants [Ahmed and Blume 2011; Fournet et al. 2013], and enhancing the
target language with a protected module architecture [Agten et al. 2012; Patrignani
et al. 2013].

This paper describes a fully abstract compilation scheme from a secure high-level
language to untyped assembly language enhanced with a protected module architec-
ture. Protected module architectures offer a fine-grained, program counter-based mem-
ory access control mechanism which provides isolation for specific memory areas. This
isolation mechanism is adopted to preserve source-level security properties in the out-
put of the compiler. The target language is similar to a modern processor architecture,
so the compilation scheme handles subtleties such as flags and registers. The source
language is a component-based, java-like object-oriented programming language that
borrows extensively from the Java Jr. language of Jeffrey and Rathke [Jeffrey and
Rathke 2005b], extending it with exceptions.

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, Article ??, Publication date: January ????.

Secure Compilation to Protected Module Architectures ??:3

The contributions of this paper are the following:

— the presentation of a fully abstract compilation scheme for a strongly-typed,
component-based, object-oriented programming language to untyped assembly lan-
guage;

— the highlighting of mistakes that make a naïve compilation scheme not fully abstract
and their correction;

— the formalisation of both the source and the target languages and the proof of full
abstraction of the compilation scheme;

— the benchmarking of the overhead introduced by the fully abstract compiler.

The prototype of the compiler described in this paper was implemented by means of
additional LLVM passes [Lattner and Adve 2004].

The results of this paper are expressed w.r.t. a specific target language adopting a
specific protected module architecture. The lessons learned can be applied to target
languages adopting different architectures up to minor technical changes. In fact, the
paper highlights what are the features that the protected module architectures needs
to implement to provide the isolation mechanism necessary for the compilation scheme
to be fully abstract.

The paper firstly presents an informal overview of background notions such as
the source and target languages (Section 2), then it describes the secure compilation
scheme (Section 3). The paper then formalises the source and target languages (Sec-
tion 4) and provides the formal proof of full abstraction of the compilation scheme
(Section 5). Then, the paper presents the benchmarking of the overhead introduced
by the secure compilation scheme (Section 6), followed by a discussion on its exten-
sions and limitations (Section 7). Finally, the paper discusses related work (Section 8),
future work and concludes (Section 9).

2. INFORMAL OVERVIEW
This section firstly presents a comparison between different target-level protection
mechanisms (Section 2.1), then it informally introduces both the target and the source
languages of the fully abstract compiler (Section 2.2 and 2.3). This section then gives
an overview of how we will carry out the proof of full abstraction of the compilation
scheme of Section 3 (Section 2.4). Contextual equivalence is then presented as a good
candidate for security policies enforcement through compilation (Section 2.5). Finally,
this section present the threat model for this paper (Section 2.6).

2.1. Low-level Protection Mechanism
In order to safeguard low-level assembly programs from malicious attackers, a num-
ber of alternatives arise. In the following we review the three most interesting ones:
address space layout randomisation, protected module architectures and processes; a
review of additional ones is left for Section 8. We do not give a thorough review of all
existing low-level protection mechanism, the interested reader is referred to the PhD.
thesis of Yves Younan for an in-depth analysis of the subject [Younan 2008]. Alterna-
tives to using low-level protection mechanism include using massive-scale, diversified
software [Homescu et al. 2013; Larsen et al. 2014]

Address Space Layout Randomisation: ASLR. ASLR is a technique that randomises
the memory layout of key data areas of a program such as the base of the stack, of the
heap, of libraries, etc. The executable is divided in segments whose order is randomised
by the dynamic linker (i.e. just before running the executable). This technique is used
to hinder an attacker from mounting “return to libc” attacks, or from using previously
acquired knowledge of the location of certain data to access that data.

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, Article ??, Publication date: January ????.

??:4 M. Patrignani et al.

ASLR has been used to achieve (probabilistic) fully abstract compilation of the
simply-typed λ-calculus [Abadi and Plotkin 2012] and of the same language extended
with dynamic memory allocation, first and higher-order references and call/cc [Ja-
gadeesan et al. 2011]. It requires a small trusted computing base (TCB) consisting
of the randomisation function used to generate the different memory layouts.

The major drawback of ASLR (and of related techniques such as stirring [Wartell
et al. 2012]) for secure compilation is that it relies on a good randomisation function,
so it only provides probabilistic guarantees. Moreover, there have been successful de-
randomisation attacks to existing ASLR implementations [Shacham et al. 2004] which
could be used to violate the security of a compiler relying on ASLR. Finally, certain at-
tacks, such as the ones presented in Problem 5 in Section 3, focus on corrupting data
instead of the control flow of execution. These are not simply solved with ASLR and
require additional care, as discussed in Section 3.

Protected Module Architectures: PMA. PMA provides assembly code with the ability
to create protected modules. Like their high-level counterpart, such as ML modules,
these modules offer an interface mechanism to allow interoperation with code that is
not in the module. Additionally, these modules isolate what is placed within the module
boundaries.

The most common way to implement PMA is through program counter-based mem-
ory access control mechanisms [McCune et al. 2010; McCune et al. 2008; Noorman
et al. 2013; Singaravelu et al. 2006; Strackx and Piessens 2012; McKeen et al. 2013].
We review these mechanisms from the work of Patrignani et al. [Patrignani et al. 2013]
and Strackx and Piessens [Strackx and Piessens 2012]. This mechanism logically di-
vides the memory into a protected and an unprotected section. The protected section
is further divided into a code and a data section. The code section contains a vari-
able number of entry points: the only protected addresses to which instructions in un-
protected memory can jump and execute. The data section is accessible only from the
protected section. The size and location of each memory section are specified in a mem-
ory descriptor. The table below summarises the access control model enforced by the
protection mechanism.

From\ To Protected Unprotected
Entry Point Code Data

Protected r x r x r w r w x
Unprotected x r w x

This protection mechanism provides a secure environment for code that needs to
be protected from a potentially malicious surrounding environment. It is appealing in
the context of embedded systems, where kernel-level protection mechanisms are of-
ten lacking. Very recently, Intel publicly announced Software Guard Extensions (Intel
SGX), a hardware implementation of a Protected Module Architecture. Hence PMA
support will be broadly available in mainstream processors within a few years, and
any processor with PMA support can benefit from the secure compilation techniques
proposed in this paper. Moreover, secure compilation and PMA aid the verification of
properties of C code placed inside a protected module [Agten et al. 2015]. Finally, the
TCB of PMA can be very small [McCune et al. 2008; Singaravelu et al. 2006; Strackx
and Piessens 2012; Strackx et al. 2010] or even zero-software [Eldefrawy et al. 2012;
Noorman et al. 2013; McKeen et al. 2013]. The interested reader is referred to the
work of Strackx et al. [Strackx et al. 2013] for further inquiries on this line of security
research.

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, Article ??, Publication date: January ????.

Secure Compilation to Protected Module Architectures ??:5

Processes. The same access control policy of PMA can be implemented by using op-
erating system-level processes. In this setting, each process gets a different address
space, which provides a protected memory where other processes have no access rights.
Different processes can communicate via message passing, effectively calling functions
implemented in each other’s address space. Additionally, shared memory can be used
for larger data management.

There are two drawbacks for this approach. Firstly, processes and inter-process com-
munication are relatively heavyweight constructs to use. Crossing the boundary be-
tween one process and another is more costly than switching between protected and
unprotected code (and vice-versa) in current PMA implementations. Additionally, the
TCB of this protection mechanism includes the whole operating system, which is much
larger than current PMA implementations.

The reduced TCB, the security benefits and the novelty in choosing it as a protection
mechanism motivate the choice of PMA to protect the target language of the compila-
tion scheme.

2.2. The Target Language A+I, Informally
To model a realistic compilation scheme, the target language should be close to what
is used by modern processors. For this reason this paper adopts A+I (acronym of
Assembly plus Isolation), a low-level language that models a standard Von Neumann
machine consisting of a program counter, a registers file, a flags register and mem-
ory space [Agten et al. 2012; Patrignani et al. 2013; Patrignani and Clarke 2014],
enhanced with a protected module architecture. The registers file contains twelve
general-purpose registers r0-r11 and a stack pointer register SP, which points to the
top of the call stack. The flags register contains two flags: a zero flag ZF and a sign
flag SF which are set when arithmetic operations output a zero or a negative number,
respectively. The call stack is located in unprotected memory. Instructions executed by
the language are listed in Fig. 1. For the sake of simplicity, assume the architecture
targeted by the language works with ` bit-long words, where ` is a power of 2. This al-
lows the formalisation presented to scale to architectures with words of different sizes.
A complete formalisation ofA+I is delayed until Section 4.1. The protection mechanism

movl rd rs Load the word from the memory address in register rs into register rd.
movs rd rs Store the contents of register rs at the address found in register rd.
movi rd k Load the constant value k into register rd. Note that k < 2`.
add rd rs Write rd + rs mod 2` into register rd and set the ZF flag accordingly.
sub rd rs Write rd − rs mod 2` into register rd and set both the ZF and the SF flags

accordingly.
cmp r1 r2 Calculate r1 − r2 and set both the ZF and the SF flags accordingly.
jmp ri Jump to the address located in register ri.
je ri If the ZF flag is set, jump to the address in register ri.
jl ri If the SF flag is set, jump to the address in register ri.
call ri Push the value of the program counter +1 onto the call stack and jump

to the address in register ri.
ret Pop a value from the call stack and jump to the popped location.
halt Stop the execution. We consider the value of register r0 the result of the

execution.

Fig. 1: Instruction set I of language A+I.

affects the semantics of the language, preventing the execution of certain instructions,

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, Article ??, Publication date: January ????.

??:6 M. Patrignani et al.

in accordance with the PMA access control policy presented in Section 2.1. Following
are some code snippets that exemplify the semantics ofA+I. In all examples concerning
A+I code, assume the presence of a protected memory section spanning from address
100 to 200, with a single entry point at address 100. Let Ps denote the code located
in the protected section and Pu denote the code located in the unprotected one. Every
instruction is preceded by the address where it is located; execution starts at address 0.

Example 2.1 (No execution of code in the protected memory partition). Pu ini-
tialises register r0 to 101 (line 1) and then jumps to that address (line 2).
1 0 movi r0 101 // unprotected code
2 1 jmp r0
3 · · ·
4 100 add r0 r1 // protected code
5 101 ret

Since address 101 is not an entry point of the protected memory section, the jump
of Pu does not succeed and execution is halted (this can happen in a variety of ways,
for example, in our prototype detailed in Section 6.1, the execution is suspended and
trapped by the hypervisor [Strackx and Piessens 2012]).

Example 2.2 (No reading/writing the protected code section). Pu initialises regis-
ter r0 to 101 (line 1) and register r1 to 20 (line 2), then it writes the content of r1
at the address in r0 (line 3).
1 0 movi r0 101 // unprotected code
2 1 movi r1 20
3 2 movs r0 r1
4 · · ·
5 100 add r0 r1 // protected code
6 101 ret

Since address 101 is protected, Pu cannot write there, so execution is halted, as in
Example 2.1. Analogously, if the instruction of line 2 were replaced with movl r0 r1,
the execution fails. In that case, Pu would be attempting to read the protected memory
section, while it does not have that privilege.

Example 2.3 (Interoperation between protected and unprotected code). Pu ini-
tialises register r0 to 12 (line 1), register r1 to 10 (line 2), register r5 to 100 (line 3) and
then calls to the protected function located at address 100 (line 4), storing address 4
on the call stack. Ps subtracts registers r0 and r1 (line 6) and, if the result is greater
than or equal to zero, it returns that result (line 9). Otherwise, if the result is less
than zero, Ps jumps to address 104 (lines 7,8), and returns 0 (lines 10, 11). Execution
then continues in unprotected memory at address 4 (line 5, omitted), which is the
address popped from the call stack.
1 0 movi r0 12 // unprotected code
2 1 movi r1 10
3 2 movi r5 100
4 3 call r5
5 · · ·
6 100 sub r0 r1 // protected code
7 101 movi r3 104
8 102 jl r3
9 103 ret

10 104 movi r0 0
11 105 ret

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, Article ??, Publication date: January ????.

Secure Compilation to Protected Module Architectures ??:7

2.3. The High-level Language J+E, Informally
The high-level language adopted by the compilation scheme is J+E (acronym of
J ava plus Encapsulation): a strongly-typed, single-threaded, component-based, object-
oriented language that enforces private fields and public methods. J+E extends the
Java Jr. language of Jeffrey and Rathke [Jeffrey and Rathke 2005b] with local vari-
ables and exceptions. It was chosen since it provides a clear notion of encapsulation for
a high-level component, which makes for simpler reasoning about the secure compila-
tion scheme.
J+E supports many of the basic constructs one expects from a programming lan-

guage (Fig. 2). A program in J+E is called a component, it is a collection of sealed

components C ::= P

packages P ::= {package p;Di} | {package p;De}
import declarations Di ::= interface i extends t {Mt}

| extern o : t;

export declarations De ::= class c extends t implements t {K Ft M}
| object o : t implements t {F}

constructors K ::= c(f : t, f ′ : t′) {super(f); this.f ′′ = f ′}
fields F ::= private f = v

field types Ft ::= private f : t

methods M ::= public m(x : t) : t [throws t] {return E; }

method types Mt ::= public m(x : t) : t [throws t]

expressions E ::= v | x | E.f | E.f = E | E.m(E) | E op E | exit E
| E;E | E in p | var x : t = E | if (E) {E} else {E}
| new t(E) | try {E} catch (x : t) {E} | throw E

types t ::= p.c | p.i | p.c in p | p.c in ∗ | Obj | Unit | Bool | Int
operations op ::= + | − | · | / | ∧ | ∨ | · · ·
values v ::= p.o | unit | true | false | n | throw v

Fig. 2: Syntax of J+E. Denote a sequence of elements E1, . . . , En with E.

packages that communicate via interfaces and public objects. J+E partitions packages
into import and export ones. Import packages are analogous to the .h header file of a
C program.1 They define interfaces, which are named collections of method signatures,
and externs, which are references to externally defined objects. Export packages pro-
vide an implementation of an import package. They define classes, which are named
collections of method implementations and fields (also known as instance variables),
and objects, which implement classes and provide bindings from fields to values. Meth-
ods in J+E can (optionally) throw exceptions. The top of the class hierarchy is Obj, the
only primitive types in J+E are Unit, inhabited by unit; Bool, inhabited by true and
false; and Int, inhabited by word-sized integers. The expression E in p is borrowed

1The kind of C programs one writes when learning C: devoid of preprocessor instructions, macros etc.

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, Article ??, Publication date: January ????.

??:8 M. Patrignani et al.

from Java Jr. It is a type coercion that allows the following: if the expression E is well-
typed to run in package p with return type t, then the expression E in p is well-typed
to run in any package q with return type t, as long as t is a visible type in q.

Listing 1 illustrates the package system of J+E. There, and in future code examples,
we will massage the syntax of the presented examples for the sake of readability. It

1 package P-Import;
2 interface Account {
3 public createAccount() : Account;
4 public getBalance() : Int;
5 }
6 extern extAccount : Account;
7
8 package P-Export;
9 class AccountClass implements P-Import.Account {

10
11 AccountClass() {
12 this.counter = 0;
13 }
14 private counter : Int;
15
16 public createAccount() : P-Import.Account {
17 return new P-Export.AccountClass();
18 }
19 public getBalance() : Int {
20 return this.counter;
21 }
22 public resetAccount() : Unit {
23 this.counter = 0;
24 }
25 }
26 object extAccount : AccountClass { private counter = 0 }

Listing 1: Example of the package system of J+E

contains two package declarations: P-Import is an import package and P-Export is an
export package implementing P-Import. P-Export provides class AccountClass that im-
plements interface Account defined in P-Import. Object extAccount allocated in P-Export
provides an implementation for the extern with the same name defined in P-Import.

One of the security mechanisms of J+E is given by private fields, which can be used
to define security properties such as confidentiality and integrity, as they are not ac-
cessible from outside the class declaring them. In J+E, classes are private to the pack-
age that contains their declarations. Objects are allocated in the same package as
the class they instantiate. Due to this package system, for a package to be compiled
it only needs the import packages of any package it depends on. As a result, formal
parameters in methods have interface types, since classes that implement those inter-
faces are unknown. This discipline is called: programming to an interface. Addition-
ally, since constructors are not exposed in interfaces, cross-package object allocation
happens through factory methods. For example, the name of class AccountClass from
Listing 1 is not visible from outside package P-Export, thus expressions of the form new
P-Export.AccountClass() cannot be written outside P-Export.

2.4. The Proof of Full Abstraction of the Compilation Scheme, Informally
A fully abstract compilation scheme preserves and reflects contextual equivalence of
source- and target-level programs. Informally speaking, two programs C1 and C2 are
contextually equivalent if they behave the same for all possible programs they inter-
act with. The programs that C1 and C2 can interact with are called contexts, they are

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, Article ??, Publication date: January ????.

Secure Compilation to Protected Module Architectures ??:9

(partial) programs with a hole. Once the hole is filled with either C1 or C2, the pro-
gram is whole. For any context, if the behaviour of the whole program does not change
when the hole is filled with either C1 or C2, then C1 and C2 are contextually equiva-
lent [Plotkin 1977]. This notion is denoted as C1 ' C2.

Given a source-level program C1, denote the target level program that is produced by
compiling it as C↓1 . Fully abstract compilation is formally expressed as: C1 ' C2 ⇐⇒
C↓1 ' C

↓
2 . In order to prove this statement, the equivalence is split in two cases.

— The direction C↓1 ' C↓2 ⇒ C1 ' C2 states that the compiler outputs target-level
programs that behave as the corresponding source programs. This is what most com-
pilers achieve, at times even certifying the result [Chlipala 2007; Leroy 2009]; we
are not interested in this direction. This is thus assumed, the implications of this
assumption are made explicit in Section 5.2.

— The direction C1 ' C2 ⇒ C↓1 ' C
↓
2 states that source-level abstractions are preserved

through compilation to the target level. Proving this direction requires reasoning
about contexts, which is notoriously difficult [Ahmed and Blume 2011]. This is even
more so in this setting, where contexts are low-level memories lacking any inductive
structure. To avoid working with contexts, we replace the notion of contextual equiva-
lence (') at the target level, with that of trace equivalence ('T), which also provides
an inductive principle to use in the proof. The replacement is possible because the
two equivalences have been proved to coincide in A+I [Patrignani and Clarke 2014].
This direction is thus restated as C1 ' C2 ⇒ C↓1 'T C

↓
2 .

Trace equivalence is based on trace semantics, which describes the behaviour of
a program in terms of a set of traces: sequences of actions the program can un-
dertake [Jeffrey and Rathke 2005b]. Two programs are thus trace equivalent if
their trace semantics coincide, i.e. if their sets of traces are the same. This no-
tion (or rather, its negation) is used to prove the contrapositive of this direction:
C↓1 '/T C

↓
2 ⇒ C1'/ C2.

In order to prove that C1 and C2 are not contextually equivalent, it suffices to show
that there exists a source-level context that behaves differently depending on whether
its hole is filled with C1 or C2. Such a context is said to differentiate C1 from C2.
This proof relies on an algorithm that creates a source-level context, a witness that
differentiates C1 from C2, given the different traces of their compiled counterparts
C↓1 and C↓2 .
This proof strategy is known in the field [Agten et al. 2012; de Boer et al. 2005;
Jeffrey and Rathke 2005a; Patrignani and Clarke 2014]. However, the complexity
of the proof resides in handling features of the high-level language such as strong
typing, dynamic memory allocation and exceptions.

2.5. Contextual Equivalence: a Security Perspective
Contextual equivalence plays a key rôle in the definition of a fully abstract compiler,
yet what ensures that a fully abstract compiler is a secure one? This section briefly ex-
plains how contextual equivalence can be used for security policies enforcement [Abadi
1999; Abadi and Plotkin 2012; Agten et al. 2012; Ahmed and Blume 2011; Fournet
et al. 2013; Jagadeesan et al. 2011; Kennedy 2006; Patrignani et al. 2013].

In J+E, fields are private, so every allocated object defines a secret state: the con-
tents of its fields. Some objects can thus be indistinguishable from an external point of
view even though their states differ: they are contextually equivalent.

Contextual equivalence can be adopted to state security properties such as confiden-
tiality, integrity and invariant definition, as the code examples of Fig. 3 show [Abadi
and Plotkin 2012; Agten et al. 2012]. In the examples, classes are annotated with

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, Article ??, Publication date: January ????.

??:10 M. Patrignani et al.

subscripts for identification but their names are meant to be the same. Assume the
presence of an external object of type External, which presents a method callback().

1 package p;
2 class CL {
3 private secret, min, max : Int = 0;
4
5 public setSecret() : Int {
6 secret = 0;
7 return 0;
8 }
9 public proxy(external : External) :

Int {
10 secret = 0;
11 external.callback();
12 if (secret == 0) {
13 return 0;
14 }
15 return 1;
16 }
17 public invariantCheck() : Int {
18 if (min ≤ max) {
19 return 0;
20 }
21 return 1;
22 }
23 }

1 package p;
2 class CR {
3 private secret, min, max : Int = 0;
4
5 public setSecret() : Int {
6 secret = 1;
7 return 0;
8 }
9 public proxy(external : External) :

Int {
10 secret = 0;
11 external.callback();
12
13 return 0;
14
15
16 }
17 public invariantCheck() : Int {
18
19 return 0;
20
21
22 }
23 }

Fig. 3: Example of contextually equivalent J+E code.

Class CL and CR differ in the value stored in secret after a call to setSecret(). If they
are contextually equivalent, then no program interacting with either of them can infer
the value of secret. This is a confidentiality property. Additionally, CL checks whether
changes to secret have been made during the call to external.callback() in method
proxy(). If CL and CR are contextually equivalent then the call to external.callback()
does not modify the value of secret, this is an integrity property. Finally, when min>max,
method invariantCheck() of CL will return 1. If CL and CR are contextually equivalent
then the invariant min ≤ max can never be violated. This is an invariance property.

From the high-level language perspective, contextual equivalence holds for the pre-
sented examples. However, when these examples are run, they are compiled with an
insecure compiler to untyped assembly code. As the assembly code is untyped and it
allows jumps to all addresses in memory, an attacker with assembly code injection
privileges can violate the security properties of these examples [Younan et al. 2012].
If these classes are compiled with the secure compilation scheme of Section 3, their
security properties cannot be violated, as contextual equivalence is preserved at the
target level.

2.6. Threat Model
Having introduced all related notions, this section firstly gives an informal presenta-
tion of the threat model considered in this paper, followed by a more precise definition
of the elements that constitute the threat model.

The threat model represents an attacker with kernel-level code injection privileges
introducing malware into a software system. Kernel-level code injection is a critical
vulnerability of complex software system where injected code operates with kernel-
level privileges and it can thus bypass all existing software-based security mecha-

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, Article ??, Publication date: January ????.

Secure Compilation to Protected Module Architectures ??:11

nisms. Notorious examples include OpenBSD’s IPv6 remote kernel buffer overflow2

and a buffer overrun in JPEG processing of Microsoft applications3. An attacker who
exploits such a vulnerability injects code that can violate the security property of the
whole software system and disclose confidential data, disrupt running applications and
so forth. The attacker’s aim is in fact to violate the security policy of existing software
running in the system, by means of the injected A+I code. The injected code is also
not subject to most source-level restrictions such as well-typedness. For this reason,
assume the attacker is injecting A+I code. Let us now define the system under attack.

The system under attacked is assumed to be equipped with a single PMA instance
that provides one protected memory partition (a protected module). The PMA instance
is responsible for enforcing the access control policy of Section 2.1 on the whole mem-
ory. The instance is assumed to be beyond the reach of A+I code, so it cannot be tam-
pered with by the attacker. This assumption seems reasonable, since most PMA im-
plementation have small TCBs that can be verified for the absence of exploitable vul-
nerabilities. A compromised PMA would render all security guarantees void, as the
attacker would be able to circumvent its access control policies.

Given this system, it is desirable to guarantee that at least the software within
the protected module is secure. These security properties are defined in the source
language of the software. In the case of J+E code, these security properties include at
least the following:

(1) confidentiality and integrity of field contents, of object names and of method bodies;
(2) no control flow alteration apart from when using exceptions;
(3) non reachability of stuck (error) program states.

The first point defines secrets in J+E software. Method bodies can reveal certain of
those secrets, such as field contents and object names, by returning them. Secrets can
be discerned by an attacker only if methods reveal them, no other ways should be
exploitable by an attacker to discern a secret. Since method bodies are confidential,
and there is no way to reveal them, there should be no way for an attacker to discern
two different implementations of the same function. Problem 1 presents an example of
how a naïve compiler would violate the confidentiality of field contents, more of these
examples are presented throughout Section 3.

PROBLEM 1 (STACK SECURITY). Consider two classes that define a secret field
with different values and the same method doCallback that inputs an object and calls
method callback on it. These two classes are implemented by two objects: oL and oR.
Assume the presence of an external object of type External, which presents a method
callback().
1 package p;
2 class CL {
3 private secret : Int = 0;
4
5 public doCallback(cb : External) :

Int {
6 var x : Int = secret;
7 cb.callback();
8 return 0;
9 }

10 }
11 object oL : CL

1 package p;
2 class CR {
3 private secret : Int = 1;
4
5 public doCallback(cb : External) :

Int {
6 var x : Int = secret;
7 cb.callback();
8 return 0;
9 }

10 }
11 object oR : CR

2http://www.securityfocus.com/archive/1/462728/30/150/threaded
3https://technet.microsoft.com/library/security/ms04-028

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, Article ??, Publication date: January ????.

http://www.securityfocus.com/archive/1/462728/30/150/threaded
https://technet.microsoft.com/library/security/ms04-028

??:12 M. Patrignani et al.

Objects oL and oR are equivalent at the source level, but their compiled counterparts
are not. Since local variables are placed on the call stack (in unprotected memory) and
a low-level attacker can read unprotected memory, she can read the value of x during
the callback cb.callback(). Variable x contains the value of secret, which is a private
field and which is different for both objects.

A naïve compilation scheme does not entail the confidentiality or integrity of the
call stack, which allows attackers to read and write local variables. An attacker can
use this vulnerability to read secrets from the stack, similarly to a buffer-overread at-
tack [Strackx et al. 2009]. Alternatively she can even tamper with the control flow by
overwriting a return address on the stack, similarly to a return address clobbering at-
tack [Erlingsson et al. 2010].

The second point ensures that the only way to divert the flow of execution is through
exceptions. Since exception throwing must be specified in method interfaces, critical
functionalities can be implemented so that they are carried out in their entirety: if the
right exceptions are caught, no other way of diverting the execution flow exists.

The third point is similar to the second one: there is no way of disrupting some
functionalities by supplying arbitrary parameters to method calls.

The presence of a protected module provides a basic protection of some of the afore-
mentioned properties, but not all of them are covered. The adoption of a secure com-
piler for the software to be placed in the protected memory should ensure that all
aforementioned security properties are enforced in that software. By defining such a
secure compiler as a fully abstract compiler, we capture exactly the preservation of
those properties in the generated target code: a fully abstract compiler makes the soft-
ware in the protected memory secure.

For a more precise treatment, the threat model consists of the following definitions:
the system under attack (Definition 2.4), the security property of the system (Defini-
tion 2.5), and the attacker to the system (Definition 2.6).

Definition 2.4 (System under attack). The system is a Von Neumann machine with
a flat address space and one PMA instance that provides a single protected partition
in memory (a protected module). The protected module contains A+I code, called the
protected code, that complies to J+E specifications, so the protected code behaves like
J+E code. The unprotected memory contains arbitrary A+I code.

In the system under consideration, for the sake of simplicity, only compiled J+E soft-
ware is considered to be present. Moreover, only one protected module is assumed to be
present. A single module suffices to protect the concerns of a single user or of multiple
users that trust each other. Addressing the challenges of adopting multiple protected
modules in the system, each belonging to mutually-distrusting stakeholders, is left for
future work.

Definition 2.5 (Security property). The protected code behaves as its J+E specifica-
tions and in no other way.

This property has the security implications described above since it is applied to the
J+E language. In different languages, this property may not have the same security
relevance. For example, this property in the context of the C language would not entail
confidentiality and integrity, as any structure can be inspected by virtue of simple
pointer arithmetic. 4

4The C standard states that the behaviour of these scenarios is “undefined”, but most C compilers allow
arbitrary pointer arithmetic.

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, Article ??, Publication date: January ????.

Secure Compilation to Protected Module Architectures ??:13

Definition 2.6 (Attacker). The attacker can arbitrarily change the state of the un-
protected partition of the same memory of the protected module. The attacker also
knows how to interact with the secure module.

The attacker is assumed to know the interfaces implemented by the protected code:
the location of each entry point, the types each function expects and the addresses
of eventual static objects. Knowledge of the functionalities of existing software in the
system is given to the attacker so the injected code can interact (possibly safely) with
existing software.

Limitations. This threat model does not cover all possible security threats that
the system is subject to, as exemplified below. Source-level security violations, e.g. a
method returning a field-stored private key that was supposed to be secret, are not con-
sidered in this paper. These violations should not be countered at the compiler level,
but with source-level artefacts such as type systems. Availability attacks, e.g. unpro-
tected code that never calls protected code, are also not considered, since the attacker
is assumed to interact with the software to be protected in order to violate its security
properties. Finally, side channel attacks are also not considered. The definition of the
attacker’s power, in fact, limits the kind of attacks she can mount. The attacker cannot
exploit covert channels to mount side-channels attacks such as timing attacks, since
these attacks cannot be expressed with A+I code.

This paper now describes how to develop a secure compiler that counters the threat
imposed by the aforementioned attacker.

3. SECURE COMPILATION OF J+E
This section firstly describes the general structure of the secure compilation scheme
for J+E. Then it presents details of the secure compiler in three parts, all of which
introduce a series of naïve mistakes to secure compilation of a certain feature and then
correct them. The first feature to be presented is callbacks (Section 3.1), the second one
is dynamic memory allocation (Section 3.2) and the final one is exceptions (Section 3.3).

For the sake of simplicity, we start by developing a secure compiler for a core of J+E.
In the following, assume no dynamic memory allocation (i.e. no new expressions) and
no presence of exceptions (i.e. no try/catch blocks and no throw e expressions). Since
no new objects are created at runtime, components use static objects and externs for
now.

We follow some standard conventions about how objects are compiled [Ducournau
2011]. The compilation of a J+E component C outputs a protected module C↓, written
in A+I, consisting of a partial memory space and a memory descriptor. The program
C↓ interacts with should not be able to distinguish modules just by their size, so, a
constant amount of memory is reserved for each protected module, independent of the
actual memory space required. The protected module is placed in protected memory
and the memory descriptor divides the reserved space over the code and the data sec-
tion. The stack pointer register is set up by the context and is pointing to free space in
unprotected memory.

The compilation process consists of translating each package, class, object, interface
and method of the input component. To prevent a low-level module from being dis-
tinguished by the order of its methods in memory, packages, interfaces, methods in
interfaces, classes, objects and externs are sorted alphabetically. Methods that do not
appear in interfaces are compiled based on the order of occurrence in the class.

When an object is compiled, a word is reserved to indicate its class, which is used
to dynamically dispatch methods. Methods are dispatched based on offsets through
the v-tables, which associate class and method offsets with the corresponding method

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, Article ??, Publication date: January ????.

??:14 M. Patrignani et al.

body. For each object, fields are then given a unique index number starting at 1, based
on their order of occurrence. For a field fi, one word of memory is reserved at the i-
th memory address of the memory section of a given object. Integer-typed constants
are translated to their corresponding numeric value, unit is translated to 0, true and
false are translated to 1 and 0 respectively.

To translate a method body, the compiler processes each expression in turn, translat-
ing it into a list of behaviourally-equivalent instructions. Registers r0 to r3 are used as
general working registers, return values are passed through r0. In a method call at the
target level, register r4 identifies the current object (this). Method calls are limited to
seven parameters, which are passed through registers r5 to r11. These choices are not
critical, the compiler may use registers in a different way and still be fully abstract.
A calling convention is set so that register r0 contains the address where to return
after a call at the target level (i.e. any jump instruction between the protected and
unprotected sections, located at address x is preceded by an instruction movi r0 x + 1).
This restriction simplifies the proof of full abstraction of the compilation scheme, we
envisage it can be lifted at the price of complicating the proof, without making it un-
provable.

Parameters and local variables are given a method-local index number. For each
translated method body, a prologue and an epilogue are prepended and appended to
it. The prologue allocates and initialises a new activation record on the call stack, the
record contains local variables and parameters for the method body. The epilogue deal-
locates the activation record when the method is done. The code of prologues, epilogues
and method bodies is placed in free space in the code section.

To support programming to an interface, and since protected memory can be entered
only through entry points, a method entry point is generated for each interface-defined
method. The entry point for the i-th method is placed at address i ∗ 128 of the code sec-
tion. The offset of 128 memory words is chosen arbitrarily, with the only condition that
there is enough space between entry points to perform a number of simple operations,
as will be described in Section 3.1. Each entry point forwards the call to the actual
method body, so code at entry points consists of two parts: (1) a call to the method’s
body and (2) a return instruction. When the call to the body returns, the return in-
struction returns control to the location from which the entry point was called.

In order to specify how the component interacts with external code, assume the com-
ponent being compiled provides one import package without a corresponding export
one. Refer to this package as the distinguished import package (DIP). The DIP con-
tains interface and extern definitions, thus callbacks are calls to methods defined in
the DIP, on externs defined in the DIP. Component code is not supposed to implement
interfaces defined in the DIP, as those are functionalities it requires of external pro-
grams. External code which provides an implementation for the DIP can implement
interfaces defined in the component. This can lead to the dynamic dispatch procedure
being called on objects that are not in the protected memory partition. When this case
is detected, the compiled component must behave as in the case of a callback. The ad-
dress where protected code must jump when performing a callback is assumed to be
known based on a calling convention set up between protected and unprotected code.

So, a return entry point is generated to support returning from a callback. To per-
form a callback, the actual return address is first pushed on the call stack, then the
address of the return entry point is pushed on the call stack. Control is then trans-
ferred to unprotected memory. When the code in unprotected memory returns from
the callback, control will first be transferred to the return entry point, which will then
subsequently return back to the actual return address.

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, Article ??, Publication date: January ????.

Secure Compilation to Protected Module Architectures ??:15

The compilation scheme as described above ensures that a module is exited either
through a callback, or through the return statement at the end of an entry point.
Therefore, the second part of each method entry point is named exit point.

To provide a better understanding of the compilation scheme thus far, Fig. 4 presents
the memory layout of the compiled counterpart of the code of Listing 1.

createAccount
... (128 words)

getBalance
... (128 words)

return entry point
... (128 words)

createAccount
... (body)

getBalance
... (body)

resetAccount
... (body)

dynamic dispatch

�

�

�

address 100

address 228

address 356
C

ode
Section

v-tables
...

Heap

extAccount
... (fields)

D
ata

Section

P
rotected

M
odule

address 1000

address 2000

Fig. 4: Memory layout of the compilation of code from Listing 1. � indicate entry points.
The protected memory partition spans from address 100 to address 2000, the code
section spans for 900 addresses.

3.1. Secure Compilation of Callbacks
The compilation scheme places code and data of the compiled object in the protected
memory partition and configures the entry points of the protected memory partition to
forward calls to method implementations. This scheme is sound, in the sense that two
nonequivalent J+E components will be compiled into two nonequivalent A+I programs.
It also provides some basic protection; for instance, a target-level attacker cannot just
scan memory to find the values of object fields as this is prevented by the protected
module architecture. However this scheme fails to be secure, this is shown by means
of counterexamples.

3.1.1. Limitations of the Compilation Scheme. The compilation scheme defined so far is not
fully abstract, as illustrated by the series of examples below; Problem 1 also arises in
this context. In these examples, A+I modules can be differentiated, while their J+E

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, Article ??, Publication date: January ????.

??:16 M. Patrignani et al.

counterparts cannot. As before, classes and objects are annotated with subscripts for
identification but their names are meant to be the same.

PROBLEM 2 (INFORMATION LEAKAGE). Consider two classes that define the same
method testVariable which assigns different values to a local variable, tests whether
that value is 0 and returns 0 in either case. These two classes are implemented by two
objects: oL and oR.
1 package p;
2 class CL {
3 public testVariable() : Int {
4 var x : Int = 0;
5 if (x == 0) {
6 return 0;
7 } else {
8 return 0;
9 }

10 }
11 }
12 object oL : CL

1 package p;
2 class CR {
3 public testVariable() : Int {
4 var x : Int = 1;
5 if (x == 0) {
6 return 0;
7 } else {
8 return 0;
9 }

10 }
11 }
12 object oR : CR

Objects oL and oR are equivalent in J+E, as method testVariable always returns 0
for both. However, a low-level attacker can differentiate their translations, due to the
equality test in the condition of the if-statement. This test sets the ZF flag in oL and
clears it in oR. This example illustrates that the flags register can leak information. In-
formation can also be leaked through the general purpose registers r0 to r11 or through
the stack pointer register SP.

PROBLEM 3 (VALUE OF BOOLEANS). Consider two classes that provide a method
identBool which inputs a Boolean value and returns true if that value is true or false
otherwise. These two classes are implemented by two objects: oL and oR.
1 package p;
2 class CL {
3 public identBool(x : Bool) : Bool {
4 if(x == true){
5 return true;
6 }
7 return false;
8 }
9 }

10 object oL : CL

1 package p;
2 class CR {
3 public identBool(x : Bool) : Bool {
4
5 return x;
6
7
8 }
9 }

10 object oR : CR

The two classes implement this method differently, yet the behaviour is the same, so
objects oL and oR are equivalent in J+E. TheirA+I translations however are not, because
a low-level attacker can use any low-level value for parameter x.

This problem arises whenever the source language is high-level and it has primitive
types inhabited by a reduced number of values, such as Booleans and Unit [Agten et al.
2012; Fournet et al. 2013]. This problem is similar to a full abstraction failure for the
.NET C# compiler reported by Kennedy [Kennedy 2006], where the boolean type is two
valued in C# but is byte valued in the .NET virtual machine.

3.1.2. Secure Compilation of Callbacks. To counter the vulnerabilities described above,
the compilation scheme is enhanced in the following ways.

Stack security. The compiler must ensure the confidentiality and integrity of vari-
ables and control structures on the call stack. Instead of storing the entire stack in
unprotected memory, it is split into an unprotected stack in unprotected memory and
a secure stack in the data section of the protected memory section. The protected mod-
ule output by the compiler places its activation records exclusively on the secure stack.

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, Article ??, Publication date: January ????.

Secure Compilation to Protected Module Architectures ??:17

The secure stack is given a large enough upper bound so that most programs can run
without overflowing it. If the stack is overflowed, all registers and flags are cleared and
the execution halts.

At the start of each entry point, the stack is switched to the secure stack. When
leaving the protected module, the stack is restored to its previous address, which is
checked to be in unprotected memory. When returning from protected to unprotected
code, the return address is also checked to be in unprotected memory. A callback is
performed by first pushing the actual return address onto the secure stack. Then, r4
is stored in the secure stack so as to be able to restore this to the right value once the
callback returns. Next, the stack is switched to the unprotected stack and the address
of the return entry point is pushed onto it. Control is then transferred to the context.
When the callback returns, control will first be transferred to the return entry point,
which switches back to the secure stack. Then it restores this to the expected value
and it transfers control back to the actual return address. Because data is written to
the unprotected stack during this process, the compiler must ensure that the location
of the unprotected stack is valid before it writes to it. That is, the address of the un-
protected stack must lie outside of protected memory, for otherwise parts of protected
memory might get overwritten.

The context could tamper with the control flow by jumping to the return entry point
when there is no callback to return from. To prevent this, the compiler initialises the
first location of the secure stack to the address of a procedure clears all registers and
flags and then halts. The return entry point will jump to this address if it is called
when there is no callback to return from.

Information leakage. In J+E, the only way for two objects to communicate, is through
well-typed method calls and returns. The compiler must ensure that a low-level at-
tacker cannot use any other communication channels, as this might leak information
that should be kept private to the protected module.

The model of A+I inherently provides three ways to exchange information: (1)
through unprotected memory, (2) through the flags register and (3) through the gen-
eral purpose registers r0 to r11 and SP. Method (1) is already precluded, as compiled
programs never write in unprotected memory. The SP register does not convey private
information, because it is restored to the location of the unprotected stack whenever
control leaves the protected module. The compiler constrains methods (2) and (3) as
follows:

— Flags are cleared at each callback and exit point.
— Every general purpose register except r0 is cleared at each exit point.
— Every general purpose register is cleared at each callback, except if it is used for

passing a parameter.

The compiler generates code at each entry point to enforce these constraints.

Value of booleans. The compiler must ensure that all memory locations correspond-
ing to J+E fields and variables contain only values for which there is a corresponding
J+E value. The only values of type Bool are true and false and the corresponding A+I
values are 1 and 0. The compiler enforces this constraint by adding a run-time check
at each entry point, to verify that the value of any Bool-typed parameter is either 0
or 1. An analogous check is added at each callback to a method with return type Bool.
The same checks are introduced for type Unit, inhabited by unit in J+E which is com-
piled to 0 in A+I. If any check fails, all registers and flags are cleared and the execution
halts.

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, Article ??, Publication date: January ????.

??:18 M. Patrignani et al.

These checks are needed for all ground types inhabited by a number of values that
do not fit a A+I word representation. This is why Integer-typed values are not checked,
because any A+I word can map to a J+E integer.

In the light of these additions to the compilation scheme, Table I presents the
pseudo-code routine that is executed at entry points.

Method p entry point Preamble to returnback entry point
1 Switch stack to the protected one a Switch stack to the unprotected

one
2 Check Bool-typed parameters b Clear flags and unused registers

(run method p code) (run callback code)
Exit point Returnback entry point

3 Clear flags and registers r1 - r11 c Switch stack to the protected one
4 Switch stack to the unprotected

one
d Check Bool-typed parameters

Table I: Pseudo-code of entry point routines.

3.2. Secure Compilation of Dynamic Memory Allocation
To present secure compilation of the dynamic memory allocation feature, from this
section onwards, source-level components can contain expressions of the form new t(v).
For this, a secure heap is created: it is a heap located in the protected data section,
where the objects dynamically created by the protected program will be allocated. As
for the secure stack, the secure heap is given a large enough upper bound so that most
programs can run without exhausting it. If the heap is exhausted, all registers and
flags are cleared and the execution halts.

The translation of those expressions causes a free location of the secure heap to be
initialised for the newly created object. As previously stated, a word is reserved to
indicate the translated representation of its type t and a word is reserved for each of
its fields.

3.2.1. Limitations of the Compilation Scheme. The compilation of new t(v) expressions as
stated above is not secure, as described in the examples below.

PROBLEM 4 (TYPE OF THE RECEIVER). Consider two packages that provide a class
with an unaccessible secret and a class that implements Pairs of Objects with a method
to get the first element of the pair.
1 package p;
2 class PairL {
3 private fst, snd : Obj = null;
4 public getFirst(): Obj {
5 return this.fst;
6 }
7 }
8 class SecretL {
9 private secret : Int = 0;

10 }
11 object oL : SecretL

1 package p;
2 class PairR {
3 private fst, snd : Obj = null;
4 public getFirst(): Obj {
5 return this.fst;
6 }
7 }
8 class SecretR {
9 private secret : Int = 1;

10 }
11 object oR : SecretR

The value of secret cannot be leaked at the J+E level, however, the compiled coun-
terparts of those packages can leak its value. A low-level attacker can perform a call to
method getFirst() with current object oL or oR. This will return the secret field, since

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, Article ??, Publication date: January ????.

Secure Compilation to Protected Module Architectures ??:19

fields are accessed by offset. As A+I code is untyped, nothing prevents this attack from
happening.

PROBLEM 5 (TYPE OF THE ARGUMENTS). Similarly to Problem 4, arguments of
methods can be exploited in order to mount a low-level attack. Extend both packages
from Problem 4 with the class ProxyPair, which has a method takeFirst that inputs a
Pair and returns the output of the method getFirst called on the input.

1 · · ·
2 class ProxyPair {
3 public takeFirst(v : Pair): Obj {
4 return v.getFirst();
5 }
6 }

In J+E, both packages are still equivalent and no additional attacks can be mounted.
However, a low-level attacker can pass an object of type Secret as argument to method
takeFirst() and the code will leak the contents of field secret.

PROBLEM 6 (LEAKAGE OF OBJECT REFERENCES). Consider two packages with a
class Secret implemented by two objects and with different implementations of method
createSecret. While that method in SecretL returns a new object, in SecretR it allocates
two objects and returns one of them.
1 package p;
2 class SecretL {
3 private secret : Int = 0;
4 public createSecret() : Secret {
5
6 return new Secret();
7 }
8 }
9 object oL1 : SecretL

10 object oL2 : SecretL

1 package p;
2 class SecretR {
3 private secret : Int = 0;
4 public createSecret() : Secret {
5 var x : Secret = new Secret();
6 return new Secret();
7 }
8 }
9 object oR1 : SecretR

10 object oR2 : SecretR

Object references at the low-level are the address where objects are allocated. Once
pL and pR are compiled, an attacker can discover that, for example, the identities of
oL1 and oR1 are 100, while those of oL2 and oR2 are 104. After method createSecret
is executed, an attacker can see that createSecret()L returns 108 and createSecret()R
returns 112. With this knowledge, the attacker can guess that pR created an additional
object at address 108.

The attacker can thus call methods on objects it does not know of by guessing the
address where an object is allocated. Passing object addresses from a secure program to
an external one can give away the allocation strategy of the compiler, as well as the size
of allocated objects. An attacker that learns this information can then use it to mount
attacks such as those presented in Problem 4 and 5. From a technical point of view
this means that leaking object addresses and accepting guessed addresses breaks full
abstraction of the compilation scheme.

3.2.2. Secure Compilation of Dynamic Memory Allocation. To counter the vulnerabilities de-
scribed above, the compilation scheme is enhanced in a number of ways. Since the
countermeasure to Problem 6 affects the others, it is presented first.

Object identity. To mask low-level object identities, a data structure O is added to
the protected code section. It is a map between natural numbers and low-level object
identities that have been passed to external code. Such object identities that are passed
to external code are added to O right before they are passed outside. The index in the
data structure is then passed in place of the object identity, the same index must be
passed whenever an already recorded object is passed. Indices inO are thus passed in a

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, Article ??, Publication date: January ????.

??:20 M. Patrignani et al.

deterministic order, based on the interaction between external and internal code. Code
at entry points is responsible for retrieving object identities from O before the actual
method call. Access and retrieval of entries in O is very fast and it can be implemented
in O(1). As the only objects in the data structures are the ones the attacker knows, she
cannot guess object identities. This does not hamper the functionality of external code
as it can only call methods on objects.

Consider for example the right code snippet in Problem 6. There, oR1 and oR2 are
given index 0 and 1 and they are added in O at compile time (since they are static
objects). Once method createSecret is called, two objects are created. However, the
object saved in variable x is not returned, so it is not added to O. The other object is, so
it is added to O. Thus, at the A+I level, the compiled counterpart of createSecret will
return 2 the first time it is called in both pL and pR.

Entry points. Table II describes the code executed at entry points. Both method entry

Method p entry point Preamble to returnback entry point
1 Load receiver v = O(r4) a Push current object v = r4, return

address a and return type m
2 Check that v’s class defines

method p
b Reset flags and unused registers

3 Load parameters v from O c Replace object identities with in-
dexes in O

4 Dynamic typecheck on v d Jump to callback address
5 Perform dynamic dispatch (run external code)

(run method p code)
Exit point Returnback entry point

6 Reset flags and unused registers e Pop return type m and check it
7 Replace object identities with in-

dexes in O
f Dynamic typecheck

g Pop return address a, current ob-
ject v and resume execution

Table II: Extension to the pseudocode executed at entry points presented in Table I.
Loading means that a value is retrieved from the memory, push and pop are operations
on the secure stack.

points and the return entry point are logically divided in two parts; they maintain the
functionalities introduced in Section 3.1 and expand them as follows. The first part
performs the checks described below and then jumps either to the code that performs
the dynamic dispatch or to the callback. The second part returns control to the location
from which the entry point was called.

For method calls to be well-typed, the code at entry points performs dynamic type-
checks. This checks that a method is invoked on objects of the right type (line 2), with
parameters of the right type (line 4), addressing Problem 4 and 5. Similar checks are
executed when returning from a callback, in the returnback entry point (line f). These
checks are performed only on objects whose class is defined in the compiled compo-
nent, as they are allocated in protected memory; no control over externally allocated
objects can be assumed. Dynamic typechecks are performed based on the word that
indicates the class of a compiled object, that value is checked to comply with the value
the method expects.

Resetting flags and registers are as in Section 3.1. If any check fails, all registers
and flags are cleared and the execution halts.

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, Article ??, Publication date: January ????.

Secure Compilation to Protected Module Architectures ??:21

A convention between protected and unprotected code is needed in order to identify
indexes in O from unprotected addresses. For this, assume that the leftmost bit of a
word is 1 if it denotes an index in O.

3.3. Secure Compilation of Exceptions
To present secure compilation of exceptions, from this section onward, source-level
components can contain try/catch blocks and throw e expressions. Method signatures
can specify if the method throws a particular exception.

Secure compilation of languages supporting exceptions must handle the difficulties
that result from the modification of the flow of execution of a program. This can be
modified when a part of a program throws an exception and another part catches it.
Exception handling can be implemented by modifying the runtime of the language so
that it knows where to dispatch a thrown exception. Activation records are responsible
for pointing to the exception handlers in order to propagate a thrown exception to the
right handler.

1 package P-Exc;
2 class AccountTest {
3 public withdraw() : Unit {
4 try{
5 new P-Exc.EmptyAccount().getBalance();
6 } catch (e : P-Exc.NoMoneyException) {
7 // handle e
8 }
9 }

10 }
11 class EmptyAccount {
12 public getBalance() : Unit throws P-Exc.NoMoneyException {
13 throw new P-Exc.NoMoneyException();
14 }
15 }
16 class NoMoneyException implements Throwable {· · ·}

Listing 2: Example of exceptions usage.

In Listing 2, the catch block of method withdraw() in class AccountTest defines a han-
dler for exceptions of type NoMoneyException. When the activation record for withdraw()
is allocated, the handler is registered in the related allocation record. When an excep-
tion of type NoMoneyException is thrown, the stack is traversed to find the closest han-
dler for exceptions of type NoMoneyException. As activation records are traversed and a
handler is not found, those records are popped from the stack.

In order to implement throwing an exception in secure code that is caught in inse-
cure code (or vice versa), throwing is securely compiled as callbacks (or calls). Thus
two additional entry points are created: the throw entry point and the throwback entry
point. These entry points forward calls to the secure and insecure exception dispatch-
ers, respectively. The secure exception dispatcher traverses the secure stack looking for
handlers for the thrown exception. After an activation record has been inspected and
deallocated, if the ‘next’ allocation record to be inspected is in unprotected memory, the
exception is forwarded to the external code through the throwback entry point.

Since exceptions are objects, in order to prevent exploits as in Problem 4, the throw-
back entry point must remember internally allocated exceptions that are thrown to
external code. So, data structure O is used to register leaked exceptions as well as
leaked object identities. This prevents external code from passing a non-existing object
identity to the secure exception handler in place of the object identity of an exception,
effectively throwing a non existent exception.

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, Article ??, Publication date: January ????.

??:22 M. Patrignani et al.

For protected code to catch unprotected exceptions (and vice-versa) based on the (un-
protected) interface type declared by the thrown object, some modifications are needed.
A table is added in the protected code section, where unprotected object ids are associ-
ated to their known interface types. When an unprotected object is made known to the
protected code (as a parameter in a call or by being returned), the object id is added
to the table, alongside the interface types it is known to implement. So, when a catch
block is defined for an unprotected interface type, the type information of unprotected
objects is known and, in case an unprotected object is thrown, it can be caught.

Fig. 5 presents a graphical overview of how exceptions are handled normally (on
the left) and in the presented compilation scheme (on the right). Lower case letters

Stack

fs
g

hs

i

ls
throw e

54321
Secure stack

fs

hs

ls

throw e

Insecure stack
g

i

122334455

= throw entry point

= throwback entry point

= protected memory

Fig. 5: Comparison of ways to handle exceptions.

indicate the allocation record for the corresponding function. A subscript s indicates a
secure function; the stack grows downward. The order in which exception handlers are
searched is indicated on arrows. The throw and throwback entry point split the same
arrow in two parts.

The introduction of two additional entry points may seem to introduce functionality
at the target level that the source-level lacks; however this is not the case. Only ex-
ceptions of existing types can be thrown and handling exceptions follows the normal
course of the stack. The external code could replace an exception, but this is equivalent
to the high-level language functionality to catching an exception and throwing another
one. Thus the target level is not granted additional functionality.

3.3.1. Limitations of the Compilation Scheme. In the context of secure compilation, if ex-
ception handlers are compiled as above, one problem arises.

PROBLEM 7 (EXCESSIVE EXCEPTION CATCHING). Consider two methods
safeCallback that invoke method callback on an input parameter. Even though
callback does not specify that it will throw exceptions, one implementation of
safeCallback wraps it in a try/catch block.

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, Article ??, Publication date: January ????.

Secure Compilation to Protected Module Architectures ??:23

1 package p;
2 class CL {
3 public safeCallback(e : External) :

Int {
4 try{
5 e.callback();
6 }catch (v : Throwable){
7 return 1;
8 }
9 return 0;

10 }
11 }
12 object oL : CL

1 package p;
2 class CR {
3 public safeCallback(e : External) :

Int {
4
5 e.callback();
6
7
8
9 return 0;

10 }
11 object oR : CR

In J+E, calling safeCallback on either oL or oR always returns 0. However, when
they are compiled, a low-level attacker could throw an exception during the execu-
tion of callback. This will cause differentiation between the two implementations, as
safeCallback called on oL returns 1, while called on oR it returns 0.

3.3.2. Secure Compilation of Exceptions. To counter the vulnerability described above,
the compilation scheme is enhanced as follows.

Excessive Exceptions Catching. To address Problem 7, the code responsible for com-
piling callbacks needs to be augmented. Information on the possible exceptions thrown
by callbacks are known at compile time, they appear in the method signature in the
DIP. When compiling a callback to method m(x) throws u, type u must be saved on the
secure stack. Code at the throwback entry point must then check that an exception
thrown by unprotected code is one that could be thrown according to the correspond-
ing unprotected method signature. This is done by performing a dynamic typecheck on
the type of the thrown exception. As for method parameters, the dynamic typecheck is
performed only on exceptions that are allocated in protected memory. If the exception
to be caught comes from unprotected memory, no check is made, yet the information
that a possible exception can be thrown needs to be recorded. If no exceptions can be
thrown, a special value 0 is recorded. If the typecheck succeeds, then the exception is
treated normally, otherwise all registers and flags are cleared and the execution halts.

Since exceptions can be securely compiled, the compilation scheme is complete, as
it addresses the totality of J+E. This paper then proceeds to the formalisation of the
languages before proving this compilation scheme to be fully abstract.

4. LANGUAGE FORMALISATION
This section presents the formalisation of both A+I (Section 4.1) and J+E (Section 4.2).

4.1. Formalisation of the Target Language A+I
This section presents syntax, semantics and trace semantics of A+I. The formalisation
is derived from the work of Patrignani and Clarke [Patrignani and Clarke 2014].

4.1.1. Syntax. As previously mentioned, A+I is run on an architecture that models a
Von Neumann machine consisting of a program counter p, a register file r, a flags
register f and memory space m. The program counter indicates the address of the
instruction that is executed. The register file contains 12 general purpose registers r0
to r11 and a stack pointer register SP, which contains the address of the top of the
current call stack. The flags register contains a zero flag ZF and a sign flag SF, which
are set or cleared by arithmetic instructions and are used by branching instructions.

Fig. 6 presents elements of the formalisation of A+I. Words w are either instructions
i or sequences of bits of length `. Instructions i are elements of the set I and define
the programming language executed on the architecture (Fig. 1 in Section 2.2). The

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, Article ??, Publication date: January ????.

??:24 M. Patrignani et al.

Words w ::= [0 or 1]` Memories m ::= ∅
Instructions i ∈ I ⊂Words | m; a 7→ w

Empty word 0 ::= 0` Numbers n ::= n ∈ N
Addresses a ∈ 0..2` − 1 Programs P ::= (m, s)

Memory descriptors s ::= (ab, nc, nd, n)

Fig. 6: Elements of the formalisation of A+I.

empty word 0 is a sequence of 0’s whose length is based on the architecture being
considered. Addresses a are natural numbers, ranging from 0 to 2`−1. Memories m are
maps from addresses to words. Memory access, denoted as m(a), is defined as follows:
m(a) = w if a 7→ w ∈ m; it is undefined otherwise. Define the domain of a memory
as dom(m) = {a | a 7→ w ∈ m}. If two memories m and m′ have disjoint domains,
they can be merged to yield another memory. Formally, if dom(m) ∩ dom(m′) = ∅, then
m + m′ = {a 7→ w | a 7→ w ∈ m or a 7→ w ∈ m′}. Memory descriptors s are quadruples:
(ab, nc, nd, n): ab is the address where the protected memory partition starts, nc and nd
are the sizes (in number of addresses) of the code and data section respectively and n is
the number of entry points. Entry points are allocated starting from the base address
ab. Each entry point is Ne words long (in the secure compilation scheme, Ne is 128).
Assume the entry points do not overflow the protected code section, thus the constraint
n · Ne < nc holds for the all memory descriptors. Programs P are pairs of a memory m
and a memory descriptor s.

4.1.2. Semantics. Before introducing the semantics, Fig. 7 defines the memory access
control enforcement rules. Read judgments s ` predicate(a, b, · · ·) as: “according to s,
predicate holds for addresses a, b, · · · ”. Whenever an access control rule is violated by

(Aux-protected)

ab ≤ p < (ab + nc + nd)

s ` protected(p)

(Aux-unprotected1)

p < ab

s ` unprotected(p)

(Aux-unprotected2)

(ab + nc + nd) ≤ p
s ` unprotected(p)

(Aux-returnEntry)

p = ab + (n− 1) · Ne
s ` returnEntryPoint(p)

(Aux-entryPoint)

p = ab +m · Ne
m ∈ N m < n

s ` entryPoint(p)

(Aux-data)

(ab + nc) ≤ p
p < (ab + nc + nd)

s ` data(p)

(Aux-read-1)

s ` protected(p)

s ` readAllowed(p, a)

(Aux-read-2)

s ` unprotected(p)
s ` unprotected(a)

s ` readAllowed(p, a)

(Aux-write-1)

s ` unprotected(a)

s ` writeAllowed(p, a)

(Aux-write-2)

s ` protected(p)
s ` data(a)

s ` writeAllowed(p, a)

(Aux-entry)

s ` unprotected(p)
s ` entryPoint(p′)

s ` entryJump(p, p′)

(Aux-return)

s ` protected(p)
s ` unprotected(p′)

s ` exitJump(p, p′)
(Aux-internal)

s ` protected(p)
s ` protected(p′) s 0 data(p′)

s ` intJump(p, p′)

(Aux-external)

s ` unprotected(p)
s ` unprotected(p′)

s ` extJump(p, p′)

Fig. 7: Access control enforcement rules. Assume s ≡ (ab, nc, nd, n)

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, Article ??, Publication date: January ????.

Secure Compilation to Protected Module Architectures ??:25

a program, the execution is halted and the program counter is set to -1.
Define functions msec(m, s) and mext(m, s), which return the protected and unpro-

tected parts of a memory m according to the descriptor s, respectively as: msec(m, s) =
{a 7→ w | a 7→ w ∈ m, s ` protected(a)} and mext(m, s) = {a 7→ w | a 7→ w ∈ m, s `
unprotected(a)}.

The operational semantics is a small step semantics that describes how each in-
struction of the language transforms an execution state into a new one. Thus, the
operational semantics handles programs in the whole memory: both the protected and
unprotected partitions.

Definition 4.1 (Execution state). An execution state, denoted as Ω, is a quintuple
Ω = (p, r, f,m, s), where p is a program counter, r is a register file, f is a flags register,
m is a memory and s is a memory descriptor.

Given Ω = (p, r, f,m, s), let bΩc be the state which encompasses only the pro-
tected memory: (p, r, f, msec(m, s), s). Analogously, let dΩe be the state that encom-
passes only the unprotected memory: (p, r, f, mext(m, s), s). Relations →i ⊆ bΩc × bΩc
and →e ⊆ dΩe × dΩe describe the evaluation of instructions that only affect the pro-
tected and unprotected parts of memory respectively. Fig. 8 presents the rules for →i ,
rules for→e are obtained by replacing an intJump assumption with an extJump one. In
the rules, notation m[a 7→ w] indicates that memory m is updated to a new one that is
equal to m except that the value stored at address a is w. Notation r[R 7→ w] indicates
that the register file r is updated to a new one that is equal to r except that the value
stored in register R is w. Notation r(R) indicates the value contained in register R in
register file r. Let m(p) = inst denote that inst is the word allocated in m(p), where
inst ∈ I. Note that the program counter is set to −1 whenever the halt instruction is
encountered, in order to capture termination. This way, no progress can be made, as
m(−1) does not return a valid instruction: the program is in a stuck state.

Definition 4.2 (Stuck state). A state Ω = (p, r, f,m, s) is stuck, denoted as Ω⊥, when
the program counter does not point to a valid instruction: m(p) /∈ I.

The operational semantics of A+I is a binary relation over states→→ ⊆ Ω×Ω defined
by the rules of Fig. 9. It relies on relations →i and →e , for transitions that affect only
a section of memory, as captured by rules Eval-protected and Eval-unprotected. The
compiler ensures that rules Eval-movl-out and Eval-movs-out will never be executed and
that unused registers and flags are always reset to 0 when jumping between protected
and unprotected memory sections. Rule Eval-callback (and return) is performed when
executing a callback (and a return). The only difference between the callback and the
return cases is that in the latter one, all registers besides r0 contain 0.

The transitive closure of relation →→ is indicated with →→∗. A state Ω performing n
reduction steps is indicated as Ω→→n Ω′. The evaluation of program P is a sequence of
steps that takes the initial state of P to another state.

Definition 4.3 (Initial state). The initial state of a program (m, s), denoted as
Ω0(m, s), is the state (p0, r0, f0,m, s), where s = (ab, nc, nd, n), p0 = (ab + nc + nd + 2),
r0 = [SP 7→ 0; ri 7→ 0 i=0..11], and f0 = [ZF 7→ 0;SF 7→ 0].

The evaluation of P terminates if Ω0(P) →→∗ Ω⊥; the result of the computation is
stored in r0. If the evaluation of program P does not terminate, P diverges. A program
P diverges, denoted as P ⇑ , if it executes an unbounded number of reduction steps.
Formally: P⇑ if ∀n ∈ N,∃Ω′. Ω0(P)→→n Ω′.

Fully abstract compilation relies on the notion of contextual equivalence, which
is now defined. Contextual equivalence relates two programs that cannot be distin-

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, Article ??, Publication date: January ????.

??:26 M. Patrignani et al.

(Eval-movl)

m(p) = (movl rd rs)
s ` intJump(p, p+ 1)

s ` readAllowed(p, r(rs))
r′ = r[rd 7→ m(r(rs))]

(p, r, f,m, s)→i (p+ 1, r′, f,m, s)

(Eval-movs)

m(p) = (movs rd rs)
s ` intJump(p, p+ 1)

s ` writeAllowed(p, r(rd))
m′ = m[r(rd) 7→ r(rs)]

(p, r, f,m, s)→i (p+ 1, r, f,m′, s)

(Eval-movi)

m(p) = (movi rd i)
s ` intJump(p, p+ 1)

r′ = r[rd 7→ i]

(p, r, f,m, s)→i (p+ 1, r′, f,m, s)

(Eval-compare)

m(p) = (cmp r1 r2)
s ` intJump(p, p+ 1)

f ′ = f [ZF 7→ (r(r1) == r(r2));
SF 7→ (r(r1) < r(r2))]

(p, r, f,m, s)→i (p+ 1, r, f ′,m, s)

(Eval-add)

m(p) = (add rd rs)
s ` intJump(p, p+ 1)

v = (r(rd) + r(rs))%2` r′ = r[rd 7→ v]
f ′ = f [ZF 7→ (v == 0)]

(p, r, f,m, s)→i (p+ 1, r′, f ′,m, s)

(Eval-sub)

m(p) = (sub rd rs)
s ` intJump(p, p+ 1)

v = (r(rd)− r(rs))%2` r′ = r[rd 7→ v]
f ′ = f [ZF 7→ (v == 0);
SF 7→ (r(rd)− r(rs) < 0)]

(p, r, f,m, s)→i (p+ 1, r′, f ′,m, s)
(Eval-function-call)

m(p) = (call rd) p′ = m(r(rd))
s ` intJump(p, p′)

r′ = r[SP 7→ r(SP) + 1]
m′ = m[r′′(SP) 7→ p+ 1]

(p, r, f,m, s)→i (p′, r′, f,m′, s)

(Eval-function-ret)

m(p) = (ret) p′ = m(r(SP))
s ` intJump(p, p′)

r′ = r[SP 7→ r(SP)− 1]

(p, r, f,m, s)→i (p′, r′, f,m, s)

(Eval-je-true)

m(p) = (je ri) f(ZF) == 1
p′ = r(ri) s ` intJump(p, p′)

(p, r, f,m, s)→i (p′, r, f,m, s)

(Eval-jl-true)

m(p) = (jl ri) f(SF) == 1
p′ = r(ri) s ` intJump(p, p′)

(p, r, f,m, s)→i (p′, r, f,m, s)
(Eval-je-false)

m(p) = (je ri) f(ZF) == 0
s ` intJump(p, p+ 1)

(p, r, f,m, s)→i (p+ 1, r, f,m, s)

(Eval-jl-false)

m(p) = (jl ri) f(SF) == 0
s ` intJump(p, p+ 1)

(p, r, f,m, s)→i (p+ 1, r, f,m, s)
(Eval-jump)

m(p) = (jmp rd) p′ = r(rd) s ` intJump(p, p′)

(p, r, f,m, s)→i (p′, r, f,m, s)

(Eval-halt)

m(p) = (halt)

(p, r, f,m, s)→i (−1, r, f,m, s)

Fig. 8: Operational semantics ofA+I instructions for programs in the protected memory
partition.

guished by any third program interacting with them [Plotkin 1977]. This notion relies
on the concept of contexts, which is introduced before presenting the equivalence itself.

Since we consider A+I programs P that are placed in protected memory and interact
with arbitrary unprotected code, contexts model that unprotected code. Thus for any
descriptor s, contexts M are partial memories: M = m, where all addresses of M are
unprotected. Formally, given s, ∀a ∈ dom(M), s ` unprotected(a). A program P and a
context M are compatible, denoted as P _M, if the memories of P and M have disjoint
domains. Let dom(M) = dom(m) if M = m; formally, P _M if P = (m′, s) and dom(m′) ∩

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, Article ??, Publication date: January ????.

Secure Compilation to Protected Module Architectures ??:27

(Eval-protected)

bΩc →i bΩ′c
Ω→→ Ω′

(Eval-unprotected)

dΩe →e dΩ′e
Ω→→ Ω′

(Eval-movl-out)

m(p) = (movl rd rs)
s ` intJump(p, p+ 1)

s ` readAllowed(p, r(rs))
s ` unprotected(r(rs))
r′ = r[rd 7→ m(r(rs))]

(p, r, f,m, s)→→ (p+ 1, r′, f,m, s)

(Eval-movs-out)

m(p) = (movs rd rs)
s ` intJump(p, p+ 1)

s ` writeAllowed(p, r(rd))
s ` unprotected(r(rd))
m′ = m[r(rd) 7→ r(rs)]

(p, r, f,m, s)→→ (p+ 1, r, f,m′, s)
(Eval-callback (and return))

m(p) = (jmp rd)
p′ = r(rd) s ` exitJump(p, p′)

(p, r, f,m, s)→→ (p′, r, f,m, s)

(Eval-call (and returnback))

m(p) = (jmp rd)
p′ = r(rd) s ` entryJump(p, p′)

(p, r, f,m, s)→→ (p′, r, f,m, s)

Fig. 9: Operational semantics of whole A+I programs.

dom(M) = ∅. If P and M are compatible, M can be plugged with P in order to model
interaction between P and M. Formally, if P _M then M[(m′, s)] = (m′ +m, s).

Programs P1 and P2 are contextually equivalent, denoted as P1 ' P2, when, for all
contexts they interact with, P1 diverges if and only if P2 also diverges.

Definition 4.4 (Contextual equivalence). P1 ' P2 if ∀M. P1
_M ∧ M[P1] ⇑ ⇐⇒

P2
_M ∧ M[P2]⇑ .

An implication of this definition is that for P1 and P2 to be contextually equivalent
they must have the same memory descriptor. For the sake of simplicity we will always
assume the compatibility of a program and the context it is plugged in, shortening the
above definition to: P1 ' P2 if ∀M. M[P1]⇑ ⇐⇒ M[P2]⇑ .

4.1.3. Trace Semantics. As for the operational semantics, a notion of execution states
is required for the trace semantics as well. Execution states, denoted as Θ, are the
same as Ω except that Θ do not deal with the whole memory but just with its protected
partition. So, the memory m of (p, r, f,m, s) spans only the protected memory partition
indicated by s. Additionally, Θ can be (unknown,m, s), an unknown state that models
when code is executing in unprotected memory [Jeffrey and Rathke 2005b].

Definition 4.5 (Initial state for traces). The initial state for traces of a program
(m, s), denoted as Θ0(m, s), is the state (unknown,m, s).

Below are the labels exhibited by the traces semantics.

Λ ::= α | τi α ::=
√
| γ? | γ! γ ::= call p(r) | ret p r0

A label Λ can be either an observable action α or a non-observable action τi. Action τi
indicates the unobservable action occurred in protected memory. Decorations ? and !
indicate the direction of the observable action: from unprotected to protected code (?)
or vice-versa (!). Observable actions include a tick

√
indicating that the execution has

terminated. Additionally, observable actions are function calls or returns to a certain
address p, combined with the registers r and flags f . Registers and flags are in the
labels as they convey information on the behaviour of programs. There are no labels
for reads or writes to unprotected memory as those instructions are never generated
by the compiler.

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, Article ??, Publication date: January ????.

??:28 M. Patrignani et al.

Fig. 10 presents the rules defining the relation Θ
α

=⇒⇒ Θ′, which describe when a
state Θ generates trace α and results in state Θ′. The traces of a A+I program P is

(Trace-internal)

(p, r, f,m, s)→i (p′, r′, f ′,m′, s)
s ` intJump(p, p′)

(p, r, f,m, s)
τi−−→→ (p′, r′, f ′,m′, s)

(Trace-internal-tick)

(p, r, f,m, s)→i (p′, r′, f ′,m′, s)
s ` protected(p) (p′, r′, f ′,m′, s)⊥

(p, r, f,m, s)
√
−−→→ (p′, r′, f ′,m′, s)

(Trace-call)

s ` entryPoint(p)

(unknown,m, s)
call p(r)?−−−−−−−→→ (p, r, f,m, s)

(Trace-returnback)

s ` returnEntryPoint(p)

(unknown,m, s)
ret p r(r0)?−−−−−−−−→→ (p, r, f,m, s)

(Trace-callback)

s ` exitJump(p, p′)
m(p) = (jmp p′) r4 6= 0

(p, r, f,m, s)
call p′(r)!−−−−−−−→→ (unknown,m, s)

(Trace-return)

m(p) = (jmp p′)
s ` exitJump(p, p′) ∀i ∈ 1..11, ri = 0

(p, r, f,m, s)
ret p′ r(r0)!−−−−−−−−−→→ (unknown,m, s)

(Trace-refl)

Θ
ε

=⇒⇒ Θ

(Trace-tau-i)

Θ
τi−−→→ Θ′

Θ
ε

=⇒⇒ Θ′

(Trace-trans)

Θ
α

=⇒⇒ Θ′′ Θ′′
α′

==⇒⇒ Θ′

Θ
αα′

===⇒⇒ Θ′

(Trace-action)

Θ
α−−→→ Θ′

Θ
α

=⇒⇒ Θ′

Fig. 10: Rules of the trace semantics of A+I.

defined as follows: Traces(P) = {α | ∃Θ′.Θ0(P)
α

=⇒⇒ Θ′}. Two programs P1 and P2 are
trace-equivalent, denoted as P1'T P2, if their traces are the same.

Definition 4.6 (Trace equivalence). P1'T P2 if Traces(P1) = Traces(P2).

An important result of this trace semantics is that when it is applied to compiled
components, traces capture all possible behaviours of a compiled component. Thus the
trace semantics captures precisely the same notion as the operational semantics. The
formal statement of this property is captured by Proposition 4.7 below.

PROPOSITION 4.7 (TRACE SEMANTICS IS EQUIVALENT TO OPERATIONAL SEMANTICS).
For any two A+I components C↓1 and C↓2 obtained from compiling J+E components C1

and C2 with the compilation scheme of Section 3, we have that: C↓1 'T C
↓
2 ⇐⇒ C↓1 ' C

↓
2 .

Proposition 4.7, whose proof is detailed in [Patrignani and Clarke 2014], drives the
proof strategy for the main result, which is presented in Section 5. That work consid-
ers an assembly language enhanced with a protected modules architecture, yet that
formalisation differs slightly from the one presented in this paper. In that work, the
language has two stacks and switching between them is done by using call and ret
instructions. In this work, only one stack is present and jmp instructions are used to
switch between memory partitions. Intuitively, that formalisation has a built-in no-
tion of secure and insecure stacks, while this work only has an insecure one and the
secure stack is set up by the secure compiler. The results of Proposition 4.7 can thus
be applied in this paper as well.

4.2. Formalisation of J+E
This section presents the formalisation of the dynamic semantics of J+E, which bor-
rows extensively from that of Java Jr. [Jeffrey and Rathke 2005b]. Its syntax was al-
ready presented in Fig. 2 in Section 2.3.

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, Article ??, Publication date: January ????.

Secure Compilation to Protected Module Architectures ??:29

4.2.1. Dynamic Semantics. The dynamic semantics is given in terms of a relation
(C;S ` E) → (C ′;S′ ` E′) that models the evolution of component C executing ex-
pression E with stack S to C ′ executing E′ with stack S′. A binding B is a list of
associations from variables to values, B ::= ∅ | B; (x 7→ v). The lookup of the value
associated to a variable, denoted as B(x), returns v if (x 7→ v) ∈ B and is undefined
otherwise. A stack S is a list of bindings S ::= B, lookup and addition are always made
to the top of the stack, so if S = B1, · · · , Bn, then S(x) stands for B1(x) and S, (x 7→ v)
stands for B1, (x 7→ v). The expression being executed is immersed in an evaluation
context E, which models the environment in which the evaluation takes place. The
syntax of evaluation contexts is:

E ::= [·] | E.m(E) | p.o.m(v,E, E) | E.f | E.f = E | v.f = E | new t(v,E, E)

| if(E){ET }else{EF } | E;E | E in p | var x : t = E | return E
| E op E | v op E | try E catch(x : t) E | throw E | exit E

Rules for reductions of the form (C;S ` E) → (C ′;S′ ` E′) are presented in Fig. 11
and 12. Contextual equivalence for J+E programs is defined based on J+E contexts C,
which are components with a hole, denoted with C[·] [Jeffrey and Rathke 2005b]. The
hole can be filled with another component C to denote the interaction between C and
the context. Assume the context defines a Main package with a Main class and a main
method that identify where the execution starts. We overload the' notation and define
contextual equivalence for J+E programs as follows: C1 ' C2 if ∀C. C[C1]⇑ ⇐⇒ C[C2]⇑
knowing that this relation will not be mistaken for the A+I one.

5. FULL ABSTRACTION OF THE COMPILATION OF J+E TO A+I
This section firstly presents the algorithm mentioned in Section 2.4 through a series of
examples (Section 5.1). Then it presents the proof of full abstraction of the compilation
scheme of Section 3, which relies on the algorithm (Section 5.2).

5.1. The Algorithm
This section presents the algorithm which takes as input two different, low-level traces
α1 and α2 and two components C1 and C2 and outputs a high-level component C that
differentiates C1 and C2. Traces α1 and α2 were generated by C↓1 and C↓2 when in-
teracting with the same, unknown external memory. This section presents several ex-
amples of the expected output of the algorithm when different traces and components
are input. The examples illustrate crucial cases the algorithm needs to consider when
creating the output component.

In the following, the adjective internal denotes objects (classes) that are allocated
(defined) by components C1 and C2. The adjective external denotes objects (classes)
that are allocated (defined) by the output component.

General idea. The algorithm analyses actions in the low-level traces α1 and α2.
Those actions can be: call, return, callback, returnback and termination (

√
). Actions

that appear at even-numbered positions in a trace are calls or returnbacks, generated
from the external memory. Actions that appear at odd-numbered positions are returns
or callbacks, generated by C1 or C2. This partitioning is because execution starts in
unprotected memory.

For the algorithm to be correct, it must detect when two different actions are encoun-
tered at an odd position in a trace. Assuming the first different actions are at index i,
the algorithm produces code that replicates the first i−1 actions. Then, it produces code
that, based on the difference in the i-th action, either diverges or terminates based on
which component it is interacting with.

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, Article ??, Publication date: January ????.

??:30 M. Patrignani et al.

(Eval-method)

C.v = {package p; object v : t implements t {F}}
public m(x : t) : t′{return E; } ∈ C.t.mths

(C;S ` E[v.m(v)])→ (C; ∅, S ` E[return E[v/this, v/x] in p])
(Eval-return)

(C;B,S ` E[return v])→ (C;S ` E[v])
(Eval-field)

C.v = {package p; object v : t implements t {F}} f = u ∈ F
(C;S ` E[v.f])→ (C;S ` E[u])

(Eval-field-update)

C.v = {package p; object v : t implements t {F}} (f = u;) ∈ F
C ′ = C + {package p; object v : t implements t {F ′}} F

′
= F + (f = u)

(C;S ` E[v.f = u])→ (C ′;S ` E[u])
(Eval-new)

C.p.c.flds = f : t p.o /∈ dom(C)
C ′ = C + {package p; object o : p.c implements ε{f = v}}

(C;S ` E[new p.c(v)])→ (C ′;S ` E[p.o])
(Eval-if-true)

v = true

(C;S ` E[if(v){ET }else{EF }])→ (C;S ` E[ET])
(Eval-if-false)

v = false

(C;S ` E[if(v){ET }else{EF }])→ (C;S ` E[EF])

(Eval-coercion)

(C;S ` E[v in p])→ (C;S ` E[v])
(Eval-local-var)

(C;S ` E[var x : t = v])→ (C;S, (x 7→ v) ` E[unit])

(Eval-lookup)

S(x) = v

(C;S ` E[x])→ (C;S ` E[v])
(Eval-concatenation)

(C;S ` E[v;E])→ (C;S ` E[E])

(Eval-op)

v op v′ = v′′

(C;S ` E[v op v′])→ (C;S ` E[v′′])
(Eval-try)

v 6= throw v′

(C;S ` E[try{v}catch(x : t){E}])→ (C;S ` E[v])
(Eval-catch)

C.v = {package p; object v : t implements t{F}} t <: t′

(C;S ` E[try{throw v}catch(x : t′){E}])→ (C;S ` E[E[v/x]])
(Eval-catch-fail)

C.v = {package p; object v : t implements t{F}} t <:/t′

(C;S ` E[try{throw v}catch(x : t′){E}])→ (C;S ` E[throw v])
(Eval-exit)

(C;S ` E[exit v])→ (C;S ` v)

Fig. 11: Dynamic semantics of J+E. The subtyping relation is denoted by <:.

The algorithm has been implemented in Scala, and it outputs Java components that
adhere to the J+E formalisation.5 For implementation purposes, instead of diverging

5Available at http://people.cs.kuleuven.be/~marco.patrignani/Publications.html.
ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, Article ??, Publication date: January ????.

http://people.cs.kuleuven.be/~marco.patrignani/Publications.html

Secure Compilation to Protected Module Architectures ??:31

(Eval-throw-sequence)

(C;S ` E[throw v;E])→ (C;S ` E[throw v])
(Eval-throw-throw)

(C;S ` E[throw throw v])→ (C;S ` E[throw v])
(Eval-throw-var)

(C;S ` E[var x : t = throw v])→ (C;S, (x 7→ throw v) ` E[throw v])
(Eval-throw-new)

(C;S ` E[new throw v])→ (C;S ` E[throw v])
(Eval-throw-if)

(C;S ` E[if(throw v){ET }else{EF }])→ (C;S ` E[throw v])

Fig. 12: Dynamic semantics of J+E, rules for exception propagation.

in a case and terminating in the other the implementation terminates with value 1 or
2. This formulation of contextual equivalence is equivalent to ours, yet more amenable
to an implementation [Curien 2007].

Starting point. The algorithm starts by creating a knowledge base about C1 and
C2. The knowledge base contains all signatures of internally- and externally-defined
methods, as well as high- and low-level identities of static objects and externs. This is
because the algorithm needs to be able to differentiate, for example, whether a type
is internally or externally defined, or what are the identities of static objects. Then,
a code skeleton for the output component is created, based on the structure of the
distinguished import package (DIP) of C1 and C2.

For all interfaces i defined in the DIP, a class i_c is created. An object staticFor_i
of type i_c is then created. Classes i_c contain dummy implementations of all methods
defined in i and in all interfaces i extends. These method implementations return a
value whose type matches the expected return type: 0 for type Int, unit for type Unit
and null otherwise. A method called defaultCreate() is added to all classes i_c, it is
implemented as follows:
1 public defaultCreate() : i_c {
2 if (this 6= staticFor_i)
3 return staticFor_i.defaultCreate();
4 return new i_c ();
5 }

Methods defaultCreate() are responsible for allocating external objects, they will be
called only on objects staticFor_i. Constructors inside defaultCreate() are supplied
standard values for their parameters: 0 for type Int, false for type Bool, unit for type
Unit and null otherwise. These classes have no fields, as they are never accessed by
protected code. For the sake of simplicity, the following examples have constructors
with no parameters.

The output component is extended with extra classes. Firstly, class Tester containing
the main method is added; it is required for the execution to start. Other needed classes
will be introduced and motivated by the following examples.

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, Article ??, Publication date: January ????.

??:32 M. Patrignani et al.

Code examples. The following examples present different implementations of C1, on
the left, and of C2, on the right. Components C1 and C2 are modifications of the code in
Listing 1, whose DIP is defined in Listing 3 below. Omitted code is the same in both C1

1 package PIMP;
2 interface Transaction extends Atomic {
3 public createTrans() : Transaction;
4 public callback(arg : Transaction) : Unit;
5 }
6 interface Atomic {
7 public lock() : Int;
8 }
9 extern extTrans : Transaction;

Listing 3: Example of a distinguished import package.

and C2 and can be found in Listing 1. Each code fragment is followed by the low-level
trace it generates: α1 and α2 for C1 and C2 respectively. The examples also describe
what the algorithm must do in order to create the correct output before presenting the
output produced for each case.

The low-level traces will be massaged to aid understanding. For example, given that
object extAccount is compiled to identity 0x123 and that the entry point of method
createAccount is located at address 0x456, the low-level label call 0x456(r[r4 = 0x123])
is written as extAccount.createAccount(). This abstraction is safe, as it does not intro-
duce additional information, it merely massages the present one into a more human-
readable form. Numbers in italic font, e.g. 1 , refer to indexes from O, while identities
of externally allocated objects are numbers in hexadecimal form.

Example 5.1 (Different returned values). Consider the following implementations
for C1 and C2.

1 object extAccount: AccountClass{
2 counter = 1
3 }
4 public getBalance(): Int{
5 return counter;
6 }

1 object extAccount: AccountClass{
2 counter = 0
3 }
4 public getBalance(): Int{
5 return counter += 1;
6 }

Trace α1 forC1 is extAccount.getBalance()?·ret 1!·extAccount.getBalance()?·ret 1!,
while trace α2 for C2 is extAccount.getBalance()? · ret 1! · extAccount.getBalance()? ·
ret 2!. In this example, the produced code needs to differentiate between C1 and C2

based on the type of expected returned values. These types can be either: primitive,
internal, external. With primitive-typed values the differentiation is based on the dif-
ferent values returned by C1 or C2, in this case 1 and 2 respectively.

This example highlights how both the algorithm and the produced code need to keep
track of the index of the action they replicate. To that end, the algorithm maintains
a global variable. The produced code is extended with a class Helper and a static
object oc implementing it. Helper contains a field step with methods getStep() and
incrementStep(), the latter increases the value of step by one. Additionally, it contains
a method diverge() that recursively calls itself, which is used to achieve divergence.
As oc is static, its fields are global variables for the output component.

The algorithm outputs the code of Listing 4. The first actions generate the code in
lines 2 to 6, thus it is wrapped in an if-statement that makes the generated code take
place only when the considered action is the first: i.e. step is 0. The second actions are

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, Article ??, Publication date: January ????.

Secure Compilation to Protected Module Architectures ??:33

1 public main (args : String[]) : Unit {
2 if (oc.getStep() == 0) {
3 oc.incrementStep();
4 var vara : Int = extAccount.getBalance();
5 oc.incrementStep();
6 }
7 if (oc.getStep() == 2) {
8 oc.incrementStep();
9 var varb : Int = extAccount.getBalance();

10 if (varb == 1) {
11 exit(1);
12 } else {
13 oc.diverge();
14 }
15 }
16 }

Listing 4: Output of the algorithm for Example 5.1

responsible for incrementing step in line 5. The third actions generate the code in lines
7 to 11, while the fourth actions, the different ones, generate the code in line 10.

The approach of this example is similar to what the algorithm does in case the differ-
ence in the traces is in primitive-typed parameters of a callback. In that case, instead
of creating fresh variable varb, the produced code performs the differentiation by using
the name of the parameter which has the different value.

Example 5.2 (Different internally-typed returned object).

1 public createAccount() : Account {
2 return this;
3 }

1 public createAccount() : Account {
2 return new AccountClass();
3 }

Trace α1 is extAccount.createAccount()? · ret extAccount!, while trace α2 is
extAccount.createAccount()? · ret 1 !. In this case the produced code must be able to
differentiate between two return values that are internal objects. They are given dif-
ferent indexes in O. Here, C1 returns a known object: extAccount, while C2 returns a
new object: index 1 in O.

To achieve differentiation in this case, the produced code needs to keep track of
internally allocated objects. For this it relies on a list internals provided by oc. In
order for internal objects to be accessible, they are wrapped with a new class: Internal
that has two fields. The first, of type Obj, contains a reference to an internal object. The
second, name, can be used to filter the search for objects. No two objects with the same
name can be added to internals, which is initialised with entries for all known static
objects. Elements of this list can be accessed via method getNameByObject(o), which
returns the name of object o or null if o is not in internals. The algorithm has a table
with the low-level identities of all dynamically-allocated objects in order to generate
correct code when retrieving internals as in line 6 in the code below.

The algorithm outputs the code of Listing 5. Line 5 has no effect, since internals
already has an entry for extAccount. In case C1 and C2 were swapped, line 5 would
bind f to name 1 , ensuring the execution of the else-branch in the if statement in line
6.

This example scales to different internally-typed parameters in a callback.

Example 5.3 (Different method of a callback).

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, Article ??, Publication date: January ????.

??:34 M. Patrignani et al.

1 public main (args : String[]) : Unit {
2 if (oc.getStep() == 0) {
3 oc.incrementStep();
4 var f : Account = extAccount.createAccount();
5 oc.addInternal(new Intern (f, "extAccount"));
6 if ("extAccount" == oc.getNameByObject(f)) {
7 exit(1);
8 }else {
9 oc.diverge();

10 }
11 }
12 }

Listing 5: Output of the algorithm for Example 5.2

1 public createAccount() : Account {
2 extTrans.lock();
3
4 }

1 public createAccount() : Account {
2 var b : Transaction = extTrans.

createTransaction();
3 }

Trace α1 is extAccount.createAccount()? · extTrans.lock()!, while trace α2 is
extAccount.createAccount()? ·extTrans.createTransaction()!. In this example, C1 per-
forms a callback to method lock, while C2 performs it to method createTransaction.

To achieve differentiation in this case, the algorithm needs to keep track of the cur-
rent method, since it indicates where the differentiating code will be placed. The cur-
rent method is recorded in a stack which is initially set to method main in class Tester.
Callbacks indicate that the current method is changed to a new entry, returnbacks in-
dicate that the current method is restored to a previous one. Thus, whenever a callback
to method m of class c is performed, an entry of the form c.m is pushed on the stack. A
returnback pops the head of the current method stack.

The algorithm outputs the code of Listing 6. Notice that the if-statements of lines 8

1 public main (args : String[]) : Unit {
2 if (oc.getStep() == 0) {
3 oc.incrementStep();
4 var f : Account = extAccount.createAccount();
5 }
6 }
7 public createTransaction() : Transaction {
8 if (oc.getStep() == 1) {
9 oc.diverge();

10 }
11 return null;
12 }
13 public lock() : Int {
14 if (oc.getStep() == 1) {
15 exit(1);
16 }
17 return 0;
18 }

Listing 6: Output of the algorithm for Example 5.3

and 12, whose addition was discussed in Example 5.1, help the produced code achieve
differentiation in this case as well. Should methods createTransaction() or lock() be
called multiple times, the if-guard ensures that the differentiation only happens at the
right time.

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, Article ??, Publication date: January ????.

Secure Compilation to Protected Module Architectures ??:35

Example 5.4 (Different callee of a callback).

1 public createAccount() : Account {
2 var b : Transaction = extTrans1.

createTransaction();
3 }

1 public createAccount() : Account {
2 var b : Transaction = extTrans2.

createTransaction();
3 }

Trace α1 is extAccount.createAccount()? · extTrans1.createTransaction()!, while
trace α2 is extAccount.createAccount()? · extTrans2.createTransaction()!. In this case
the difference is the external object on which the second callback is performed. Here,
C1 calls createTransaction() on extTrans1, while C2 calls it on extTrans2.

In order to achieve this differentiation, the produced code needs to keep track of
external objects similarly to how it needed to keep track of internal objects in Ex-
ample 5.2. All external objects must be bound to a name, just as the internally allo-
cated ones are. For this purpose, a class Listable is created, all the classes i_c extend
Listable. Listable contains a name and a type field, with getters and setters. It also
contains a method setAndRegister(n , t), that sets name = n, type = t and adds the
object to a list of Listable called externals that is kept in object oc. Object oc contains
method getExternal(n , t) to retrieve these objects based on name and type.

The algorithm outputs the code of Listing 7. Fields name and type for external static

1 // same main as in Example 5.3
2 public createTransaction() : Transaction {
3 if (oc.getStep() == 1) {
4 if (this.getName() == "extTrans") {
5 exit(1);
6 } else {
7 oc.diverge();
8 }
9 }

10 return null;
11 }

Listing 7: Output of the algorithm for Example 5.4

objects are initialised in the first instructions of the main. That code is omitted for
brevity.

Example 5.5 (Different callee of a callback #2).

1 public createAccount() : Account {
2 var b : Transaction = extTrans.

createTransaction();
3 b = b.createTransaction();
4 }

1 public createAccount() : Account {
2 var b : Transaction = extTrans.

createTransaction();
3 b = extTrans.createTransaction();
4 }

Trace α1 is extAccount.createAccount()? · extTrans.createTransaction()! ·
ret 0x6? · 0x6.createTransaction()! while α2 is extAccount.createAccount()? ·
extTrans.createTransaction()! · ret 0x6? · extTrans.createTransaction()!. In this case
the difference is the external object on which a callback is performed. Here, C1 calls
createTransaction() on 0x6, while C2 calls the same method on extTrans.

The algorithm outputs the code of Listing 8. Lines 14 to 17 ensure that if an external
object is not found in the list externals, it is allocated by calling to the default factory
method and then added to externals. Fields name and type for external static objects
are assumed to be initialised in the first instructions of the main. That code is omitted
for brevity.

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, Article ??, Publication date: January ????.

??:36 M. Patrignani et al.

1 // same main as in Example 5.3
2 public createTransaction() : Transaction {
3 if (oc.getStep() == 1) {
4 oc.incrementStep();
5 }
6 if (oc.getStep() == 2) {
7 oc.incrementStep();
8 var h :Transaction = oc.getExternal("0x6", "Transaction");
9 if (h == null) {

10 h = staticForTransaction.defaultCreate();
11 ((Listable) h).setAndRegister("0x6", "Transaction");
12 }
13 return h;
14 }
15 if (oc.getStep() == 3) {
16 if (this.getName() == "0x6") {
17 exit(1);
18 } else {
19 oc.diverge();
20 }
21 }
22 return null;
23 }

Listing 8: Output of the algorithm for Example 5.5

Example 5.6 (Different externally-typed callback parameter).

1 public createAccount() : Account {
2 var b : Transaction = extTrans.

createTransaction();
3 b.callback(b);
4 }

1 public createAccount() : Account {
2 var b : Transaction = extTrans.

createTransaction();
3 b.callback(extTrans);
4 }

Trace α1 is extAccount.createAccount()? · extTrans.createTransaction()! ·
ret 0x6? · 0x6.callback(0x6)!, while trace α2 is extAccount.createAccount()? ·
extTrans.createTransaction()! · ret 0x6? · 0x6.callback(extTrans)!. This example
presents the expected output in case the difference is in a parameter of a callback.
The produced code relies on the notions defined in Example 5.4, using the field name of
external objects to achieve differentiation.

The algorithm outputs the code of Listing 9. Casting arg to Listable is needed in or-

1 // same main and createTransaction from Example 5.4,
2 // except that lines 20 - 22 are removed
3 public callback(arg : Transaction) : Unit {
4 if (oc.getStep() == 3) {
5 if (((Listable) arg).getName() == "0x6") {
6 exit(1);
7 } else {
8 oc.diverge();
9 }

10 }
11 }

Listing 9: Output of the algorithm for Example 5.6

der to make sure the call to getName() succeeds. In fact, arg is known to implement in-
terface Transaction, which has no connection with class Listable that defines method
getName().

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, Article ??, Publication date: January ????.

Secure Compilation to Protected Module Architectures ??:37

Casts are not present in J+E, yet casting an object o to a type t can be modelled by
throwing o and catching an exception of type t. The cast is presented for the sake of
simplicity.

Example 5.7 (Traces with different actions).

1 public createAccount() : Account {
2 return extAccount;
3
4 }

1 public createAccount() : Account {
2 var b : Transaction = extTrans.

createTransaction();
3 }

Trace α1 is extAccount.createAccount()?· ret 1 !, while trace α2 is
extAccount.createAccount()? · 0x6.createTransaction()!. In this case the algorithm
needs to identify the two different locations where execution will be after the different
actions are executed. The concept of current method introduced in Example 5.3 can be
used in this case as well in order to determine where to place the code that performs
the differentiation.

The algorithm outputs the code of Listing 10.

1 public main (args : String[]) : Unit {
2 if (oc.getStep() == 0) {
3 oc.incrementStep();
4 var f : Account = extAccount.createAccount();
5 exit(1);
6 }
7 }
8 public createTransaction() : Transaction {
9 oc.diverge();

10 return null;
11 }

Listing 10: Output of the algorithm for Example 5.7

This examples covers also other cases of different actions, such as a ret and a
√

and
a call and a

√
.

Example 5.8 (Traces of different length).

1 public createAccount() : Account {
2 while (1 == 1) { skip; };
3 return null;
4 }

1 public createAccount() : Account {
2
3 return new AccountClass();
4 }

Trace α1 is extAccount.createAccount()?, while trace α2 is
extAccount.createAccount()? · ret 1 !.

The algorithm outputs the code of Listing 11. When control is returned to main after

1 public main (args : String[]) : Unit {
2 if (oc.getStep() == 0) {
3 oc.incrementStep();
4 var f : Account = extAccount.createAccount();
5 exit(2);
6 }
7 }

Listing 11: Output of the algorithm for Example 5.8

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, Article ??, Publication date: January ????.

??:38 M. Patrignani et al.

a call to createAccount(), it means that the output component is interacting with C2.
In this case the produced code terminates via the expression of line 5. Divergence is
accomplished by C1.

As previously mentioned, exceptions are compiled as call and callbacks with a single
parameter: the object id of what is being thrown. Whenever a call to the throw en-
try point is detected in the traces, a throw expression is written in place of a normal
method call. The signature of the method must declare that it will throw an exception,
otherwise the last action in the trace will be this thrown exception. This means that
after this trace the execution will halt, as no exception to be thrown is registered, but
this contradicts the presence of a difference in α1 and α2. Calls to methods that can
throw exceptions are wrapped in a try/catch block. If a jump to the external exception
handler is detected, then the code is written in the catch block. Otherwise, if a normal
action is detected, the code is written in the try block, below the method call.

5.2. Full Abstraction of the Compilation Scheme
ASSUMPTION 1 (COMPILER PRESERVES BEHAVIOUR). The secure compiler is as-

sumed to output target-level programs that behave as the corresponding input program.
Thus a source-level expression is translated into a list of target-level instructions that
preserve the behaviour. By this, we mean that C↓1 ' C

↓
2 ⇒ C1 ' C2.

Notation. Indicate the i-th action of a trace α as α(i).

THEOREM 5.9 (ALGORITHM CORRECTNESS). For any two source-level components
C1 and C2 that, once compiled, exhibit a different trace semantics, the algorithm of
Section 5.1 outputs a component C that differentiates between C1 and C2 (assuming
there is no overflow of the secure stack and of the secure heap). Formally: C↓1 '/T C

↓
2 ⇒

C1'/ C2.

PROOF. As presented in Section 4.1.3, trace semantics deals with sets of traces,
while the algorithm inputs single traces. Moreover, these single traces must be the
same up to a !-decorated action. The two different single traces are obtained as follows.
Since C↓1 '/T C

↓
2 , we have that Traces(C↓1) 6= Traces(C↓2), thus there exists a trace α that

belongs to either only Traces(C↓1) or only Traces(C↓2) but not to both. Assume wlog that
α ∈ Traces(C↓1). The trace α can be split in two parts αs and αd such that α=αsαd
and such that αs is the longest prefix of all traces of α2. So, there exists a trace α′ ∈
Traces(C↓2) that can be split in two parts αs and α′d such that α′=αsα′d and αd 6= α′d.
Additionally, α2 must have even length, so that the different action in the traces is
!-decorated and thus generated by either C1 or C2. Trace α′ always exists, it could be
an empty trace, it could be composed by an empty αs and, possibly, by an empty α′d.
The traces input for the algorithm are α1 = αsαd and α2 = αsα′d.

The proof analyses all possible differences in C↓1 '/T C
↓
2 and proves that the output

of the algorithm differentiates between C1 and C2, so C1'/ C2. For each possible differ-
ence, the proof refers to an example from Section 5.1 that generate the context capable
of performing the differentiation.

— traces of different length (Example 5.8);
— different kind of actions (Example 5.7);
— same kind of actions with differences in their structure:

— return action
— different primitive-typed value (Example 5.1);
— different internally-typed value (Example 5.2);

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, Article ??, Publication date: January ????.

Secure Compilation to Protected Module Architectures ??:39

— different externally-typed value (Example 5.6);
— call action

— different callee (Example 5.4 and 5.5);
— different primitive-typed parameter (Example 5.1);
— different internally-typed parameter (Example 5.2);
— different externally-typed parameter (Example 5.6);
— different method (Example 5.3).

As those listed above are the only differences that can appear in two different traces,
and since they all present a counterexample that reaches the contradiction, the theo-
rem holds.

THEOREM 5.10 (FULL ABSTRACTION OF THE COMPILATION SCHEME). For any
two source-level components C1 and C2, we have: C1 ' C2 ⇐⇒ C↓1 ' C

↓
2 .

PROOF. The equivalence is split into two subgoals. The direction ⇐ holds due to
Assumption 1. The direction ⇒ is reversed to the equivalent statement: C↓1 '/ C↓2 ⇒
C1'/ C2. Apply Proposition 4.7 to restate the statement as C↓1 '/T C

↓
2 ⇒ C1'/ C2. Apply

Theorem 5.9 to prove the statement.

6. IMPLEMENTATION AND BENCHMARKS
This section details the architecture adopted to develop the secure compiler of Sec-
tion 3 (Section 6.1), it compares that architecture to the Intel SGX (Section 6.2) and
it presents benchmarking of the overhead introduced by the secure compiler (Sec-
tion 6.3).

6.1. Protected Module Architecture
The secure compilation scheme of Section 3 relies on the target language having a
protected module architecture for it to be secure. In order to time the overhead of the
secure compiler we implemented it for the Fides architecture [Strackx and Piessens
2012].

The Fides architecture implements precisely the protection mechanism described in
Section 2.1 in a very small TCB:∼7000 lines of code. Fides consists of a hypervisor that
runs two virtual machines: the secure VM handles the protected memory section and
the Legacy VM handles the unprotected one. Switching between the two virtual ma-
chines of Fides (i.e. performing calls and callbacks) is more costly than in a hardware-
based implementation. However, we are not interested in this, the overhead that we
are interested in timing is the one provided by the additional checks introduced by the
secure compiler.

We now give a brief description of the Fides architecture, followed by an informal
presentation of the implementation of the secure compiler.

Legacy VM. The Legacy VM executes all legacy applications and other code in un-
protected memory. Using virtualisation techniques, this virtual machine is able to ex-
ecute commodity operating systems and legacy applications without any modification.
From the point of view of the Legacy VM, the only difference compared to running on
bare hardware is that certain memory locations are inaccessible. More specifically, two
memory regions are inaccessible to the Legacy VM: (1) the memory region reserved for
the hypervisor and (2) the protected memory region as defined in our low-level machine
model. Whenever an access to these memory locations is attempted, execution traps to
the hypervisor.

Hypervisor. The hypervisor serves two simple purposes. First, it offers a coarse-
grained memory protection: it prevents any code executing in the Legacy VM from

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, Article ??, Publication date: January ????.

??:40 M. Patrignani et al.

accessing the protected module or the security measure itself (as discussed above) and
it prevents the Secure VM from accessing the hypervisor.

Second, the hypervisor implements a simple scheduling algorithm. When the Legacy
VM calls an entry point in the protected module, control goes to the hypervisor who
then schedules the Secure VM. Execution control only returns to the Legacy VM when
the protected module either returns or performs a callback to unprotected memory.

Secure VM. The Secure VM can access all memory, with the exception of memory
containing the hypervisor. The fine-grained memory access control mechanism is im-
plemented by a security kernel running in this VM, as follows. First, when a request
is received from the hypervisor to execute a method in the protected module, the re-
quested entry point is checked against a list of valid entry points provided in the mod-
ule’s memory descriptor. When this check passes, the hardware memory management
unit is set up to allow memory accesses to the module’s memory region and execution
proceeds from the entry point that was called. When execution tries to jump back out
of the protected module, a page fault is generated, which causes the security kernel to
ultimately return execution control to the Legacy VM.

6.1.1. Secure Build Tools. To simplify the development and benchmarking of modules,
we developed a fully abstract compilation tool chain using the LLVM compiler and the
ELF Tool Chain library.6

Compilation of modules is done in two steps. First, for every function that is anno-
tated as an entry point, an entry in the module’s entry point table is created. Each
entry checks whether an initialisation function needs to be called, sets up the stack
pointer and stores the return address in unprotected memory on the stack. After the
correct function is called, registers not carrying a result value are cleared. Wrapper
functions for each entry point are also generated, in order to simplify the calling of
the module. Secondly, the source code is analysed and modified so that every call site
that results in a callback to unprotected memory flows through the callback entry
point. Registers not carrying a function parameter are reset, so that no information is
leaked.

After compilation of the module – possibly resulting in multiple ELF files if the
source code was split over multiple files – a secure linker lays out the module in mem-
ory according to Fides’ requirements. Protected modules must start with the entry
table, followed by all compiled code and read-only data such as strings (i.e., the Code
section) and the runtime stack and security sensitive variables (i.e., the Data section).

6.2. Intel Software Guard eXtensions
In June 2013 Intel publicly disclosed its work on Software Guard eXtensions
(SGX) [McKeen et al. 2013; Anati et al. 2013; Hoekstra et al. 2013]. SGX provides
a hardware-implemented isolation mechanism that is very similar to Fides [Strackx
and Piessens 2012] and related protected module architectures [Strackx et al. 2013;
Noorman et al. 2013; Strackx et al. 2010; Avonds et al. 2013]. Enclaves is the SGX
terminology for what we called modules in this paper. Enclaves live in the same ad-
dress space as unprotected parts of the application and can only be accessed through
an explicitly exposed interface. Direct memory accesses from unprotected memory to
enclaves memory regions are prevented. Enclaves, like modules, have full access to
unprotected parts of the application. We believe that the presented fully abstract com-
pilation scheme can be easily ported to SGX-enabled platforms, modulo small technical
changes.

6Respectively available at http://llvm.org/ and http://sourceforge.net/p/elftoolchain/wiki/Home/.

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, Article ??, Publication date: January ????.

http://llvm.org/
http://sourceforge.net/p/elftoolchain/wiki/Home/

Secure Compilation to Protected Module Architectures ??:41

There are a few notable differences between Fides and SGX. For instance, SGX re-
quires special entry and exit instructions to cross enclaves boundaries, while Fides
does not. SGX also provides only a single entry point to enclaves [Intel Corporation
2013], but additional entry points can be emulated by taking the index of the intended
function as an additional function argument. The main difference between Fides and
SGX is the following. To prevent denial-of-service attacks by buggy or malicious mod-
ules that never return control to code in unprotected memory, SGX supports interrup-
tion of enclaves. Unfortunately, without added security measures, this may violate the
integrity of SGX enclaves, as explained below.

PROBLEM 8 (SGX INTERRUPTS). Consider two classes that define the same meth-
ods plusTwo and reset that, respectively, increment a variable even by two and reset
that variable to 0. These two classes are implemented by two objects: oL and oR. As-
sume these objects are compiled to SGX enclaves.
1 package p;
2 class CL {
3 private even : Int = 0;
4
5 public plusTwo() : Int {
6 even = even + 1;
7 even = even + 1;
8 return 0;
9 }

10
11 public reset() : Int {
12 even = 0;
13 return 0;
14 }
15 }
16 object oL : CL

1 package p;
2 class CR {
3 private even : Int = 0;
4
5 public plusTwo() : Int {
6 even = even + 2;
7
8 return 0;
9 }

10
11 public reset() : Int {
12 even = 0;
13 return 0;
14 }
15 }
16 object oR : CR

Objects oL and oR are equivalent in source-code level, but their compiled counterparts
are not. Enclave oL ↓ may be interrupted before executing the plusTwo method at line
7. The interrupt can cause a call to reset to be made before execution is resumed. This
will result in even holding value 1 in oL, while oR will either have value 0 or 2 in even.

This integrity constraint violation can be prevented by ensuring that new entry
points cannot be called while an interrupt is handled. In practice, this can be accom-
plished by adding a boolean field busy to the compiled code. The busy field is set when
the module is entered and reset before control is passed back to unprotected memory.
In case a module is interrupted, it has still the busy variable set and the module may
refuse to service the function request. To avoid race conditions, an atomic test-and-set
instruction should be used to keep track of the busy variable.

Finally, SGX, in contrast to Fides, also provides protection against hardware attacks
such as an attacker snooping the memory bus [Winter and Dietrich 2012] or perform-
ing a cold boot attack [Halderman et al. 2008]. This enables various TPM primitives
to be offloaded to the main CPU and advocates the importance of fully abstract compi-
lation. This does not impact the development of a fully abstract compilation scheme.

6.3. Measurements
To benchmark the cost of the additional checks introduced by the secure compilation
scheme, we have implemented stub objects in C, a data structure that models the
low-level representation of objects. Stub objects have an Integer field that indicates
the class of the object followed by the fields of the object. We have implemented a se-
cure runtime containing the data structure O and functions to mask object references
through it. The secure runtime also implements the runtime checks presented in Sec-

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, Article ??, Publication date: January ????.

??:42 M. Patrignani et al.

tion 3. These tests are simply used as an indicator that the overhead introduced by
the compiler is reasonable. More detailed measurements, detailing the strengths and
limitations of particular PMA implementations are left for future work.

We have then taken a simple program and, using a hardware high-frequency times-
tamp, we have timed its performance in three cases, as presented in Fig. 13. The figure
presents the average program execution time without any protection (in blue), with
Fides (in red) and with Fides extended with the runtime checks provided by the secu-
rity runtime (in beige).

0 2 4 6 8 10 12 14

call 1

call 8

callback 1

callback 8

return

returnback

Time (µs)

Normal Fides Prototype

Fig. 13: Cost of different benchmarked instructions.

In Fig. 13, the y axis indicates which operations have been tested. The number fol-
lowing calls and callbacks indicates the number of arguments used and which trigger
runtime checks. The security runtime adds checks to calls, callbacks, returns and re-
turnbacks, so they are the only instructions that are considered. The “Normal” (blue)
row indicates the cost of each operation without using the Fides architecture. The
“Fides” (red) row indicates the cost of each operation while using the Fides architec-
ture without the secure compilation scheme. The “Prototype” (beige) row the cost of
each operation when the secure compilation scheme is used in addition to Fides. Each
operation was performed 1000 times on a MacBook Pro with a 2.3 GHz Intel Core i5
processor and 4GB 1333MHz DDR3 RAM. The difference between rows “Normal" and
“Fides" shows the already high overhead of adopting the Fides architecture. The differ-
ence between rows “Fides” and “Prototype” is the overhead of the security checks intro-
duced by the secure compiler, on average, this is a ∼3% overhead. Security checks are

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, Article ??, Publication date: January ????.

Secure Compilation to Protected Module Architectures ??:43

triggered only when the boundary between the protected and the unprotected mem-
ory partitions is crossed. Method calls within the same memory partition suffer no
overhead. The overhead introduced by the compiler is proportional to the number of
boundaries crossing.

7. DISCUSSION
This section describes how to extend the secure compilation scheme of Section 3 to
other language features such as: first-order method references, cross-package inheri-
tance and inner classes (Section 7.1). Then it discusses limitations to the current work
and how to overcome some of them (Section 7.2).

7.1. Secure Compilation of Additional Language Features
This section describes how to securely compile first-order method references, cross-
package inheritance and inner classes.

7.1.1. First-order Method References. Right now the address of a callback cannot be sup-
plied by external code as the calling convention specifies where the dynamic dispatch
of external code is located. If first-order method references are allowed, method names
can be supplied as parameters of other methods in order to be called. This means that
at the A+I level, attackers can supply arbitrary addresses instead of these parameters,
raising the following problem.

PROBLEM 9 (ILLEGAL ADDRESSES). Consider two classes that define a method
doCallback that inputs a reference to a method cb, calls that method and then con-
tinues by performing the same computation. These two classes are implemented by two
objects: oL and oR.
1 package p;
2 class CL {
3 private f : Int = 1;
4
5 public doCallback(cb : Unit → Unit)

: Int {
6 cb();
7 f += 1;
8 f −= 1;
9 return f;

10 }
11 }
12 object oL : CL

1 package p;
2 class CR {
3 private f : Int = 1;
4
5 public doCallback(cb : Unit → Unit)

: Int {
6 cb();
7 f −= 1;
8 f += 1;
9 return f;

10 }
11 }
12 object oR : CR

Objects oL and oR are equivalent in J+E, as in both objects the method doCallback
always returns 1. Once compiled, an A+I attacker can differentiate between them by
giving the address of the instructions corresponding to line 7 as the callback cb. In
this case, oL will decrement f without first incrementing it, while oR will increment f
without first decrementing it. This will result in f having a value of 0 in oL and 2 in oR.
This is similar to a return-oriented programming attack [Roemer et al. 2012].

To counter this attack, the compiler must ensure the integrity of control flow when
jumping from a protected module to an externally supplied address. For a call to a
method whose address was externally supplied, a valid destination address is (1) an
address outside of the memory bounds of the module, or (2) the address of one of the
entry points. The compiler must add run-time checks for these conditions at each in-
direct call. In case of a jump to the entry point, the additional checks provided at the
entry point will ensure that the supplied address had a signature that matches that
specified in the source-level component.

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, Article ??, Publication date: January ????.

??:44 M. Patrignani et al.

7.1.2. Secure Compilation of Cross-package Inheritance. Cross-package inheritance arises
whenever a class from an export package extends a class from a different export pack-
age, as in Listing 12, where JointAccount from P-SUB extends Account from P-SUPER.
Cross-package inheritance is not provided by J+E, as it breaks the encapsulation prop-
erty of the language, creating a breach in the security of the language. Nevertheless,
as there can be cases in which this feature is desirable, this paper now discusses how
to securely implement it.

In order to allow cross-package inheritance and preserve as many benefits as pos-
sible from the encapsulation property of J+E, classes that can be extended must ap-
pear in import packages. Thus, given an import package, entry points are created not
only for interface-defined methods, but also for class-defined ones and for constructors.
Class JointAccount can optionally override methods of the super class Account, as is

1 package P-SUPER;
2 class Account { // called the super class
3 public withdraw():Int { · · · }
4 public getBalance(): Int { · · · }
5 }
6
7 package P-SUB;
8 class JointAccount extends P-SUPER.Account { // called the sub class
9 public withdraw():Int{

10 super.withdraw();
11 · · ·
12 }
13 }

Listing 12: Example of cross-package inheritance.

the case with method withdraw(). Within those methods, calls to super can be used in
order to call method withdraw() of the super class Account. Alternatively, if a method is
not overridden (e.g. such as getBalance), calling j.getBalance() on an object j of type
JointAccount executes method getBalance() defined in the super class Account.

If the normal compilation scheme were followed, at the target-level j is allocated
to a single memory area where fields from classes Account and JointAccount are both
allocated. If cross package inheritance involves only secure or only insecure classes,
e.g. if P-SUPER and P-SUB from Listing 12 belong to the same component, it does not
generate any problem. However, when secure classes can extend insecure ones and
vice-versa, some complications arise, as presented in Problem 10.

PROBLEM 10 (ALLOCATION OF j). Consider the case when Account is protected and
JointAccount is not. If j is allocated outside the protected memory partition, private
fields of the Account subobject become accessible to external code. If j is allocated inside
the protected memory partition, two options arise. The first one is placing untrusted
methods of JointAccount in the protected memory partition, violating the security of
the compilation scheme. Otherwise, if methods of JointAccount are placed in the unpro-
tected memory partition, they cannot access JointAccount’s fields via offset. Getters and
setters for fields of JointAccount could be exposed through entry points, but this would
violate full abstraction, as those methods are not available at the high level.

These problems also arise when Account is not protected but JointAccount is, so com-
pilation of cross-package inheritance cannot be achieved normally.

To overcome these difficulties, when j is allocated, it is split in two sub-objects: ja,
with fields of class Account, and jj, with fields of class JointAccount; the object identity
of j is jj [van Dooren et al. 2013].

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, Article ??, Publication date: January ????.

Secure Compilation to Protected Module Architectures ??:45

Consider firstly the case when Account is protected and JointAccount is not. Ex-
ternal code needs to compile the expression j = new JointAccount() so that it calls
new Account() to create object ja in the protected memory section. External code must
then save the resulting identifier for ja to perform super calls, since they are translated
as method calls. The additional checks inserted at entry points presented in Section 3
ensure that super calls are always well-typed.

Consider then the case when Account is not protected and JointAccount is. The secure
compiler needs to call new JointAccount() and save the returned object identity for jj
in a memory location, since super calls in this case are compiled as callbacks. When
expression j = new JointAccount() is compiled, the unprotected address ja is stored at
the low-level, right after the type of jj. The expression super.withdraw() is compiled
as ja.withdraw().

The creation of two separate objects may seem to break full abstraction of the compi-
lation scheme in a way similar to what Abadi found out for inner classes [Abadi 1999]
in the early JVM. In fact, target level external code is given the functionality to call
ja.withdraw(), which is not explicitly possible in the high-level language. However,
j.super.withdraw() is an implicit call to the withdraw() method of Account, function-
ality that the high-level language already has. This way of handling cross-package
inheritance does not add functionality at the target level, so it does not break full
abstraction of the compilation scheme.

7.1.3. Secure Compilation of Inner Classes. Inner classes are classes that are defined in-
side another class, as in Listing 13. Inner classes have access to private fields of the
class they are defined within. They have not been included in the formalisation of J+E
as to keep it as simple as possible.

1 class AccountClass implements P-Import.Account {
2 AccountClass() { counter = 0; }
3 private counter : Int;
4
5 class Inner { // Inner has access to counter }
6 }

Listing 13: Example of an inner class.

Inner classes of the secure component are compiled as normal classes in the pro-
tected memory partition, in the usual fashion. To implement access from the inner
class to the private fields of the surrounding class in a JVM style [Flanagan 1998], a
getter and a setter for each private field are created. In the case of Listing 13, class
AccountClass is extended with getters and setters for the counter field when compiled.
Access from Inner to counter is compiled as method calls via the getter and setter.

This approach is inspired by Abadi [Abadi 1999], who shows that it breaks full ab-
straction of compilation in an early version of the JVM. In that setting, the additional
low-level methods are not available at the high level, thus other low-level code besides
the inner classes can call those methods, achieving something that was not possible
at the high level. In our secure compilation scheme, the additional methods are avail-
able in the surrounding class. However the additional methods are not made available
through entry points, thus the external code cannot invoke them. This means that the
addition of inner classes to the secure compilation scheme preserves the full abstrac-
tion property.

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, Article ??, Publication date: January ????.

??:46 M. Patrignani et al.

7.2. Limitations
This section presents limitations of the presented compilation scheme. Then it infor-
mally discusses how to perform garbage collection when part of the program is com-
piled securely.

Like many model languages [Abadi and Plotkin 2012; Jagadeesan et al. 2011], J+E
lacks features that real-world programming languages have, such as multithreading,
foreign-function interfaces and garbage collection. A thorough investigation of the
changes needed in order to support secure compilation of languages with those fea-
tures is left for future work. For now we informally present the research challenges of
performing garbage collection in concert with securely compiled code and sketch the
path future research could follow to address these challenges.

Garbage collection is a runtime addition that handles whole programs. Since in the
secure compilation scenario whole programs are split between the protected and the
unprotected memory partition, the garbage collector (GC) is also split into a protected
and an unprotected part. Given the powers of an attacker to the system (Definition 2.6
in Section 2.6), the attacker can tamper with the unprotected GC but not with the
protected one. The attacker can thus inspect all references that the unprotected GC
has, introduce fake pointers and impersonate the unprotected GC to interact with the
protected one.

Since the unprotected GC can be tampered with, the implementation of a secure
garbage collector is reduced to extending the securely compiled program with a secure
GC in charge of the secure memory partition. The secure GC must be trusted and allo-
cated inside the protected memory partition, so it can access O and the object graphs
of the protected objects. However to allow the secure GCs to communicate with a GC in
unprotected memory (for the case when there is no attacker), additional entry points
need to be set up. Unfortunately, this violates full abstraction in a similar way to that
pointed out by Abadi for Java (Section 7.1.3), these functionalities are available only
at the target level and not at the source level. This is a first challenge: proving that
the secure GC does not introduce security leaks, a possible approach to such a proof is
described at the end of this section.

Additional challenges arise for the implementation of the secure GC. A common
implementation for GCs is reference counting. With reference counting, the GC keeps
track of how many references an object has, when this counter reaches 0, then the
objects can be safely deallocated, as no other object has a reference to it. Reference
counting introduces a failure of full abstraction, as highlighted by the code below.
1 package p;
2 class CL {
3 public doCb(Object x , Object y) {
4 while (· · ·) { //infinite loop
5 x.callback(this);
6 }
7 }
8 y.callback();
9 }

1 package p;
2 class CR {
3 public doCb(Object x , Object y) {
4 while (· · ·) { //infinite loop
5 x.callback(this);
6 }
7 }
8
9 }

In these code snippets, both functions doCb receive two arguments x and y (line 3)
and loop infinitely (line 4) on performing callbacks on x (line 5). Additionally, the left
hand side snippet has unreachable code where callback is called on y as well (line 8).
A garbage collector that does reference counting will behave differently in these two
cases. In fact, it will keep a reference to y in CL and not in CR, as it cannot know that
y lies in unreachable code without solving the halting problem. This is a failure of
full abstraction: CL and CR behave the same at the source level but not at the target
level, when a garbage collector is considered. A simple solution to problem would be to

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, Article ??, Publication date: January ????.

Secure Compilation to Protected Module Architectures ??:47

change the way references are counted and let parameters also increase the counter
for an object reference. The return would decrease the counter for all parameters.

However, a second challenge arises: once a reference to an internal object is leaked
to the unprotected code (such as for this in the callback above) the GC does not know
when to deallocate such a reference. Here, an arguably safe methodology is to not deal-
locate a reference that is passed from the secure component to unprotected code. How-
ever, this creates problems when the allocated object is large or when many references
are passed out.

An analogy that can be made now is that the secure GC faces challenges similar
to those faced by distributed garbage collectors. Passing a reference to unprotected
code is in fact analogous to passing a reference to a remote program: it is complex
to know when such a reference can be deallocated. In the distributed setting this is
due to communication problems and the impossibility for a garbage collector to inspect
the object graph of a program on a remote machine. In this setting, this is due to the
fact that the object graph in the unprotected memory section can be tampered with
by the attacker. Unfortunately, in this setting the GC needs not only to be performant
in case of interaction with unprotected code, it needs also to defend from potential
attackers. Research on distributed garbage collection has developed several ways to
addresses this problem [Abdullahi and Ringwood 1998], for example by giving each
leaked reference a lease time. An unprotected object receiving a leased reference must
periodically renew the lease on the reference, because once the lease time has expired,
the reference is collected by the secure GC. This solution could be adopted in order to
implement a secure memory manager, for it already addresses the need to provide a
performant GC algorithm in case the unprotected code is well behaved. The details of
the implementation, of how to make such a GC resilient against attacks and a more
thorough treatment of the problems arising in various implementations are left for
future work.

The proof that the garbage collector is secure remains a great challenge for the in-
tegration of secure compilation and GC. In any way such a proof is approached, GC
notions (allocation, deallocation, references, the object graph etc) need to be carried
into both the target and the source language in order to prove the compilation scheme
between the two to be fully abstract. However, this causes the source-level program-
ming model to become hindered by memory management – an additional way to let
programmers introduce security flaws in their code. A way to overcome this challenge
is to capture the behaviour of the GC in a different semantics of the source-level lan-
guage, an extended semantics. Full abstraction of the compilation scheme should then
be proven with respect to the extended semantics. This treatment would not clutter
the source language with explicit GC, but it would still capture the effect of GC at the
source level. The extended semantics should capture the behaviour of the GC as it is
at the target level, so that problems as those highlighted above do not arise, since they
are captured at the source level as well. Additionally, the extended semantics should
be proven to be secure w.r.t the normal operational semantics: this would guarantee
that the behaviour of the GC does not introduce security leaks.

Devising such an extended semantics and proving (i) that it is not introducing secu-
rity leaks and (ii) a fully abstract translation involving it are left for future work.

8. RELATED WORK
Secure compilation through full abstraction was pioneered by Abadi [Abadi 1999],
where, alongside a result in the π-calculus setting, Java bytecode compilation in the
early JVM is shown to expose methods used to access private fields by private inner
classes. Kennedy [Kennedy 2006] listed six full abstraction failures in the compilation
to .NET, half of which have been fixed in modern C# implementations.

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, Article ??, Publication date: January ????.

??:48 M. Patrignani et al.

Address space layout randomisation has been adopted by Abadi and Plotkin [Abadi
and Plotkin 2012] and subsequently by Jagadeesan et al. [Jagadeesan et al. 2011] to
guarantee probabilistic full abstraction of a compilation scheme. In both works the low-
level language is more high-level than ours and the protection mechanism is different.
Compilation does not necessarily need to target machine code, as Fournet et al. [Four-
net et al. 2013] show by providing a fully abstract compilation scheme from an ML
dialect named F∗ to JavaScript that relies on type-based invariants. Similarly, Ahmed
and Blume [Ahmed and Blume 2011] prove full abstraction of a continuation-passing
style translation from simply-typed λ-calculus to System F. In both works, the target-
level language is typed and more high-level than the one of this paper. The checks
introduced by our compilation scheme are simpler than the checks of Fournet et al.,
so secure compilation seems easier to implement for object-oriented languages than
for functional ones. An alternative target language for secure compilation is Typed As-
sembly Language (TAL), which was proposed in the work of Morrisett et al. [Morrisett
et al. 1999]. The presence of the Intel SGX processor strengthens our choice of the
PMA architecture for the target language over TAL.

Adopting a fine-grained, program counter-based memory access control mechanism
to achieve secure compilation was pioneered by Agten et al. [Agten et al. 2012] and
then investigated by Patrignani et al. [Patrignani et al. 2013]. This paper wraps both
results in a coherent presentation, extending certain aspects of both papers.

A large amount of work on secure compilation involved the compilation of unsafe
languages such as C. An extensive survey can be found in Younan et al. [Younan et al.
2012]. Instead of focussing on a fully abstract compilation, that research is devoted to
strengthening the security properties of C.

Correct (and certified) compilation, are very broad research fields that aim at pro-
viding compilers that preserve contextual equivalence between the source and target
language [Chlipala 2007; Leroy 2009]. The main difference between those fields and
secure compilation is the nature of low-level contexts. In order to model a powerful low-
level attacker, we have considered an arbitrary complex low-level context interacting
with the compiled components. In those works, the low-level context is assumed to be
obtained through compilation, so it does not misbehave. A great contribution of correct
compilation works is that they provide compilers for which Assumption 1 holds.

Different security architectures with access control mechanisms comparable to ours
have been developed in the last years: TrustVisor [McCune et al. 2010], Flicker [Mc-
Cune et al. 2008], Nizza [Singaravelu et al. 2006] SPMs [Strackx et al. 2010; Strackx
and Piessens 2012] and the Intel SGX [McKeen et al. 2013]. Similar architectures with
fine-grained protection schemes have also been employed to develop less monolithic
operating systems [Witchel et al. 2002]. A common characteristic of these security
architectures is that they rely on a small TCB, either only the hardware, or the hard-
ware plus a hypervisor small enough to be formally verifiable [Vasudevan et al. 2013].
The existence of industry prototypes alongside research ones underlines the feasibility
bringing efficient and secure low-level memory access control in commodity hardware.
No results comparable to ours have been proven for these systems.

9. CONCLUSION AND FUTURE WORK
This paper presented a fully abstract compilation scheme for a strongly-typed, single-
threaded, component-based, object-oriented programming language with dynamic
memory allocation and exceptions. The compilation scheme targets untyped assembly
code enhanced with a protected modules architecture. From the security perspective a
fully abstract compilation scheme ensures that target-level attackers are restricted to
the same powers source-level attackers have. Additionally, it guarantees source-level
reasoning: in order to understand how a program behaves, it is sufficient to inspect its

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, Article ??, Publication date: January ????.

Secure Compilation to Protected Module Architectures ??:49

source code. This paper highlighted mistakes that make a naïve compilation scheme
not fully abstract and how to correct them. The compilation scheme is proven to be fully
abstract, guaranteeing preservation and reflection of contextual equivalence between
high-level components and their compiled counterparts.

As presented in Section 7, integrating advanced language features such as garbage
collection with securely compiled code is a challenging and relevant research direction.
Additionally, providing secure compilers for multicore architectures and for multi-
principal scenarios (i.e. involving more than one protected partition, each with code
coming from different stakeholders) are important, future work challenges. Finally,
the efficient transfer of large data values will impact on the performance and usability
of implementations of secure compilers, this is also a challenge that is left for future
work.
Acknowledgements We would like to thanks the anonymous reviewers for their in-
sightful comments and suggestions on previous versions of this paper.

References
Martín Abadi. 1999. Protection in programming-language translations. In Secure Internet programming.

Springer-Verlag, London, UK, 19–34. http://dl.acm.org/citation.cfm?id=380171.380174
Martín Abadi and Gordon D. Plotkin. 2012. On Protection by Layout Randomization. ACM Trans. Inf. Syst.

Secur. 15, 2, Article 8 (July 2012), 29 pages. DOI:http://dx.doi.org/10.1145/2240276.2240279
Saleh E. Abdullahi and Graem A. Ringwood. 1998. Garbage Collecting the Internet: A Sur-

vey of Distributed Garbage Collection. ACM Comput. Surv. 30, 3 (Sept. 1998), 330–373.
DOI:http://dx.doi.org/10.1145/292469.292471

Pieter Agten, Bart Jacobs, and Frank Piessens. 2015. Sound Modular Verification of C Code Executing in
an Unverified Context. In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL ’15).

Pieter Agten, Raoul Strackx, Bart Jacobs, and Frank Piessens. 2012. Secure Compilation to Mod-
ern Processors. In Proceedings of the 2012 IEEE 25th Computer Security Foundations Sym-
posium (CSF ’12). IEEE Computer Society, Washington, DC, USA, Article 12, 15 pages.
DOI:http://dx.doi.org/10.1109/CSF.2012.12

Amal Ahmed and Matthias Blume. 2011. An equivalence-preserving CPS translation via
multi-language semantics. SIGPLAN Not. 46, 9, Article 30 (Sept. 2011), 14 pages.
DOI:http://dx.doi.org/10.1145/2034574.2034830

Ittai Anati, Shay Gueron, S Johnson, and V Scarlata. 2013. Innovative Technology for CPU Based Attesta-
tion and Sealing. In Proceedings of the 2nd International Workshop on Hardware and Architectural Sup-
port for Security and Privacy, HASP, Vol. 13. http://software.intel.com/sites/default/files/article/413939/
hasp-2013-innovative-technology-for-attestation-and-sealing.pdf

Niels Avonds, Raoul Strackx, Pieter Agten, and Frank Piessens. 2013. Salus: Non-Hierarchical Memory
Access Rights to Enforce the Principle of Least Privilege. In Security and Privacy in Communication
Networks (SecureComm’13).

Adam Chlipala. 2007. A certified type-preserving compiler from lambda calculus to assembly language.
SIGPLAN Not. 42, 6, Article 5 (June 2007), 12 pages. DOI:http://dx.doi.org/10.1145/1273442.1250742

Pierre-Louis Curien. 2007. Definability and Full Abstraction. Electron. Notes Theor. Comput. Sci. 172 (April
2007), 301–310. DOI:http://dx.doi.org/10.1016/j.entcs.2007.02.011

Frank S. de Boer, Marcello M. Bonsangue, Martin Steffen, and Erika Ábrahám. 2005. A fully ab-
stract semantics for UML components. In Proceedings of the Third international conference on For-
mal Methods for Components and Objects (FMCO’04). Springer-Verlag, Berlin, Heidelberg, 49–69.
DOI:http://dx.doi.org/10.1007/11561163_3

Roland Ducournau. 2011. Implementing statically typed object-oriented programming languages. ACM
Comput. Surv. 43, 3, Article 18 (April 2011), 48 pages. DOI:http://dx.doi.org/10.1145/1922649.1922655

Karim Eldefrawy, Aurélien Francillon, Daniele Perito, and Gene Tsudik. 2012. SMART: Secure and Minimal
Architecture for (Establishing a Dynamic) Root of Trust. In NDSS 2012, 19th Annual Network and
Distributed System Security Symposium. San Diego, United States.

Ulfar Erlingsson, Yves Younan, and Frank Piessens. 2010. Low-level software security by example. In
Handbook of Information and Communication Security. Springer, Berlin, Heidelberg, 663–658. https:
//lirias.kuleuven.be/handle/123456789/267049

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, Article ??, Publication date: January ????.

http://dl.acm.org/citation.cfm?id=380171.380174
http://dx.doi.org/10.1145/2240276.2240279
http://dx.doi.org/10.1145/292469.292471
http://dx.doi.org/10.1109/CSF.2012.12
http://dx.doi.org/10.1145/2034574.2034830
http://software.intel.com/sites/default/files/article/413939/hasp-2013-innovative-technology-for-attestation-and-sealing.pdf
http://software.intel.com/sites/default/files/article/413939/hasp-2013-innovative-technology-for-attestation-and-sealing.pdf
http://dx.doi.org/10.1145/1273442.1250742
http://dx.doi.org/10.1016/j.entcs.2007.02.011
http://dx.doi.org/10.1007/11561163_3
http://dx.doi.org/10.1145/1922649.1922655
https://lirias.kuleuven.be/handle/123456789/267049
https://lirias.kuleuven.be/handle/123456789/267049

??:50 M. Patrignani et al.

David Flanagan. 1998. Java in a Nutshell. Deutsche Ausgabe der 2. A. O’Reilly.
Cedric Fournet, Nikhil Swamy, Juan Chen, Pierre-Evariste Dagand, Pierre-Yves Strub, and Benjamin

Livshits. 2013. Fully abstract compilation to JavaScript. SIGPLAN Not. 48, 1, Article 26 (Jan. 2013), 14
pages. DOI:http://dx.doi.org/10.1145/2480359.2429114

J.A. Halderman, S.D. Schoen, N. Heninger, W. Clarkson, W. Paul, J.A. Calandrino, A.J. Feldman, J. Appel-
baum, and E.W. Felten. 2008. Lest we remember: Cold boot attacks on encryption keys. In USENIX
Security Symposium. 45–60. http://www.cs.umass.edu/~ransford/srg/papers/halderman--coldboot.pdf

Matthew Hoekstra, Reshma Lal, Pradeep Pappachan, Vinay Phegade, and Juan Del Cuvillo. 2013. Using
innovative instructions to create trustworthy software solutions. In Proceedings of the 2nd International
Workshop on Hardware and Architectural Support for Security and Privacy. ACM, 11. http://software.
intel.com/sites/default/files/article/413938/hasp-2013-innovative-instructions-for-trusted-solutions.pdf

Andrei Homescu, Steven Neisius, Per Larsen, Stefan Brunthaler, and Michael Franz. 2013. Profile-guided
Automated Software Diversity. In Proceedings of the 2013 IEEE/ACM International Symposium on
Code Generation and Optimization (CGO) (CGO ’13). IEEE Computer Society, Washington, DC, USA,
1–11. DOI:http://dx.doi.org/10.1109/CGO.2013.6494997

Intel Corporation. 2013. Software Guard Extensions Programming Reference. http://software.intel.com/sites/
default/files/329298-001.pdf

Radha Jagadeesan, Corin Pitcher, Julian Rathke, and James Riely. 2011. Local Memory via Layout Random-
ization. In Proceedings of the 2011 IEEE 24th Computer Security Foundations Symposium (CSF ’11).
IEEE Computer Society, Washington, DC, USA, 161–174. DOI:http://dx.doi.org/10.1109/CSF.2011.18

Alan Jeffrey and Julian Rathke. 2005a. A fully abstract may testing semantics for concurrent objects. Theor.
Comput. Sci. 338, 1-3 (June 2005), 17–63. DOI:http://dx.doi.org/10.1016/j.tcs.2004.10.012

Alan Jeffrey and Julian Rathke. 2005b. Java Jr.: fully abstract trace semantics for a core Java language. In
ESOP’05 (LNCS), Vol. 3444. Springer, 423–438. DOI:http://dx.doi.org/10.1007/978-3-540-31987-0_29

Andrew Kennedy. 2006. Securing the .NET programming model. Theor. Comput. Sci. 364, 3 (Nov. 2006),
311–317. DOI:http://dx.doi.org/10.1016/j.tcs.2006.08.014

Per Larsen, Stefan Brunthaler, and Michael Franz. 2014. Security through Diversity: Are We There Yet?
IEEE Security & Privacy 12, 2 (2014), 28–35. DOI:http://dx.doi.org/10.1109/MSP.2013.129

Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for Lifelong Program Analysis
& Transformation. In Proceedings of the 2004 International Symposium on Code Generation and Opti-
mization (CGO’04). Palo Alto, California.

Xavier Leroy. 2009. A Formally Verified Compiler Back-end. J. Autom. Reason. 43, 4 (Dec. 2009), 363–446.
DOI:http://dx.doi.org/10.1007/s10817-009-9155-4

Jonathan M. McCune, Yanlin Li, Ning Qu, Zongwei Zhou, Anupam Datta, Virgil Gligor, and Adrian Perrig.
2010. TrustVisor: Efficient TCB Reduction and Attestation. In SP ’10. IEEE, Washington, DC, USA,
143–158. DOI:http://dx.doi.org/10.1109/SP.2010.17

Jonathan M. McCune, Bryan J. Parno, Adrian Perrig, Michael K. Reiter, and Hiroshi Isozaki. 2008. Flicker:
an execution infrastructure for TCB minimization. SIGOPS Oper. Syst. Rev. 42, 4, Article 24 (April
2008), 14 pages. DOI:http://dx.doi.org/10.1145/1357010.1352625

Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas, Hisham Shafi, Vedvyas Shanbhogue,
and Uday R. Savagaonkar. 2013. Innovative instructions and software model for isolated execution. In
HASP ’13. ACM, Article 10, 1 pages. DOI:http://dx.doi.org/10.1145/2487726.2488368

Greg Morrisett, David Walker, Karl Crary, and Neal Glew. 1999. From System F to Typed
Assembly Language. ACM Trans. Program. Lang. Syst. 21, 3 (May 1999), 527–568.
DOI:http://dx.doi.org/10.1145/319301.319345

Job Noorman, Pieter Agten, Wilfried Daniels, Raoul Strackx, Anthony Van Herrewege, Christophe Huygens,
Bart Preneel, Ingrid Verbauwhede, and Frank Piessens. 2013. Sancus: Low-cost trustworthy extensible
networked devices with a zero-software Trusted Computing Base. In Proceedings of the 22nd USENIX
conference on Security symposium. USENIX Association.

Marco Patrignani and Dave Clarke. 2014. Fully Abstract Trace Semantics of Low-level Isolation Mecha-
nisms. In Proceedings of the 29th Annual ACM Symposium on Applied Computing (SAC 2014).

Marco Patrignani, Dave Clarke, and Frank Piessens. 2013. Secure Compilation of Object-Oriented Compo-
nents to Protected Module Architectures. In (APLAS’13) (LNCS), Vol. 8301. 176–191.

Gordon D. Plotkin. 1977. LCF Considered as a Programming Language. Theoretical Computer Science 5
(1977), 223–255.

Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage. 2012. Return-Oriented Programming:
Systems, Languages, and Applications. ACM Trans. Inf. Syst. Secur. 15, 1, Article 2 (March 2012), 34
pages. DOI:http://dx.doi.org/10.1145/2133375.2133377

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, Article ??, Publication date: January ????.

http://dx.doi.org/10.1145/2480359.2429114
http://www.cs.umass.edu/~ransford/srg/papers/halderman--coldboot.pdf
http://software.intel.com/sites/default/files/article/413938/hasp-2013-innovative-instructions-for-trusted-solutions.pdf
http://software.intel.com/sites/default/files/article/413938/hasp-2013-innovative-instructions-for-trusted-solutions.pdf
http://dx.doi.org/10.1109/CGO.2013.6494997
http://software.intel.com/sites/default/files/329298-001.pdf
http://software.intel.com/sites/default/files/329298-001.pdf
http://dx.doi.org/10.1109/CSF.2011.18
http://dx.doi.org/10.1016/j.tcs.2004.10.012
http://dx.doi.org/10.1007/978-3-540-31987-0_29
http://dx.doi.org/10.1016/j.tcs.2006.08.014
http://dx.doi.org/10.1109/MSP.2013.129
http://dx.doi.org/10.1007/s10817-009-9155-4
http://dx.doi.org/10.1109/SP.2010.17
http://dx.doi.org/10.1145/1357010.1352625
http://dx.doi.org/10.1145/2487726.2488368
http://dx.doi.org/10.1145/319301.319345
http://dx.doi.org/10.1145/2133375.2133377

Secure Compilation to Protected Module Architectures ??:51

Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra Modadugu, and Dan Boneh. 2004.
On the Effectiveness of Address-space Randomization. In Proceedings of the 11th ACM Confer-
ence on Computer and Communications Security (CCS ’04). ACM, New York, NY, USA, 298–307.
DOI:http://dx.doi.org/10.1145/1030083.1030124

Lenin Singaravelu, Calton Pu, Hermann Härtig, and Christian Helmuth. 2006. Reducing TCB complexity
for security-sensitive applications: three case studies. SIGOPS Oper. Syst. Rev. 40, 4, Article 13 (April
2006), 14 pages. DOI:http://dx.doi.org/10.1145/1218063.1217951

Raoul Strackx, Job Noorman, Ingrid Verbauwhede, Bart Preneel, and Frank Piessens. 2013. Pro-
tected Software Module Architectures. In ISSE 2013 Securing Electronic Business Processes, Helmut
Reimer, Norbert Pohlmann, and Wolfgang Schneider (Eds.). Springer Fachmedien Wiesbaden, 241–251.
DOI:http://dx.doi.org/10.1007/978-3-658-03371-2_21

Raoul Strackx and Frank Piessens. 2012. Fides: selectively hardening software application compo-
nents against kernel-level or process-level malware. In Proceedings of the 2012 ACM confer-
ence on Computer and communications security (CCS ’12). ACM, New York, NY, USA, 2–13.
DOI:http://dx.doi.org/10.1145/2382196.2382200

Raoul Strackx, Frank Piessens, and Bart Preneel. 2010. Efficient Isolation of Trusted Subsystems in Em-
bedded Systems. In SecureComm. 344–361.

Raoul Strackx, Yves Younan, Pieter Philippaerts, Frank Piessens, Sven Lachmund, and Thomas Wal-
ter. 2009. Breaking the memory secrecy assumption. In Proceedings of the Second European
Workshop on System Security (EUROSEC ’09). ACM, New York, NY, USA, Article 1, 8 pages.
DOI:http://dx.doi.org/10.1145/1519144.1519145

Marko van Dooren, Dave Clarke, and Bart Jacobs. 2013. Subobject-Oriented Programming. In Formal Meth-
ods for Components and Objects (Lecture Notes in Computer Science), Vol. 7866. Springer Berlin Heidel-
berg, 38–82. DOI:http://dx.doi.org/10.1007/978-3-642-40615-7_2

Amit Vasudevan, Sagar Chaki, Limin Jia, Jonathan McCune, James Newsome, and Anupam Datta. 2013.
Design, Implementation and Verification of an eXtensible and Modular Hypervisor Framework. In Pro-
ceedings of the 2013 IEEE Symposium on Security and Privacy (SP ’13). IEEE Computer Society, Wash-
ington, DC, USA, 430–444. DOI:http://dx.doi.org/10.1109/SP.2013.36

Richard Wartell, Vishwath Mohan, Kevin W. Hamlen, and Zhiqiang Lin. 2012. Binary Stirring: Self-
randomizing Instruction Addresses of Legacy x86 Binary Code. In Proceedings of the 2012 ACM Con-
ference on Computer and Communications Security (CCS ’12). ACM, New York, NY, USA, 157–168.
DOI:http://dx.doi.org/10.1145/2382196.2382216

Johannes Winter and Kurt Dietrich. 2012. A Hijacker’s Guide to the LPC Bus, In Proceedings of the 8th
European conference on Public Key Infrastructures, Services, and Applications (EuroPKI’11). Public
Key Infrastructures, Services and Applications (2012), 176–193.

Emmett Witchel, Josh Cates, and Krste Asanović. 2002. Mondrian Memory Protection. SIGPLAN Not. 37,
10 (Oct. 2002), 304–316. DOI:http://dx.doi.org/10.1145/605432.605429

Yves Younan. 2008. Efficient Countermeasures for Software Vulnerabilities due to Memory Management Er-
rors. Ph.D. Dissertation. Informatics Section, Department of Computer Science, Faculty of Engineering
Science. https://lirias.kuleuven.be/handle/1979/1765 Joosen, Wouter and Piessens, Frank (supervisors).

Yves Younan, Wouter Joosen, and Frank Piessens. 2012. Runtime countermeasures for code injection at-
tacks against C and C++ programs. Comput. Surveys 44, 3 (2012), 17:1–17:28. https://lirias.kuleuven.
be/handle/123456789/288462

Received ; revised ; accepted

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, Article ??, Publication date: January ????.

http://dx.doi.org/10.1145/1030083.1030124
http://dx.doi.org/10.1145/1218063.1217951
http://dx.doi.org/10.1007/978-3-658-03371-2_21
http://dx.doi.org/10.1145/2382196.2382200
http://dx.doi.org/10.1145/1519144.1519145
http://dx.doi.org/10.1007/978-3-642-40615-7_2
http://dx.doi.org/10.1109/SP.2013.36
http://dx.doi.org/10.1145/2382196.2382216
http://dx.doi.org/10.1145/605432.605429
https://lirias.kuleuven.be/handle/1979/1765
https://lirias.kuleuven.be/handle/123456789/288462
https://lirias.kuleuven.be/handle/123456789/288462

	Introduction
	Informal Overview
	Low-level Protection Mechanism
	The Target Language A+I, Informally
	The High-level Language J+E, Informally
	The Proof of Full Abstraction of the Compilation Scheme, Informally
	Contextual Equivalence: a Security Perspective
	Threat Model

	Secure Compilation of J+E
	Secure Compilation of Callbacks
	Limitations of the Compilation Scheme
	Secure Compilation of Callbacks

	Secure Compilation of Dynamic Memory Allocation
	Limitations of the Compilation Scheme
	Secure Compilation of Dynamic Memory Allocation

	Secure Compilation of Exceptions
	Limitations of the Compilation Scheme
	Secure Compilation of Exceptions

	Language Formalisation
	Formalisation of the Target Language A+I
	Syntax
	Semantics
	Trace Semantics

	Formalisation of J+E
	Dynamic Semantics

	Full Abstraction of the Compilation of J+E to A+I
	The Algorithm
	Full Abstraction of the Compilation Scheme

	Implementation and Benchmarks
	Protected Module Architecture
	Secure Build Tools

	Intel Software Guard eXtensions
	Measurements

	Discussion
	Secure Compilation of Additional Language Features
	First-order Method References
	Secure Compilation of Cross-package Inheritance
	Secure Compilation of Inner Classes

	Limitations

	Related Work
	Conclusion and Future Work

