Secure Compilation
of Object-Oriented Components
to Protected Module Architectures*

Marco Patrignani, Dave Clarke, and Frank Piessens

iMinds-DistriNet, Dept. Computer Science, KU Leuven
{first.last}@cs.kuleuven.be

Abstract. A fully abstract compilation scheme prevents the security
features of the high-level language from being bypassed by an attacker
operating at a particular lower level. This paper presents a fully ab-
stract compilation scheme from a realistic object-oriented language with
dynamic memory allocation, cross-package inheritance, exceptions and
inner classes to untyped machine code. Full abstraction of the compi-
lation scheme relies on enhancing the low-level machine model with a
fine-grained, program counter-based memory access control mechanism.
This paper contains the outline of a formal proof of full abstraction of
the compilation scheme. Measurements of the overhead introduced by
the compilation scheme indicate that it is negligible.

1 Introduction

Modern high-level languages such as ML, Java or Scala offer security features
to programmers in the form of type systems, module systems, or encapsulation
primitives. These mechanisms can be used as security building blocks to with-
stand the threat of attackers acting at the high level. For the software to be
secure, attackers acting at lower levels need to be considered as well. Thus it is
important that high-level security properties are preserved after the high-level
code is compiled to machine code. Such a security-preserving compilation scheme
is called fully abstract [1]. An implication of such a compilation scheme is that
the power of a low-level attacker is reduced to that of a high-level one. The no-
tion of fully abstract compilation is well suited for expressing the preservation
of security policies through compilation, as it preserves and reflects contextual
equivalence. Two programs are contextually equivalent if they cannot be dis-
tinguished by a third one. Contextual equivalence models security policies as
follows: saying that variable f of program C' is confidential is equivalent to say-
ing that C' is contextually equivalent to any program C’ that differs from C in
its value for f. A fully abstract compilation scheme does not eliminate high-level

* This work has been supported in part by the Intel Lab’sUniversity Research Office. This research
is also partially funded by the Research Fund KU Leuven, and by the EU FP7 project NESSoS.
With the financial support from the Prevention of and Fight against Crime Programme of the
European Union (B-CCENTRE). Marco Patrignani holds a Ph.D. fellowship from the Research
Foundation Flanders (FWO).

security flaws. It is, in a sense, conservative, introducing no more vulnerabilities
at the low level than the ones already exploitable at the high level.

Fully abstract compilation of modern high-level languages is hard to achieve.
Compilation of Java to JVM or of C# to the .NET framework [12] are some of the
examples where compilation is not fully abstract. Recent techniques that achieve
fully abstract compilation rely on address space layout randomisation [2,9], type-
based invariants [4,7], and enhancing the low-level machine model with a fine-
grained program counter-based memory access control mechanism [3].

The threat model considered in this paper is that of an attacker with low-
level code execution privileges. Such an attacker can inject and execute mali-
cious code at machine level and violate the security properties of the machine
code generated by the compiler. In order to withstand such a low-level attacker,
high-level security features must be preserved in the code generated during com-
pilation. Agten et al. [3] were the first to show that fully abstract compilation
of a safe high-level programming language to untyped machine code is possible.
They achieved this by enhancing the low-level machine model with a fine-grained
program counter-based memory access control mechanism inspired by existing
systems [14,15,17,21,22] and recent industrial prototypes [16]. One limitation of
the work of Agten et al. is that it only considers a toy high-level language. The
main contribution of this paper is showing how essential programming language
features can be securely compiled to the same low-level machine model of Agten
et al. The adopted low-level model is similar to a modern processor, so the
compilation scheme handles subtleties such as flags and registers that an imple-
mentation would have to face. More precisely, this paper makes the following
contributions:

— a secure compilation scheme from a model object-oriented language with
dynamic memory allocation, cross-package inheritance, exceptions and inner
classes to low-level, untyped machine code;

— the outline of a formal proof of full abstraction for this compilation scheme;

— measurements of the run-time overhead introduced by the compilation scheme.

The paper is organised as follows. Section 2 introduces background notions.
Section 3 presents a secure compilation scheme for a language with dynamic
memory allocation, cross-package inheritance, exceptions and inner classes. Sec-
tion 4 outlines the proof of full abstraction of the compilation scheme. Section 5
presents benchmarks of the overhead introduced by the compilation scheme. Sec-
tion 6 discusses limitations of the compilation scheme. Section 7 presents related
work. Section 8 discusses future work and concludes.

2 Background

This section describes the low-level protection mechanism and the secure compi-
lation scheme of Agten et al. [3], which is the starting point of this paper. Then
the high-level language targeted by the compilation scheme is presented.

2.1 Low-level Model

To model a realistic compilation scheme, the targeted low-level language should
be close to what is used by modern processors. For this reason this paper adopts
a low-level language that models a standard Von Neumann machine consisting
of a program counter, a registers file, a flags register and memory space [3].

In order to support full abstraction of the compilation scheme, the low-
level language is enhanced with a protection mechanism: a fine-grained, pro-
gram counter-based memory access control mechanism inspired by existing sys-
tems [14,15,17,21,22] and recent industrial prototypes [16]. We review this ad-
dition from the work of Agten et al. [3] and Strackx and Piessens [22]. This
mechanism assumes that the memory is logically divided into a protected and
an unprotected section. The protected section is further divided into a code and
a data section. The code section contains a variable number of entry points:
the only addresses to which instructions in unprotected memory can jump and
execute. The data section is accessible only from the protected section. The
size and location of each memory section are specified in a memory descriptor.
The table below summarises the access control model enforced by the protection
mechanism.

From\ To Protected Unprotected
Entry Point|Code|Data
Protected rx rx |[rw r'wX
Unprotected X rwx

This protection mechanism provides a secure environment for code that needs
to be protected from a potentially malicious surrounding environment. It is ap-
pealing in the context of embedded systems, where kernel-level protection mech-
anisms are often lacking.

2.2 A Secure Compiler for a Simple Language

Agten et al. [3] presented a secure (fully abstract) compilation scheme for a
simple object based language. In an effort to be self-contained, this paper sum-
marises their key points.

General notions. In the work of Agten et al., programs consist of a single ob-
ject with fields and methods declarations which are compiled to the protected
memory partition. Compiled programs must be indistinguishable from the size
point of view, thus a constant amount of space is reserved for each program,
independent of its implementation. All methods and fields are sorted alphabeti-
cally. Thus equivalent compiled programs cannot be distinguished based on the
ordering of low-level method calls. Methods and fields are given a unique index,
starting from 0, based on their order of occurrence. Those indexes serve as the
offset used to access methods and fields. Parameters and local variables are also
given method-local indexes to be used as above.

Registers rg to r3 are used as working registers for low-level instructions and
registers ry to ryy are used for parameters. The call stack is split into a protected

and an unprotected part, the former is allocated in the protected memory par-
tition. A shadow stack pointer that points to the base of the protected stack is
introduced to implement stack switches. When entering the protected memory,
the protected stack is set as the active one; when leaving it, the unprotected
stack is set to be the active one. To prevent tampering with the control flow,
the base of the protected stack points to a procedure that writes 0 in ro and
halts. For each method, a prologue and an epilogue are appended to the method
body. They allocate and deallocate activation records on the secure stack, The
program counter is initialised to a given address in unprotected memory.

Entry points. For each method, an entry point in protected memory is created.
Additionally, in order to enable returnbacks (returns from callbacks, which are
calls to external code), a returnback entry point is created. Entry points act as
proxies to the actual method implementations and are extended with security
routines and checks.

These security routines reset unused registers and flags when leaving the pro-
tected memory to prevent them conveying unwanted information. For example,
a callback to a function with two arguments resets all registers but ry and rs
since they are the only ones that carry desired information. Checks are made to
ensure that primitive-typed parameters have the right byte representation, e.g.
Unit-typed parameters must have value 0, the chosen value of Unit type.

2.3 High-level Language

The high-level language targeted by this paper is Jeffrey and Rathke’s Java Jr. [11].
Java Jr. is a strongly-typed, single-threaded, component-based, object-oriented
language that enforces private fields and public methods. Java Jr. supports
all the basic constructs one expects from a modern programming language, in-
cluding dynamic memory allocation. A program in Java Jr., called a component,
is a collection of sealed packages that communicate via interfaces and public
objects. Java Jr. enforces a partition of packages into import and export ones.
Import packages are analogous to the .h header file of a C program; they define
interfaces and externs, which are references to externally defined objects. Ex-
port packages define classes and objects; they provide an implementation of an
import package. Listing 1.1 illustrates the package system of Java Jr.

Listing 1.1 contains two package declarations: PI is an import package and
PE is an export package implementing PI. Object extAccount allocated in PE
provides an implementation for the extern with the same name defined in PI.

In Java Jr., primitive values, types and operations on them are assumed to
be provided by a System package, whose name is omitted for the sake of brevity.
The only primitive type is Unit, inhabited by unit. Since the focus of this paper
is security, we write access modifiers for methods and fields even though the
syntax of Java Jr. does not require them.

The security mechanism of Java Jr. is given by private fields. In Java Jr.,
classes are private to the package that contains their declarations. Objects are
allocated in the same package as the class they instantiate. Due to this package

12
13
14
15

package PI;
interface Account {
public createAccount() : Foo;
public getBalance() : Int;
}

extern extAccount : Account;

package PE;
class AccountClass implements PI.Account {
AccountClass() { counter = 0; }
public createAccount() : Account { return new PE.AccountClass(); }
public getBalance() : Int { return counter; }
private counter : Int;
}

object extAccount : AccountClass;

Listing 1.1. Example of the package system of Java Jr.

system, for a package to be compiled it only needs the import packages of any
package it depends on. As a result, formal parameters in methods have interface
types, since classes that implement those interfaces are unknown. Additionally,
since constructors are not exposed in interfaces, cross-package object allocation
must be through factory methods. For example, the name of class AccountClass
from Listing 1.1 is not visible from outside package PE, thus expressions of the
form new PE.AccountClass() cannot be written outside PE.

Java Jr. was chosen since it provides a clear notion of encapsulation for a high-
level component, which makes for simpler reasoning about the secure compilation
scheme. This allows us to pinpoint what the key insights are to achieve secure
(fully abstract) compilation, so that they can be used when the language is
extended with cross-package inheritance, exceptions and inner classes.

3 Secure Compilation of Java Jr.

After a series of examples describing possible attacks on a naive compilation
scheme, this section describes what is needed in order to provide a secure com-
piler for Java Jr., starting from the secure compiler described in Section 2.2, and
extend it to support cross-package inheritance, exceptions and inner classes.

The following examples use some standard assumptions about how objects
are compiled [6]. When an object is allocated, a word is reserved to indicate its
class, which is used to dynamically dispatch methods. Fields are accessed via
offsets and methods are dispatched based on offsets.

Example 1 (Type of the current object) Suppose the compiled program in-
cludes two classes: Pair and Caesar. Class Pair implements pairs of Integer val-
ues with two fields first and second, with getters and setters for them, method
getFirst() returns the value of field first. Class Caesar implements a caesar
cypher. It has a single Integer field key and a method encrypt(v:Int) that re-
turns value v encrypted with key. The key of the Caesar cypher is not accessible
outside the class (i.e. it is private).

The key cannot be leaked at the high level, since high-level programs are
strongly typed, but it can be leaked to low-level programs. A low-level, external
program can perform a call to method getFirst() on an object of type Caesar;
this will return the key field, since fields are accessed by offset. As low-level code
1s untyped, nothing prevents this attack from happening.

Example 2 (Type of the arguments) Similarly to Example 1, arguments of
methods can be exploited in order to mount a low-level attack. Extend the program
of Example 1 with another class ProxyPair with a method takeFirst(v:Pair)
that returns getFirst() on the Pair object v. At the high level, this code gives
rise to no attacks. At the low level, this code can be used to mount the following
attack: if an object of type Caesar is passed as argument to method takeFirst(),
the code will leak the key.

Example 3 (Leakage of object references) Object references at the low-level
are the address where objects are allocated. The attacker can call methods on ob-

jects it does not know of by guessing the address where an object is allocated.

Passing object addresses from a secure program to an external one can also give

away the allocation strategy of the compiler, as well as the size of allocated ob-

jects. An attacker that learns this information can then use it to mount attacks

such as those presented in Example 1 and 2. From a technical point of view this

means that leaking object addresses and accepting guessed addresses breaks full

abstraction of the compilation scheme.

3.1 A Secure Compiler for Java Jr.

Before proposing countermeasures to the attacks just listed, this section lists the
modifications to the scheme of Section 2.2 that are needed in order to support
compilation of Java Jr. and, more generally, of object-oriented programs.

Compilation of OO Languages. Fig. 1 shows a graphical representation
of the protected memory section which is generated when securely compiling a
Java Jr. component. Only a single protected memory section is needed, and all
classes, objects and methods defined in the component are placed there. The
protected code section contains entry points, described below, method body

g‘ = Entry point for i1.m1 Code for ¢1.my v-tables -
é '4% : : Data structures g’
E c/%) Entry point for ip,.m, Code for ci.m., Secure stack cg,j
% 8 Returnback entry point Qther methods Secure heap g.
=
Ay

|\

Allocation function Dynamic dispatch || Objects oy - - - 0;

Fig. 1. Graphical representation of a compiled program.

implementations, the procedure for object allocation and the dynamic dispatch.
The protected data section contains the v-tables, support data structures, a
secure stack and a secure heap. The v-tables are data structures used to perform
the dynamic dispatch of method calls; they associate the address of the method
to be executed on an object based on its type and the method name. Data
structures are defined in the remainder of this section and in Section 3.3.

In order to specify how the component interacts with external code, assume
the component being compiled provides one import package without a corre-
sponding export one. Refer to this package as the distinguished import package
(DIP). The DIP contains interface and extern definitions, thus callbacks are
calls on methods defined in the DIP. Component code is assumed not to im-
plement interfaces defined in the DIP, while external code which provides an
implementation for the DIP can also implement interfaces defined in the compo-
nent. Assuming the calling convention with the outer world is known, dynamic
dispatch can easily take care of external objects whose classes implement inter-
faces defined in the component. Method call implementation adopted by external
code is more complex since function calls must jump to the correct entry point,
but it still can be achieved for example using object wrappers.

Finally, register r4 is used to identify the current object (this) in a method
call at the low level. Before a callback, ry is stored in the secure stack so as to
be able to restore this to the right value once the callback returns.

Securing the Compilation. Following are the countermeasures added to
withstand the attacks described in the Examples above. Since the countermea-
sure to Example 3 affects the others, it is presented first.

Object identity. To mask low-level object identities, a data structure O is added
to the data structures of Fig. 1. It is a map between low-level object identities
that have been passed to external code and natural numbers. Object identities
that are passed to external code are added to O right before they are passed.
The index in the data structure is then passed in place of the object identity, the
same index must be passed for an already recorded object. Indices in O are thus
passed in a deterministic order, based on the interaction between external and
internal code. Code at entry points is responsible for retrieving object identities
from O before the actual method call. As the only objects in the data structures
are the ones the attacker knows, it cannot guess object identities.

Entry points. To support programming to an interface, the compilation scheme
creates method entry points in protected memory for all interface-declared meth-
ods. A single returnback entry point for returning after a callback is also needed.
Table 1 describes the code executed at those points. Both entry points are log-
ically divided in two parts. The first part performs the checks described in the
previous paragraph and then jumps either to the code that performs the dynamic
dispatch or to the callback. The second part returns control to the location from
which the entry point was called; call this the ezit point for method entry points
and re-entry point for the returnback entry point. For method calls to be well-
typed, the code at entry points performs dynamic typechecks. This checks that
a method is invoked on objects of the right type (line 2), with parameters of the

Method p entry point | Returnback entry point

1|Load current object v = O(R4) a|Push current object v = R4, return
2|Check that v’s class defines method p| | address a and return type m

3|Load parameters v from O
4
5

b|Reset flags and unused registers
Dynamic typecheck c|Replace object identities with index in O
Perform dynamic dispatch d|Jump to callback address
Exit point (run method code) Re-entry point (run ezternal code)
6|Reset flags and unused registers e|Pop return type m and check it
7|Replace object identities f|Dynamic typecheck
with index in O g|Pop return address a, current object v

and resume execution

Table 1. Pseudo code executed at entry points. Loading means that a value is retrieved
from the memory, push and pop are operations on the secure stack.

right type (line 4). Similar checks are executed when returning from a callback,
in the returnback entry point (line f). These checks are performed only on ob-
jects whose class is defined in the compiled component, as they are allocated in
protected memory; no control over externally allocated objects can be assumed.
If any check fails, all registers and flags are cleared and the execution halts.
Resetting flags and registers and Unit-typed value checks are as in Section 2.2.
Dynamic typecheck involves checking primitive-typed values. These are needed
for all primitive types inhabited by a finite number of values, such as Unit and
Bool. For example, bool-typed parameters must have either value 1 or 0, which
correspond to the high-level values true or false [7].

Insights. Following are the insights gained from developing a secure compilation
scheme for Java Jr.; they will be useful in the following sections.

— Internal objects that are passed to external code must be remembered; their
address must be masked.

— Strong typing of methods must be enforced with additional runtime checks.

— The low-level code must not introduce additional functionality (low-level
functions in entry points) that is not available at the high level.

3.2 Secure Compilation of Cross-package Inheritance

Cross-package inheritance arises whenever class D from an export package PSUB
extends class C from a different export package PSUP, as in Listing 1.2. Cross-
package inheritance is not provided by Java Jr., as it would break the main result
proven in the Java Jr. paper [11]. In order to allow cross-package inheritance,
classes that can be extended must appear in import packages. Thus, given an
import package, entry points are created not only for interface-defined methods,
but also for class-defined ones and for constructors. Class D can optionally over-
ride methods of the super class C, as is the case with method m(). Within those
methods, calls to super can be used in order to call method m() of the super
class C. Alternatively, if a method is not overridden, such as method z(), calling
d.z() on an object d of type D executes method z() defined in the super class C.

© 00 O Uk W

package PSUP;
class C { // called the super class
public m():Int { --- }
public z(): Int { --- }

}
package PSUB;
class D extends PSUP.C { // called the sub class
public m():Int{ super.m(); --- }

Listing 1.2. Example of cross-package inheritance.

If the normal compilation scheme were followed, at the low-level d is allocated
to a single memory area where fields from subobjects C and D are both allocated.
Example 4 highlights the problems that arise in this setting.

Example 4 (Allocation of d) Consider the case when C is protected and D is
not. If d is allocated outside the protected memory partition, private fields of
the C subobject become accessible to external code. If d is allocated inside the
protected memory partition, two options arise. The first one is placing untrusted
methods of D in the protected memory partition, violating the security of the
compilation scheme. Otherwise, if methods of D are placed in the unprotected
memory partition, they cannot access D’s fields via offset. Getters and setters
for fields of D could be exposed through entry points, but this would violate full
abstraction, as those methods are not available at the high level.

The problems just presented above also arise when C is not protected but D is,
thus compilation of cross-package inheritance cannot be achieved normally.

To allocate d securely, it is split in two sub-objects: dc, with fields of class C,
and dd, with fields of class D; the object identity of d is dd [23].

Consider firstly the case when C is protected and D is not. External code needs
to compile the expression d = new D() so that it calls new C() to create object
dc in the protected memory section. External code must then save the resulting
identifier for dc to perform super calls, since they are translated as method calls.
The additional checks inserted at entry points presented in Section 3.1 ensure
that super calls are always well-typed.

Consider then the case when C is not protected and D is. The secure compiler
needs to call new D() and save the returned object identity for dd in a memory
location, since super calls in this case are compiled as callbacks. When expression
d = new D() is compiled, the unprotected address dc is stored at the low-level,
right after the type of dd. The expression super.m() is compiled as dc.m().

The creation of two separate objects may seem to break full abstraction of the
compilation scheme in a way similar to what Abadi found out for inner classes [1].
In fact, low level external code is given the functionality to call dc.m(), which
is not explicitly possible in the high-level language. However, d.super.m() is an
implicit call to the m() method of C, functionality that the high-level language
already has. Handling of cross-package inheritance does not add functionality at
the low level, so it does not break full abstraction of the compilation scheme.

= =

= O © 00O Uk W

3.3 Exceptions

Secure compilation of languages supporting exceptions must handle the difficul-
ties that result from the modification of the flow of execution of a program.

package P1;
class G {
public m():Void{
try{ new P2.H().e(); } catch (e : P3.MyException){ // handle e }}

package P2;
class H {
public e():Void throws P3.MyException { throw new P3.MyException(); }

package P3;
class MyException implements Throwable {---}

Listing 1.3. Example of exceptions usage.

Exception handling can be securely implemented by modifying the runtime of
the language so that it knows where to dispatch a thrown exception. Activation
records are responsible for pointing to the exception handlers in order to prop-
agate a thrown exception to the right handler. In Listing 1.3, the catch block
of method m() in class G defines a handler for exceptions of type MyException.
When the activation record for m() is allocated, the handler is registered. When
an exception of type MyException is thrown, the stack is traversed to find the
closest handler for exceptions of type MyException. As activation records are
traversed and a handler is not found, those records are popped from the stack.

In the context of secure compilation, exception handlers are compiled in the
usual manner. In order to implement throwing an exception in secure code that
is caught in insecure code (or vice versa), throwing is compiled as callbacks
(or calls). Thus two additional entry points are created: the throw entry point
and the throwback entry point. These entry points forward calls to the secure
and insecure exception dispatchers, respectively. The secure exception dispatcher
traverses the secure stack looking for handlers for the thrown exception. After an
activation record has been inspected and deallocated, the exception is forwarded
to the external code through the throwback entry point. In order to prevent
exploits similar to those of Example 2, the throwback entry point must remember
internally allocated exceptions that are thrown to external code. So, a data
structure &, similar to O, is created to register leaked exceptions. This prevents
external code from passing a fake object identity to the secure exception handler
in place of the object identity of an exception, effectively throwing a non-existent
exception. External code can implement a wrapper around the exception object
identity in order to be able to associate it to its type and then be able to recognise
the type of the exception in the handler.

Fig. 2 presents a graphical overview of how exceptions are handled normally
(on the left) and in the presented compilation scheme (on the right). Lower case
letters indicate the allocation record for the corresponding function. A subscript
s indicates a secure function; the stack grows downward. The order in which
exception handlers are searched is indicated on arrows. The throw and throwback
entry point split the same call in two parts.

DU W N

Stack Secure stack Insecure stack

1

N W R Ot

throw e ‘: throw entry point

1(/4
= throwback entry point
throw e ' v P

Fig. 2. Comparison of ways to handle exceptions.

Full abstraction of the compilation scheme is preserved since the low-level
is not extended with functionality that the high-level lacks. Only exceptions
of existing types can be thrown and handling exceptions follows the normal
course of the stack. The external code could replace an exception with a fake
one, but this is equivalent to the high-level language functionality to catching an
exception and throwing another one. Thus the low-level is not granted additional
functionality.

3.4 Secure Compilation of Inner Classes

Inner classes are classes that are defined inside another class, as in Listing 1.4.
Inner classes have access to private fields of the class they are defined within.

class AccountClass implements PI.Account {
AccountClass() { counter = 0; }
private counter : Int;

class Inner { // Inner has access to counter }

}

Listing 1.4. Example of an inner class.

Inner classes of the secure component are compiled as normal classes in the
protected memory partition, in the usual fashion. To implement access from the
inner class to the private fields of the surrounding class, a getter and a setter for
each of its private fields are created. In the case of Listing 1.4, class AccountClass
is extended with getters and setters for the counter field when compiled. Access
from Inner to counter is compiled as method calls via the getter and setter.

This approach is inspired by Abadi [1], who shows that it breaks full abstrac-
tion of compilation in an early version of the JVM. In that setting, the additional
low-level methods are not available at the high level, thus other low-level code
other than the inner classes can call those methods, achieving something that
was not possible at the high level. In our secure compilation scheme, the addi-
tional methods are available in the surrounding class. However the additional
methods are not made available through entry points, thus the external code
cannot invoke them. This means that the addition of inner classes to the secure
compilation scheme preserves the full abstraction property.

4 Full Abstraction of the Compilation Scheme

This section presents an outline of the proof of full abstraction of the compila-
tion scheme of Section 3. As mentioned in Section 1, a fully abstract compilation
scheme preserves and reflects contextual equivalence of high- and low-level pro-
grams. This paper does not argue about the choice of contextual equivalence for
modelling security properties [1,2,3,4,7,9,12].

Informally speaking, two programs C; and Cs are contextually equivalent if
they behave the same for all possible evaluation contexts they interact with. An
evaluation context C can be thought of as a larger program with a hole. If the
hole is filled either with C; or C5, the behaviour of the whole program does not
vary. Formally, contextual equivalence is defined as: C; ~ Cy 2 VC. C[C}]f} <=
C[Cq]tr , where ft denotes divergence [20].

Denote the result of compiling a component C as C*. Full abstraction of the
compilation scheme is formally expressed as: C; ~ Cy <= C’f’ ~ Cé’ . The
co-implication is split in two cases. The direction CY ~ C’2i = (1 ~ (5 states
that the compiler outputs low-level programs that behave as the corresponding
source programs. This is what most compilers achieve, at times even certifying
the result [5,13]; we are not interested in this direction. This is thus assumed, the
consequences of this assumption are made explicit (Assumption 1 below). The
direction O] ~ Cy = CF ~ C% states that high-level properties are preserved
through compilation to the low level. Proving this direction requires reasoning
about contexts, which is notoriously difficult [4]. This is even more so in this
setting, where low-level contexts are memories lacking any inductive structure.
To avoid working with contexts, we equip the low-level language with a trace
semantics that is equivalent to its operational semantics [18] (Proposition 1 be-
low) and prove the contrapositive: Traces (C}) # Traces, (Cy) = Cy % Csy. This
proof is based on an algorithm that creates a high-level component, a “witness”
that differentiates Cy from Cs, given that they have different low-level traces ay
and @g. This proof strategy is known [3,10], its complexity resides in handling
features of the high-level language such as typing or dynamic memory allocation.

This proof, as well as the formalisation of Java Jr. and the assembly language,
can be found in the companion report [19]. To further support the validity of
this proof, the algorithm has been implemented in Scala, and it outputs Java
components that adhere to the Java Jr. formalisation.!

Assumption 1 (Compiler preserves behaviour) The compiler is assumed
to output low-level programs that behave as the corresponding input program.
Thus a high-level expression is translated into a list of low-level instructions that
preserve the behaviour. By this, we mean that the following properties hold:

— Ol ~Cy =0~ 0.
— There exists an equivalence relation between high-level states and low-level
states, such that:

1 Available at http://people.cs.kuleuven.be/~marco.patrignani/Publications.html.

http://people.cs.kuleuven.be/~marco.patrignani/Research_files/SCOO-algo.zip

o The initial high- and low-level states are equivalent.

o Given two equivalent states and two corresponding internal transitions,
the states these transitions lead to are equivalent. Moreover, given two
equivalent states and two equivalent actions, the states these transitions
lead to are equivalent.

Proposition 1 (Trace semantics is equivalent to operational seman-
tics [18]). For any two low-level components C and C§ obtained from com-

piling Java Jr. components Cy and Cs with the secure compilation scheme, we
have that: Traces (C) = Traces (Cf) < C} ~ C}.

Theorem 1 (Differentiation of components). Any two high-level compo-
nents Cy and Cs that exhibit two different low-level trace semantics are mot
contextually equivalent. Formally: TracesL(Cf) # TracesL(Ci’) = Cy o Cs.

Theorem 2 (Full abstraction of the compilation scheme). For any two
high-level components Cy and Ca, we have (assuming there is no overflow of the
secure stack or of the secure heap): Cq ~ Cy <—> CY ~ Cé.

5 Benchmarks

This section presents benchmarking of the overhead of the secure compiler, which
is proportional to the amount of boundaries crossing.

As a target low-level architecture we chose Fides [3,22]. The Fides architec-
ture implements precisely the protection mechanism described in Section 2.1 in a
very reduced TCB: ~7000 lines of code. Fides consists of a hypervisor that runs
two virtual machines: one handles the secure memory partition and one han-
dles the other [22]. One consequence is that switching between the two virtual
machines of Fides (performing calls and callbacks) is a costly operation.

For the benchmarks, we implemented a secure runtime in C. The secure
runtime adds the checks presented in Section 3 to calls, callbacks (both with
different number of parameters, ranging from one to eight), returns and return-
backs. These operations are executed on stub objects. A stub objects is a data
structure that models the low-level representation of objects; it has an integer
field that indicates the class of the object followed by the fields of the object.
The secure runtime also contains the data structure O and functions that mask
object references through it. Each operation was tested 1000 times on a Mac-
Book Pro with a 2.3 GHz Intel Core i5 processor and 4GB 1333MHz DDR3
RAM. The overhead introduced for each operation ranged from 0.09% to 7.89%,
averaging a 3.25% overhead. Details of the measurements can be found in the
companion report [19].

6 Limitations

This section presents limitations of the compilation scheme of Section 3 and
discusses garbage collection when part of the program is compiled securely.

Like many model languages [2,9], Java Jr. lacks features that real-world pro-
gramming languages have, such as multithreading, foreign-function interfaces
and garbage collection. A thorough investigation of the changes needed in order
to support secure compilation of languages with those features is left for future
work. Let us now informally discuss how garbage collection can be achieved in
concert with a secure compiler.

Garbage collection is a runtime addition that handles whole programs. Firstly,
assume that the external code is well-behaved and it does not disrupt the garbage
collector, such as by introducing fake pointers. To perform garbage collection
when part of the whole program is securely compiled, a part of the garbage col-
lector must be trusted and allocated in the protected memory partition so that
it can access O. In this way the garbage collector can traverse the whole object
graph and identify the location of a reference that is an index of O.

Assume now that external code can disrupt the functionality of the garbage
collector. The classical notion of garbage collection becomes void. In this setting
the securely compiled component can be extended with a secure memory man-
ager in charge of the secure memory partition. Here, an arguable safe method-
ology is to not deallocate a reference that is passed from the secure component
to external code, a fact that creates problems when the allocated object is large
or when many objects are passed out. In order to provide a solution to part of
the problem, the compiler can introduce leasing [8]; this gives objects that are
leaked a lifetime duration which, upon expiration, causes object deallocation.
Alternatively, the caretaker pattern can be introduced. Instead of leaking an
object reference o, the reference is wrapped in a proxy p (the caretaker) and the
reference to p is leaked. In addition to method proxies for methods of o, p has a
method to set the reference to o to null, allowing the secure memory manager to
free o’s memory. The problem that arises now is a breach in full abstraction: the
caretaker pattern must be lifted to the high level to preserve full abstraction.

7 Related Work

This paper extends the work of Agten et al. [3], where the same result is achieved,
but for a simpler, object-based, high-level language. This work adopts an object-
oriented language with dynamic object allocation, cross-package inheritance, ex-
ceptions and inner classes, which makes the result significantly harder to achieve.
Secure compilation through full abstraction was pioneered by Abadi [1],
where, alongside a result in the m-calculus setting, Java bytecode compilation in
the early JVM is shown to expose methods used to access private fields by private
inner classes. Kennedy [12] listed six full abstraction failures in the compilation
to .NET, half of which have been fixed in modern C# implementations.
Address space layout randomisation has been adopted by Abadi and Plotkin [2]
and subsequently by Jagadeesan et al. [9] to guarantee probabilistic full abstrac-
tion of a compilation scheme. In both works the low-level language is more
high-level than ours and the protection mechanism is different. Compilation
does not necessarily need to target machine code, as Fournet et al. [7] show

by providing a fully abstract compilation scheme from an ML dialect named
F* to JavaScript that relies on type-based invariants. Similarly, Ahmed and
Blume [4] prove full abstraction of a continuation-passing style translation from
simply-typed A-calculus to System F. In both works, the low-level language is
typed and more high-level than ours. The checks introduced by our compilation
scheme seem simpler than the checks of Fournet et al.

A large amount of work on secure compilation applies to unsafe languages
such as C, as surveyed by Younan et al. [24]. That research is devoted to strength-
ening the run-time of C and not on fully abstract compilation.

A different area of research provides security architectures with fine-grained
low-level protection mechanisms. Different security architectures with access
control mechanisms comparable to ours have been developed in recent years:
TrustVisor [14], Flicker [15], Nizza [21]|, SPMs [17,22]* and the Intel SGX [16].
The existence of industrial prototypes underlines the feasibility of this approach
to bringing efficient, secure, low-level memory access control in commodity hard-
ware. No results comparable to ours were proven for these systems.

8 Conclusion and Future Work

This paper presented a fully abstract compilation scheme for a strongly-typed,
single-threaded, component-based, object-oriented programming language with
dynamic memory allocation, exceptions, cross-package inheritance and inner
classes to untyped machine code enhanced with a low-level protection mech-
anism. Full abstraction of the compilation scheme is proven correct, guaran-
teeing preservation and reflection of contextual equivalence between high-level
components and their compiled counterparts. From the security perspective this
ensures that low-level attackers are restricted to the same capabilities high-level
attackers have. To the best of our knowledge, this is the first result of its kind
for such an expressive high-level language and such a powerful low-level one.

Future work includes extending the results to a language with more real-world
programming language features such as concurrency and distribution.

References

1. Martin Abadi. Protection in programming-language translations. In Secure Inter-
net programming, pages 19-34. Springer-Verlag, London, UK, 1999.

2. Martin Abadi and Gordon Plotkin. On protection by layout randomization. In
CSF ’10, pages 337-351. IEEE, 2010.

3. Pieter Agten, Raoul Strackx, Bart Jacobs, and Frank Piessens. Secure compilation
to modern processors. In CSF ’12, pages 171-185. IEEE, 2012.

4. Amal Ahmed and Matthias Blume. An equivalence-preserving CPS translation via
multi-language semantics. SIGPLAN Not., 46(9):431-444, September 2011.

5. Adam Chlipala. A certified type-preserving compiler from lambda calculus to
assembly language. SIGPLAN Not., 42(6):54-65, June 2007.

2 More thoroughly described at: https://distrinet.cs.kuleuven.be/software /pcbac

https://distrinet.cs.kuleuven.be/software/pcbac/index.php

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Roland Ducournau. Implementing statically typed object-oriented programming
languages. ACM Comput. Surv., 43(3):18:1-18:48, April 2011.

Cedric Fournet, Nikhil Swamy, Juan Chen, Pierre-Evariste Dagand, Pierre-Yves
Strub, and Benjamin Livshits. Fully abstract compilation to JavaScript. In POPL
’13, pages 371-384, New York, NY, USA, 2013. ACM.

C. Gray and D. Cheriton. Leases: an efficient fault-tolerant mechanism for dis-
tributed file cache consistency. SIGOPS Oper. Syst. Rev., 23(5):202-210, 1989.
Radha Jagadeesan, Corin Pitcher, Julian Rathke, and James Riely. Local memory
via layout randomization. In CSF ’11, pages 161-174. IEEE, 2011.

Alan Jeffrey and Julian Rathke. A fully abstract may testing semantics for con-
current objects. Theor. Comput. Sci., 338(1-3):17-63, June 2005.

Alan Jeffrey and Julian Rathke. Java Jr.: fully abstract trace semantics for a core
Java language. In ESOP’05, volume 3444 of LNCS, pages 423-438. Springer, 2005.
Andrew Kennedy. Securing the .NET programming model. Theor. Comput. Sci.,
364(3):311-317, November 2006.

Xavier Leroy. A formally verified compiler back-end. J. Autom. Reason., 43(4):363—
446, December 2009.

Jonathan M. McCune, Yanlin Li, Ning Qu, Zongwei Zhou, Anupam Datta, Virgil
Gligor, and Adrian Perrig. Trustvisor: Efficient TCB reduction and attestation. In
SP ’10, pages 143-158. IEEE, 2010.

Jonathan M. McCune, Bryan J. Parno, Adrian Perrig, Michael K. Reiter, and Hi-
roshi Isozaki. Flicker: an execution infrastructure for TCB minimization. SIGOPS
Oper. Syst. Rev., 42(4):315-328, April 2008.

Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas, Hisham Shafi,
Vedvyas Shanbhogue, and Uday R. Savagaonkar. Innovative instructions and soft-
ware model for isolated execution. In HASP ’13, pages 10:1-10:1. ACM, 2013.
Job Noorman, Pieter Agten, Wilfried Daniels, Raoul Strackx, Anthony Van Her-
rewege, Christophe Huygens, Bart Preneel, Ingrid Verbauwhede, and Frank
Piessens. Sancus: Low-cost trustworthy extensible networked devices with a zero-
software Trusted Computing Base. In Proceedings of the 22nd USENIX conference
on Security symposium. USENIX Association, 2013.

Marco Patrignani and Dave Clarke. Fully abstract trace semantics for low-level
isolation mechanisms. Under submission, 2013.

Marco Patrignani, Dave Clarke, and Frank Piessens. Secure Compilation of Object-
Oriented Components to Protected Module Architectures — Extended Version. CW
Reports CW646, Dept. of Computer Science, K.U.Leuven, 2013.

Gordon D. Plotkin. LCF considered as a programming language. Theoretical
Computer Science, 5:223-255, 1977.

Lenin Singaravelu, Calton Pu, Hermann Hértig, and Christian Helmuth. Reducing
TCB complexity for security-sensitive applications: three case studies. SIGOPS
Oper. Syst. Rev., 40(4):161-174, April 2006.

Raoul Strackx and Frank Piessens. Fides: Selectively hardening software applica-
tion components against kernel-level or process-level malware. In CCS ’12, pages
2-13. ACM Press, October 2012.

Marko van Dooren, Dave Clarke, and Bart Jacobs. Subobject-oriented program-
ming. In Formal Methods for Objects and Components. To appear, 2013.

Yves Younan, Wouter Joosen, and Frank Piessens. Runtime countermeasures for
code injection attacks against C and C++ programs. ACM Computing Surveys,
44(3):17:1-17:28, 2012.

	Secure Compilation of Object-Oriented Components to Protected Module Architectures

