
Automatic Detection of Speculative Execution Combinations
Xaver Fabian

Cispa Helmholtz Center for
Information Security
Saarbrücken, Germany
xaver.fabian@cispa.de

Marco Guarnieri
IMDEA Software Institute

Madrid, Spain
marco.guarnieri@imdea.org

Marco Patrignani
University of Trento

Trento, Italy
marco.patrignani@unitn.it

ABSTRACT

Modern processors employ different speculation mechanisms to
speculate over different kinds of instructions. Attackers can ex-
ploit these mechanisms simultaneously in order to trigger leaks
of speculatively-accessed data. Thus, sound reasoning about such
speculative leaks requires accounting for all potential speculation
mechanisms. Unfortunately, existing formal models only support
reasoning about fixed, hard-coded speculation mechanisms, with
no simple support to extend said reasoning to new mechanisms.

In this paper, we develop a framework for reasoning about com-
posed speculative semantics that capture speculation due to dif-
ferent mechanisms and implement it as part of the Spectector
verification tool. We implement novel semantics for speculating
over store and return instructions and combine them with the se-
mantics for speculating over branch instructions. Our framework
yields speculative semantics for speculating over any combination
of these instructions that are secure by construction, i.e., we obtain
these security guarantees for free. The implementation of our novel
semantics in Spectector let us verify programs that are vulnerable
to Spectre v1, Spectre v4, and Spectre v5 vulnerabilities as well
as new snippets that are only vulnerable to their compositions.

CCS CONCEPTS

• Security and privacy→ Formal security models; Systems

security.

KEYWORDS

Spectre; Speculative Execution; Speculative information flows; Spec-
ulative non-interference; Combinations of speculative semantics

ACM Reference Format:

Xaver Fabian, Marco Guarnieri, and Marco Patrignani. 2022. Automatic
Detection of Speculative Execution Combinations. In Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communications Security (CCS
’22), November 7–11, 2022, Los Angeles, CA, USA. ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/3548606.3560555

1 INTRODUCTION

Speculative execution avoids pipeline stalls by predicting interme-
diate results and by speculatively executing instructions based on
such predictions. When a prediction turns out to be incorrect, the
processor squashes the speculative instructions, thereby rolling

This work is licensed under a Creative Commons Attribution
International 4.0 License.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9450-5/22/11.
https://doi.org/10.1145/3548606.3560555

back their effect on the architectural state. Speculative instructions,
however, leave footprints in microarchitectural components (like
caches) that persist even after speculative execution terminates. As
shown by Spectre [24], attackers can exploit these side effects to
leak information about speculatively accessed data.

Modern general-purpose processors have different speculation
mechanisms (branch predictors, memory disambiguators, etc.) that
are used to speculate over different kinds of instructions: condi-
tional branching [24], indirect jumps [24], store and load oper-
ations [23], and return instructions [25]. While well-known at-
tacks target only individual speculation mechanism (e.g., Spectre-
PHT [24] targets branch predictors), some speculative leaks only
arise due to the interaction of multiple mechanisms.

Listing 1: Speculative leak arising from speculation over

branch and store instructions combined.

1 x = 0;
2 p = &secret;
3 p = &public;
4 if (x != 0)
5 temp &= A[*p];

For example, the code in Listing 1 can speculatively leak the value
of &secret in Line 5 whenever (1) the memory write to p in Line 3
is predicted to have a different address then the memory read *p on
Line 5, and (2) the branch instruction on Line 4 is mispredicted as
taken. This leak, therefore, arises from the combination of two specu-
lation mechanisms: branch prediction and memory disambiguation
prediction. Hence, leaks like the one in Listing 1 are missed by
sound analyses for speculative leaks that consider speculation over
only one of these speculation mechanisms.

Sound reasoning about speculative leaks requires accounting
for all potential speculation mechanisms. However, existing formal
models (also called speculative semantics) support multiple specula-
tion mechanisms poorly. Some of them support only fixed specula-
tionmechanisms: branch prediction [20, 21, 38–40] and (in addition)
memory disambiguation prediction [9, 14, 32]. Furthermore, the
different speculation mechanisms are hard-coded into the formal se-
mantics [9, 14, 21]. Extending these semantics with new speculation
mechanisms (e.g., speculation over return addresses or value pre-
diction) requires changes to the formal model and to any security
proof relying on it. This is not a scalable approach for developing
comprehensive formal models and analyses for speculative leaks.

In this paper we develop a framework for composing speculative
semantics that capture speculation due to different mechanisms
and implement it as part of the Spectector verification tool. The
combination yields a single operational semantics that can be used
to reason about leaks involving all speculation mechanisms of the

https://doi.org/10.1145/3548606.3560555
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3548606.3560555

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Xaver Fabian, Marco Guarnieri, and Marco Patrignani

components (as in Listing 1). Our framework lets us define the
speculative semantics of each mechanism independently, which
leads to simpler formalisation. Additionally, the security of the
composed semantics is derived automatically from the security
of its sub-parts, maximising proof reuse. Finally, the composed
semantics can be easily implemented in Spectector, which can be
used to verify the absence of leaks like those in Listing 1.

Concretely, this paper makes the following contributions:
• It introduces S and R, two novel semantics for speculation

over store and return instructions (Section 3).
• It defines the framework for composing different speculative

semantics and formalises its key properties: if the individual seman-
tics fulfil some (expected) security conditions (which we prove for
all the semantics we combine), then the composed semantics is also
secure (Section 4).
• It instantiates the framework with S, R and B, the se-

mantics for speculation over branch instructions from [21], creating
all the possible compositions (B+S, S+R, B+R, and B+S+R)
and proving their security (Section 5). All these semantics are mech-
anised in Coq, andwewrite to indicate when traces are calculated
mechanically.
• It extends the Spectector verification tool with all these

semantics and validates this extension on both existing benchmarks
(for speculation on store and return instructions) as well as on new
snippets (for combined speculation) that we define (Section 6).

The rest of the paper first presents background notions, such as
the security notion we rely on, and the formal language we extend
with the novel speculative semantics (Section 2) and then related
work (Section 8) and conclusions (Section 9).
Additional material: Full details of the semantics and proofs can
be found in the technical report available at [18]. The extended ver-
sion of Spectector is available at [16], whereas the mechanisation
of our speculative semantics in Coq are available at [17].

2 BACKGROUND: `ASM, SPECULATIVE

SEMANTICS AND SECURITY DEFINITION

This section first describes the attacker model and the security
definition we consider (Section 2.1). Then, it presents the syntax
(Section 2.2) and the semantics (Section 2.3) of `Asm, a simple
assembly-style language, followed by B, the semantics for specu-
lation over branch instructions (Section 2.4). Most of the notions
that we overview next are taken from Guarnieri et al. [21].

2.1 Attacker Model and Security Definition

We adopt a commonly-used attacker model [3, 9, 14, 19–21, 31, 38]:
a passive attacker observing the execution of a program through
events 𝜏 . These events, which we call observations, model timing
leaks through cache and control flow while abstracting away low-
level microarchitectural details.

Obs ::= load 𝑛 | store 𝑛 | pc 𝑛 | call 𝑓 | ret 𝑛 𝜏 ::= Y | Obs
| start𝑥 𝑛 | rlb𝑥 𝑛 𝜏 ::= ∅ | 𝜏 · 𝜏

The store 𝑛 and load 𝑛 events denote read and write accesses to
memory location 𝑛, so they model cache leakage. In contrast, pc 𝑛,
call 𝑓 , and ret 𝑛 events record the control-flow of the program.
The start𝑥 𝑛 and rlb𝑥 𝑛 observations denote the start and the

finish of a speculative transaction [21] (with identifier 𝑛) produced
by the speculative semantics 𝑥 (we use 𝑥 and 𝑦 to range over the
speculative semantics we define later).

An observation 𝜏 is either an event Obs or the empty observation
Y. Traces 𝜏 are sequences of observations; we indicate sequences of
elements [𝑒1; · · · ; 𝑒𝑛] as 𝑒 , and adding an element 𝑒 to 𝑒 as 𝑒 · 𝑒 .

The non-speculative projection ↾𝑛𝑠 [21] of a trace 𝜏 deletes all
speculative observations by removing all sub-traces enclosed be-
tween start𝑥 𝑛 and rlb𝑥 𝑛. The remaining trace, then, captures
all non-speculative observations.

Speculative Non-Interference: With this trace model we can
define the security property we use in this paper: Speculative Non-
Interference (SNI) [21]. Intuitively, SNI requires that programs do
not leak more information under the speculative semantics than
under the non-speculative semantics.

SNI is parametric in a policy 𝜙 , which describes public/low in-
formation for the program, and in the used speculative semantics 𝑥 ,
which models how the program executes. Following Guarnieri et al.
[21], a policy 𝜙 consists of a list of public registers and public mem-
ory locations. Two configurations 𝜎1, 𝜎2 are called low-equivalent
for a policy 𝜙 , written 𝜎1 ∽𝜙 𝜎2, if they agree on all register and
memory locations in 𝜙 . The speculative semantics 𝑥 defines how
(speculative) traces describing the program behaviour are gener-
ated. We indicate that program 𝑝 generates trace 𝜏 from state 𝜎 with
semantic 𝑥 as BehA𝑥 (𝑝, 𝜎) = 𝜏 . We formalise multiple speculative
semantics in later sections, each one instantiating BehA𝑥 (𝑝, 𝜎).

A program 𝑝 satisfies SNI (Definition 1) for a speculative seman-
tics 𝑥 if any pair of low-equivalent initial configurations 𝜎1 and
𝜎2 that generate the same observations without speculative events
also generate the same observations with speculative events too.

Definition 1 (SNI). Program 𝑝 satisfies SNI (denoted 𝑝 ⊢𝑥 SNI) if for
all 𝜎1, 𝜎2, if 𝜎1 ∽𝜙 𝜎2 and BehA𝑥 (𝑝, 𝜎1)↾𝑛𝑠 = BehA𝑥 (𝑝, 𝜎2)↾𝑛𝑠 then
BehA𝑥 (𝑝, 𝜎1) = BehA𝑥 (𝑝, 𝜎2).

2.2 `Asm

(Programs) 𝑝 B 𝑛 : 𝑖 | 𝑝1;𝑝2 (Functions) F B ∅ | F ; 𝑓 ↦→ 𝑛

(Registers) 𝑥 ∈ Regs (Values) 𝑛, 𝑙 ∈ Vals = N ∪ {⊥}
(Expressions) 𝑒 B 𝑛 | 𝑥 | ⊖𝑒 | 𝑒1 ⊗ 𝑒2

(Instructions) 𝑖 B skip | 𝑥 ← 𝑒 | load 𝑥, 𝑒 | store 𝑥, 𝑒 | jmp 𝑒

| beqz 𝑥, 𝑙 | 𝑥 𝑒′?←−− 𝑒 | spbarr | call 𝑓 | ret

`Asm is an assembly-like language whose syntax is presented above.
Programs 𝑝 in `Asm are sequences of mappings from natural num-
bers 𝑛 (i.e., the instruction address) to instructions 𝑖 or ⊥. Instruc-
tions include skipping, register assignments, loads, stores, indirect
jumps, conditional branches, conditional assignments, speculation
barriers, calls, and returns. Instructions can refer to expressions,
which are constructed by combining registers and values with unary
and binary operators. Registers come from the set Regs, containing
register identifiers and designated registers pc and sp modelling
the program counter and stack pointer respectively, while values
come from the set Vals, which includes natural numbers and ⊥.

Automatic Detection of Speculative Execution Combinations CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

In the following, we use instruction keywords to denote the set
of all instructions of a given type. For instance, beqz is the set of all
branch instructions, i.e., beqz = {beqz 𝑥, 𝑙 | 𝑥 ∈ Regs ∧ 𝑙 ∈ Vals}.

2.3 Non-speculative Semantics of `Asm

`Asm has a small-step operational non-speculative semantics −→
that describes how programs execute without speculative execution.
The judgment for this semantics is ⟨𝑝, 𝜎⟩ 𝜏−→ ⟨𝑝, 𝜎 ′⟩ and it reads: “a
program state ⟨𝑝, 𝜎⟩ steps to a new program state ⟨𝑝, 𝜎 ′⟩ producing
observation 𝜏”. Program states ⟨𝑝, 𝜎⟩ consist of the program 𝑝 and
the configuration 𝜎 . The program 𝑝 is used to look up the current
instruction, whereas the configuration 𝜎 = ⟨𝑚,𝑎⟩ is used to read
from/write to the memory 𝑚 and register file 𝑎. Memories map
addresses (which are natural numbers) to values, whereas register
files map register identifiers to values.

Most of the rules of the semantics are standard and thus omitted;
we present selected rules below (see [21] for all rules). The rules rely
on the evaluation of expressions (indicated as J𝑒K(𝑎) = 𝑛) where
expression 𝑒 is evaluated to value 𝑛 under register file 𝑎. In the rules,
𝑎[𝑥 ↦→ 𝑛], where 𝑥 ∈ Regs ∪N and 𝑛 ∈ Vals, denotes the update of
a map (memory or registers), whereas 𝑎(𝑥) denotes reading from a
map. Finally, 𝜎 (𝑥), where 𝑥 ∈ Regs and 𝜎 = ⟨𝑚,𝑎⟩, denotes 𝑎(𝑥).

(Store)

𝑝 (𝑎(pc)) = store 𝑥, 𝑒 𝑛 = J𝑒K(𝑎)

⟨𝑝, ⟨𝑚,𝑎⟩⟩ store 𝑛−−−−−−−→ ⟨𝑝, ⟨𝑚[𝑛 ↦→ 𝑎(𝑥)], 𝑎[pc ↦→ 𝑎(pc) + 1]⟩⟩
(Beqz-Sat)

𝑝 (𝑎(pc)) = beqz 𝑥, ℓ 𝑎(𝑥) = 0

⟨𝑝, ⟨𝑚,𝑎⟩⟩ pc ℓ−−−→ ⟨𝑝, ⟨𝑚,𝑎[pc ↦→ ℓ]⟩⟩
(Call)

𝑝 (𝜎 (pc)) = call 𝑓 F (𝑓) = 𝑛

𝑎′ = 𝑎[pc ↦→ 𝑛, 𝑠𝑝 ↦→ 𝑎(𝑠𝑝) − 8] 𝑚′ = [𝑎′(𝑠𝑝) ↦→ 𝑎(pc) + 1]

⟨𝑝, ⟨𝑚,𝑎⟩⟩
call 𝑓
−−−−−−→ ⟨𝑝, ⟨𝑚′, 𝑎′⟩⟩
(Return)

𝑝 (𝜎 (pc)) = ret 𝑙 =𝑚(𝑎(𝑠𝑝))
𝑎′ = 𝑎[𝑝𝑐 ↦→ 𝑙, 𝑠𝑝 ↦→ 𝑎(𝑠𝑝) + 8]

⟨𝑝, ⟨𝑚,𝑎⟩⟩ ret 𝑙−−−−→ ⟨𝑝, ⟨𝑚,𝑎′⟩⟩
Branch instructions emit observations recording the outcome of the
branch (Rule Beqz-Sat), while memory operations emit observations
recording the accessed memory (Rule Store). A call to function 𝑓

is a jump to the function’s starting line number 𝑛, as indicated by
the function map F . A call stores the return address on the stack
at the value of the stack pointer sp and decreases sp (Rule Call). A
return does the inverse: it looks up the return address via the stack
pointer sp and then increases the stack pointer (Rule Return).

The non-speculative behaviour Beh𝑁𝑆 (𝑝) of a program 𝑝 is the set
of all traces generated from an initial state until termination using
the reflexive-transitive-closure of the non-speculative semantics.

2.3.1 Symbolic semantics. Following [21], we introduce a symbolic
non-speculative semantics −→S that is at the basis of Spectector’s
analysis. This symbolic semantics differs from −→ in two key ways:
(1) concrete configurations 𝜎 are replaced with symbolic configura-
tions 𝜎S , and (2) path condition constraints are generated in the

standard way and they are encoded as part of the symbolic trace
𝜏 . Given a symbolic trace 𝜏 , ` (𝜏) denotes the set of all concrete
traces that can be obtained by concretising 𝜏 with values consis-
tent with 𝜏 ’s path condition. The symbolic non-speculative behavior
BehS

𝑁𝑆
(𝑝) of a program 𝑝 consists of all symbolic traces derived

by applying −→S , and ` (BehS
𝑁𝑆
(𝑝)) is the set of all concrete traces

derived from 𝑝’s symbolic traces. As proved by Guarnieri et al. [21],
Beh𝑁𝑆 (𝑝) = ` (BehS

𝑁𝑆
(𝑝)).

2.4 B: Speculating Over Branch Instructions

To model and reason about the effects of speculation over branch
instructions, Guarnieri et al. [21] propose three related semantics:
an always-mispredict semantics (Section 2.4.1), an oracle semantics
(Section 2.4.2), and a symbolic semantics (Section 2.4.3). The always-
mispredict semantics, our main focus, is a safe overapproximation
of the oracle semantics, which explicitly models the behavior of the
branch predictor using a prediction oracle. Finally, the symbolic
semantics, which is used in the Spectector program analysis tool,
is the symbolic version of the always-mispredict semantics. We
summarize the properties of these semantics in Section 2.4.4. With
a slight abuse of notation, B indicates both the three speculative
semantics, and the AM one alone (since it is the most relevant one).

2.4.1 Always-mispredict (AM) Semantics. At every branch instruc-
tion, the always-mispredict semantics first speculatively executes
the wrong branch for a fixed number of steps and then continues
with the correct one. As a result, this semantics is deterministic and
agnostic to implementation details of the branch predictor [21].

The state ΣB of the AM semantics is a stack of speculative in-
stancesΦB where reductions happen only on top of the stack.When-
ever we start speculating, a new instance is pushed on top of the
stack (Rule B:AM-branch). The instance is then popped when spec-
ulation ends (Rule B:AM-Rollback). Each instance ΦB contains the
program 𝑝 , a counter ctr that uniquely identifies the speculation
instance, a configuration 𝜎 , and the remaining speculation window
𝑛 describing the number of instructions that can still be executed
speculatively (or⊥when no speculation is happening). Throughout
the paper, we fix the maximal speculation window, i.e., the maxi-
mum number of speculative instructions, to a global constant 𝜔 .

Spec. States ΣB ::= ΦB Spec. Instances ΦB ::= ⟨𝑝, ctr, 𝜎, 𝑛⟩

This judgement for the AM semantics is: ΣB
𝜏

B Σ′B.

(B:AM-branch)

𝑝 (𝜎 (pc)) = beqz 𝑥, ℓ ⟨𝑝, 𝜎⟩ 𝜏−→ ⟨𝑝, 𝜎 ′⟩ 𝑗 =𝑚𝑖𝑛(𝜔,𝑛)
𝜎 ′′ = 𝜎 [pc ↦→ 𝑙 ′] 𝜏 = 𝜏 · startB ctr · pc 𝑙

𝑙 ′ =

{
𝜎 (pc) + 1 if 𝜎 ′(pc) = 𝑙

𝑙 if 𝜎 ′(pc) ≠ 𝑙

⟨𝑝, ctr, 𝜎, 𝑛 + 1⟩
𝜏

B ⟨𝑝, ctr, 𝜎 ′, 𝑛⟩ · ⟨𝑝, ctr + 1, 𝜎 ′′, 𝑗⟩
(B:AM-NoSpec)

𝑝 (𝜎 (pc)) ∉ beqz ∪ 𝑍B ⟨𝑝, 𝜎⟩ 𝜏−→ ⟨𝑝, 𝜎 ′⟩

⟨𝑝, ctr, 𝜎, 𝑛 + 1⟩
𝜏

B ⟨𝑝, ctr, 𝜎 ′, 𝑛⟩

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Xaver Fabian, Marco Guarnieri, and Marco Patrignani

(B:AM-Rollback)

𝑛′ = 0 or p is stuck

⟨𝑝, ctr, 𝜎, 𝑛⟩ · ⟨𝑝, ctr ′, 𝜎 ′, 𝑛′⟩
rlbB ctr

B ⟨𝑝, ctr ′, 𝜎, 𝑛⟩
As mentioned, Rule B:AM-branch pushes a new speculative state

with the wrong branch, followed by the state with the correct one.
When speculation ends, Rule B:AM-Rollback pops the related state.
All other instructions are handled by delegating back to the non-
speculative semantics (Rule B:AM-NoSpec).

Rule B:AM-NoSpec differs slightly from [21]: it applies to instruc-
tions that are not branch instructions (as in [21]) and are not in
the metaparameter 𝑍B (in gray). The latter is a set of instructions
and is part of our composition framework (which we explain in
Section 4.1). Instantiating 𝑍B allows us to restrict when to apply
non-speculative steps in composed semantics. When we consider

B in isolation, 𝑍B is the empty set (so, Rule B:AM-NoSpec applies
to everything except branch instructions as in [21]). However, we
will instantiate 𝑍B in different manners when building the com-
posed semantics. In the following, we write 𝑍B

B to stress the value
of 𝑍B when needed but we often omit 𝑍B for simplicity.

The always-mispredict behaviour BehAB (𝑝) of a program 𝑝 is
the set of all traces generated from an initial state until termination
using the reflexive-transitive closure of B.

2.4.2 Oracle Semantics. The oracle semantics explicitly models the
branch predictor using an oracle OB that relies on the branching
history ℎ of the program 𝑝 to predict branch outcomes.

Here, we quickly summarize the key differences with the AM se-
mantics; see [21] for the full definition. First, speculative instances
are extended to track the branching history ℎ, which records the
outcomes of prior branch instructions. Second, when executing a
beqz instruction, the oracle predicts the branch outcome (based on
the branching history ℎ) and a new speculative instance is pushed
on top of the stack. Finally, whenever the speculation window of an
instance anywhere on the stack reaches 0, the execution needs to
be rolled back or committed. Rolling back deletes all the instances
above the rolled back instance, whereas committing updates the
configuration, the counter and the branching history ℎ of the in-
stance below and the committed instance is deleted.

As before, the behaviour BehOB (𝑝) of a program 𝑝 under the
oracle semantics is the set of all its traces until termination.

2.4.3 Symbolic Semantics. The symbolic speculative semantics
S
B works on symbolic speculative states ΣSB , and it is used in

Spectector [21]. The only two differences w.r.t. the AM semantics
are that (1) concrete states ΣB are replaced with symbolic states
ΣSB , which store symbolic configurations 𝜎S instead of concrete
configurations 𝜎 , and (2) the semantics uses the symbolic non-
speculative semantic instead of the concrete one. The rules of the
symbolic semantics look like those of the AMone, and the behaviour
BehSB (𝑝) of a program 𝑝 is defined as for the AM semantics.

2.4.4 Properties of B. Guarnieri et al. [21] prove several proper-
ties relating the three semantics we presented above, which were
instrumental in proving Spectector’s security. We recap these
properties in a single definition (Definition 2), which we will prove
for all semantics in this paper. In the definition we indicate that a
program 𝑝 satisfies SNI w.r.t. the oracle semantics as 𝑝 ⊢OB SNI.

Definition 2 (Secure Speculative Semantics). A speculative seman-
tics 𝑥 is secure (denoted ⊢ 𝑥 SSS) if:

• Oracle Overapproximation: 𝑝 ⊢𝑥 SNI iff ∀O . 𝑝 ⊢O𝑥 SNI
• Symbolic Consistency: BehA𝑥 (𝑝) = ` (BehS𝑥 (𝑝))
• NS Consistency: BehA𝑥 (𝑝)↾𝑛𝑠 = Beh𝑁𝑆 (𝑝) = BehO𝑥 (𝑝)↾𝑛𝑠

Intuitively, a secure speculative semantics is made of three com-
ponents: an AM semantics, an oracle semantics, and a symbolic
semantics. First, the AM semantics must overapproximate the ora-
cle semantics (for any oracle), so it is enough to check a program
𝑝 for SNI w.r.t. the AM semantics [21, Theorem 1]. Then, since
Spectector uses the symbolic semantics in the implementation,
the symbolic semantics must be consistent w.r.t. the AM one [21,
Proposition 2]. Finally, both the AM and the Oracle semantics can
recover the non-speculative behaviour of a program 𝑝 by applying
the non-speculative projection on their traces [21, Propositions
1,3]. So we can execute 𝑝 only once to get the (non-)speculative
behaviour of that program run.

Theorem 1 states that B is a secure speculative semantics.

Theorem 1 (B is SSS [21]). ⊢ B SSS

3 SPECULATION ON STORES AND RETURNS

This section defines S and R, two novel speculative semantics
that model the effects of speculative execution over store instruc-
tions (Section 3.1) and ret instructions (Section 3.2). Similarly to

B, for each speculation mechanism we define three semantics: an
always-mispredict semantics, an oracle semantics, and a symbolic
semantics. As before, we will mostly focus on the always-mispredict
semantics, which safely over-approximates the oracle one, and we
will use its symbolic version to reason about leaks using Spectec-
tor. Most formal details, as well as proofs, can be found in the
companion technical report [18].

3.1 S: Speculation on Store Instructions

Modern processors write stores to mainmemory asynchronously to
reduce delays caused by thememory subsystem. For this, processors
employ a Store Queue where not-yet-committed store instructions
are stored before being permanently written to memory. When
executing a load instruction, the processor first inspects the store
queue for a matching memory address. If there is a match, the
value is retrieved from the store queue (called store-to-load forward-
ing), and otherwise the memory request is issued to the memory
subsystem. To speed up computation, processors employ memory
disambiguation predictors to predict if memory addresses of loads
and stores match. Since the prediction can be incorrect, processors
may speculatively bypass a store instruction in the store queue
leading to a load instruction retrieving a stale value.

Example 1 (Store Speculation Vulnerability). Consider the exam-
ple in Listing 2:

Listing 2: Code vulnerable to store speculation.

1 store secret , p
2 store public , p
3 load eax , p
4 load edx , B + eax

Automatic Detection of Speculative Execution Combinations CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Assume that the store instructions in Line 1 and Line 2 are still in the
store queue and not yet committed tomainmemory. Amisprediction
of the memory disambiguator for the load instruction in Line 3
causes it to bypass the store instruction in Line 2 and retrieve the
value from the stale store instruction in Line 1. The speculative
access of the memory is then leaked into the microarchitectural
state by the array access into B in Line 4.

This section first introduces the extended trace model required
to talk about speculation over store instructions (Section 3.1.1).
Next, it presents the speculative AM semantics (Section 3.1.2) and
the corresponding oracle semantics (Section 3.1.3) and symbolic
semantics (Section 3.1.4). This semantics is a secure speculative
semantics (Theorem 2).

Theorem 2 (S is SSS). ⊢ S SSS

3.1.1 Extended Trace Model. We extend the trace model Obs with
startS 𝑛 and rlbS 𝑛 observations to mark start and end of a spec-
ulative transaction 𝑛 started by a store bypass. Furthermore, we
add a bypass 𝑛 observation denoting that the store instruction at
program counter 𝑛 was speculatively bypassed.

ObsS ::= Obs | startS 𝑛 | rlbS 𝑛 | bypass 𝑛

3.1.2 Speculative Semantics. The overall structure of the S se-
mantics is similar to that of B: speculative execution is modeled
using a stack of speculative states, instructions that do not start
speculative transactions are executed by delegating back to the non-
speculative semantics, and speculative transactions are rolled back
whenever the speculative window reaches 0. The key difference
between S and B is the differing source of speculation: beqz
instructions for B and store instructions for S.

The states used in S are similar to those of B:

Spec. States ΣS ::= ΦS Spec. Instance ΦS ::= ⟨𝑝, ctr, 𝜎, 𝑛⟩

Judgement ΣS
𝜏

S Σ′S describes how ΣS steps to Σ′S emitting
observation 𝜏 . As in B, reductions only happen on top of the stack.

(S:AM-Store)

𝑝 (𝜎 (pc)) = store 𝑥, 𝑒 ⟨𝑝, 𝜎⟩ 𝜏−→ ⟨𝑝, 𝜎 ′⟩ 𝑗 =𝑚𝑖𝑛(𝜔,𝑛)
𝜎 ′′ = 𝜎 [pc ↦→ 𝜎 (pc) + 1] 𝜏 ′ = 𝜏 · bypass 𝜎 (pc) · start ctr

⟨𝑝, ctr, 𝜎, 𝑛 + 1⟩
𝜏 ′

S ⟨𝑝, ctr, 𝜎 ′, 𝑛⟩ · ⟨𝑝, ctr + 1, 𝜎 ′′, 𝑗⟩
(S:AM-NoSpec)

𝑝 (𝜎 (pc)) ∉ store ∪ 𝑍S ⟨𝑝, 𝜎⟩ 𝜏−→ ⟨𝑝, 𝜎 ′⟩

⟨𝑝, ctr, 𝜎, 𝑛 + 1⟩
𝜏

S ⟨𝑝, ctr, 𝜎 ′, 𝑛⟩
To model the effect of bypassing a store instruction, Rule S:AM-
Store bypasses the store instruction by increasing the program
counter without updating the memory and starts a new speculative
transaction by pushing a new speculative instance on top of the
state. A load instruction loading from the same memory location
as the bypassed store instruction, therefore, retrieves a stale value.

Similarly to B, all instructions that are not store instructions
(and are not in 𝑍S) are handled by delegating back to the non-
speculative semantics (Rule S:AM-NoSpec) and when the specula-
tion window reaches 0, a roll back occurs that pops the topmost
speculative instance from the stack.

The set BehAS (𝑝) contains all traces generated from an initial
state until termination using the reflexive-transitive closure of S.

3.1.3 Oracle Semantics. Instead of bypassing every store instruc-
tion, the oracle semantics employs an oracle O that decides if the
store instruction should be speculatively bypassed or not. As before,
the behaviour BehOS (𝑝) of a program 𝑝 is the set of all traces starting
from an initial state until termination using the reflexive-transitive
closure of the oracle semantics.

3.1.4 Symbolic Semantics. Similarly to S
B , the symbolic specula-

tive semantics S
S requires two changesw.r.t. the always-mispredict

one: concrete configurations 𝜎 and the non-speculative semantics
are replaced by symbolic configurations 𝜎S and the symbolic non-
speculative semantics respectively. The behaviour BehSS (𝑝) of a
program 𝑝 is the set of all its symbolic traces.

3.2 R: Speculation on Return Instructions

The return-stack-buffer (RSB) is a small stack used by the CPU to
save return addresses upon call instructions. These saved return
addresses are speculatively used when the function returns, because
accessing the RSB is faster than looking up the return address
on the stack (stored in main memory). This works well because
return addresses rarely change during function execution. However,
mispredictions can be exploited by an attacker.

Example 2 (Return Speculation Vulnerability). Consider the ex-
ample in Listing 3 and recall that register sp is used to find return
addresses saved on the stack.

Listing 3: A program exploiting RSB speculation.

1 Manip_Stack:
2 sp ←− sp + 8
3 ret
4 Speculate:
5 call Manip_Stack
6 load eax , secret
7 load edx , eax
8 ret
9 Main:
10 call Speculate
11 skip

Each function call pushes a return address on the stack and decre-
ments the sp register. After reaching the function Manip_Stack, the
sp register is incremented (line 2). Thus, sp points to the previous
return address on the stack (i.e., line 11), and the non-speculative
execution continues in Main and terminates. However, the return
address of the call in line 5 is line 6 and it is on top of the RSB. Thus,
the CPU speculatively executes lines 6–7 and leaks the secret.

This section describes the AM semantics (Section 3.2.1), the
oracle semantics (Section 3.2.2), and the symbolic semantics (Sec-
tion 3.2.3). Then, it discusses formalising different implementations
of the RSB in the CPU (Section 3.2.4). This semantics is a secure
speculative semantics (Theorem 3).

Theorem 3 (R is SSS). ⊢ R SSS

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Xaver Fabian, Marco Guarnieri, and Marco Patrignani

3.2.1 Speculative Semantics. Unlike before, the state of R con-
tains a model of the RSB which is used to retrieve return addresses
instead of relying on the stack. Thus, speculative instances of R
are extended with an additional entryR for tracking the RSB, whose
size is limited by a global constant R𝑠𝑖𝑧𝑒 denoting the maximal RSB
size. A speculative instance ΦR now consists of the program 𝑝 , the
counter ctr , the configuration 𝜎 , the speculation window 𝜔 and the
RSB R. As before, a state ΣR is a stack of speculative instances ΦR.

Spec. States ΣR ::= ΦR Spec. Instance ΦR ::= ⟨𝑝, ctr, 𝜎,R, 𝑛⟩

As before, in ΣR
𝜏

R ΣR reductions happen on the top of the stack.
(R:AM-Ret-Spec)

𝑝 (𝜎 (pc)) = ret 𝜎 = ⟨𝑚,𝑎⟩ ⟨𝑝, 𝜎⟩ 𝜏−→ ⟨𝑝, 𝜎 ′⟩
R = R′ · 𝑙 𝑗 =𝑚𝑖𝑛(𝜔,𝑛) 𝑙 ≠𝑚(𝑎(sp))

𝜎 ′′ = 𝜎 [pc ↦→ 𝑙, sp ↦→ 𝑎(sp) + 8] 𝜏 = 𝜏 · startR ctr · ret 𝑙

⟨𝑝, ctr, 𝜎,R, 𝑛 + 1⟩
𝜏

R ⟨𝑝, ctr, 𝜎 ′,R′, 𝑛⟩ · ⟨𝑝, ctr + 1, 𝜎 ′′,R′, 𝑗⟩
(R:AM-Call)

𝑝 (𝜎 (pc)) = call 𝑓 ⟨𝑝, 𝜎⟩ 𝜏−→ ⟨𝑝, 𝜎 ′⟩
R′ = R · ⟨𝑎(pc) + 1⟩ |R| < R𝑠𝑖𝑧𝑒

⟨𝑝, ctr, 𝜎,R, 𝑛 + 1⟩
𝜏

R ⟨𝑝, ctr, 𝜎 ′,R′, 𝑛⟩
During call instructions (Rule R:AM-Call), the return address is
pushed on top of the RSB (if there is space available) and during
ret instructions, the return address stored on the RSB is used if the
entry on top of the RSB is different from the one stored on the stack
(Rule R:AM-Ret-Spec). Then, the rule creates a new speculative
instance that uses the return address from the RSB R. Note that
speculation only happens when the return address from the RSB
differs from the one on the stack (stored in𝑚(𝑎(sp))).

Here, we overview how our semantics behaves with empty and
full RSB; full formalisation is available in the technical report [18].
Whenever the RSB is empty, executing a ret instruction does not
cause speculation and we return to the address pointed by sp. In
contrast, whenever the RSB is full, executing a call instruction
does not add entries to the RSB, i.e., we model an acyclic RSB.1

The behaviour BehAR (𝑝) is the set of all traces generated from
an initial state until termination using R.

3.2.2 Oracle Semantics. Unlike before, the oracle cannot decide
the outcome of the ret instruction, because the CPU always uses
the return address stored in the RSB (if there is one) and it does not
speculate otherwise [9]. The only thing the oracle decides here is
the size of the speculation window 𝜔 .

3.2.3 Symbolic Semantics. Just as before, the symbolic specula-
tive semantics S

R replaces concrete configurations and the non-
speculative semantics with symbolic configurations and the sym-
bolic non-speculative semantics respectively. We remark that the
program counter pc is always concrete in the symbolic non-specula-
tive semantics [21]. As a result, the RSB only contains concrete val-
ues (and return addresses). The behaviour BehSR (𝑝) of a program 𝑝

is the set of all traces starting from an initial state until termination
using the reflexive-transitive closure of the symbolic semantics.

1We follow the way AMD processors handle this kind of speculation [27].

3.2.4 Different Behaviours of Empty and Full RSBs. Modern CPUs
use different RSB implementations that differ in theway they handle
underflows and overflows, i.e., when the RSB is empty or full [27].
For example, cyclic RSB implementations overwrite old entries
when the RSB is full. Alternatively, CPUs can fallback to other
predictors (like the indirect branch predictor) to predict return
addresses whenever the RSB is empty.

In our model, the RSB is not cyclic and there is no speculation
when the RSB is empty (Rule R:AM-Ret-Empty).

(R:AM-Ret-Empty)

𝑝 (𝜎 (pc)) = ret ⟨𝑝, 𝜎⟩ 𝜏−→ ⟨𝑝, 𝜎 ′⟩

⟨𝑝, ctr, 𝜎, ∅, 𝑛 + 1⟩
𝜏

R ⟨𝑝, ctr, 𝜎 ′, ∅, 𝑛⟩
We remark that extending R to support different RSBs imple-

mentations can be done with minimal effort.

4 A FRAMEWORK FOR COMPOSING

SPECULATIVE SEMANTICS

The presented speculative semantics allow us to verify programs
for violations of SNI but they do not capture the vulnerability in
Listing 1, as the traces of Example 3 show.

Example 3 (SNI for Listing 1,). The traces generated are:

𝜏1
B = 𝜏2

B := store 𝑝 · store 𝑝 · startB 0 · load 𝑝
· load 𝐴 + 𝑝𝑢𝑏𝑙𝑖𝑐 · rlbB 0 · pc 9

𝜏1
S = 𝜏2

S := ... · store 𝑝 · startS 1 · bypass 1 · pc ⊥ ·
rlbS 1 · pc ⊥

The program in Listing 1 seems secure since there is no secret value
leaked in the speculative transaction; thus the program satisfies
SNI for B and S in isolation. However, this program specu-
latively leaks when considering speculation over beqz and store
instructions, but we need our combined semantics to detect this
vulnerability; see Section 5.3.

The vulnerability only appears when the branch predictor (Sec-
tion 2.4.1) and the memory disambiguator (Section 3.1.2) are used
together. Intuitively, we know that CPUs use all the speculation
mechanisms described here (and many others as well) at the same
time. Thus, we should not only focus on these different speculation
mechanisms in isolation but we need to look at their combinations
as well. That is, we need a way to compose the different semantics
into new semantics that can reason about these “combined” leaks.

This section presents a novel, general framework for composing
two speculative semantics 𝑥 and𝑦, each one capturing the effects of
a single speculation mechanism, to allow for speculation from both
mechanisms 𝑥 and𝑦. The semantics 𝑥 and𝑦 are also called the source
semantics of the composition. Next, we first introduce the new com-
posed semantics, which consists of an always-mispredict semantics,
an oracle semantics, and a symbolic semantics (Section 4.1). Then,
we present the notion of well-formed composition which we use to
study the properties of composed semantics (Section 4.2).

NewNotation. The states Σ𝑥𝑦 , instancesΦ𝑥𝑦 , and the tracemodel
Obs𝑥𝑦 are defined as the union of the source parts. Furthermore,
we define a projection function ↾𝑥𝑦 and two projections ↾𝑥𝑥𝑦 and

Automatic Detection of Speculative Execution Combinations CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

↾
𝑦
𝑥𝑦 that return the first and second projection of the pair from ↾𝑥𝑦 .

These functions are lifted to states by applying them pointwise:

Obs𝑥𝑦 := Obs𝑥 ∪ Obs𝑦 Φ𝑥𝑦 := Φ𝑥 ∪ Φ𝑦 Σ𝑥𝑦 := Σ𝑥 ∪ Σ𝑦

↾𝑥𝑦 : Φ𝑥𝑦 ↦→ (Φ𝑥 ,Φ𝑦) ↾𝑥𝑥𝑦 : Φ𝑥𝑦 ↦→ Φ𝑥 ↾
𝑦
𝑥𝑦 : Φ𝑥𝑦 ↦→ Φ𝑦

For example, the ΦS+R state resulting from the union of ΦS and
ΦR states (from Section 3.1.2 and Section 3.2.1 respectively) is ⟨𝑝,
ctr, 𝜎,R, 𝑛⟩, as it contains all common elements (the program 𝑝 ,
the counter ctr , the state 𝜎 , and the speculation count 𝑛) plus the
return stack buffer R from ΦR only. Taking the ·↾SS+R of a ΦS+R state
returns the ΦS subpart, i.e., all but the return stack buffer.

We overload ↾𝑥𝑥𝑦 and ↾𝑦𝑥𝑦 to also work on traces 𝜏 . The projection
𝜏↾𝑥𝑥𝑦 deletes all speculative transactions (marked by start𝑦 id and
rlb𝑦 id) not generated by the source semantics 𝑥 . The definition
of ↾𝑦𝑥𝑦 is similar by replacing 𝑥 with 𝑦:

Y↾𝑥𝑥𝑦 = Y (𝜏 · 𝜏)↾𝑥𝑥𝑦 = 𝜏 · (𝜏)↾𝑥𝑥𝑦
(start𝑦 id · · · · rlb𝑦 id · 𝜏)↾𝑥𝑥𝑦 = 𝜏↾𝑥𝑥𝑦

We indicate source semantics for𝑥 and𝑦 as 𝑥 and 𝑦 respectively
and use 𝑥𝑦 to indicate the composed semantics.

4.1 Combined Speculative Semantics

The combined semantics delegates back to the source semantics
of 𝑥 and 𝑦 to model the effects of both speculation mechanisms
(modeled by 𝑥 and 𝑦). This is captured in the two core rules below:

(AM-x-step)

Φ𝑥𝑦↾
𝑥
𝑥𝑦

𝜏 𝑍𝑥𝑦↾
𝑥
𝑥𝑦

𝑥 Φ
′
𝑥𝑦↾

𝑥
𝑥𝑦

Φ𝑥𝑦
𝜏 𝑍𝑥𝑦

𝑥𝑦 Φ
′
𝑥𝑦

(AM-y-step)

Φ𝑥𝑦↾
𝑦
𝑥𝑦

𝜏 𝑍𝑥𝑦↾
𝑦
𝑥𝑦

𝑦 Φ
′
𝑥𝑦↾

𝑦
𝑥𝑦

Φ𝑥𝑦
𝜏 𝑍𝑥𝑦

𝑥𝑦 Φ
′
𝑥𝑦

The combined semantics does a step by either delegating back to
the 𝑥 source semantics (Rule AM-x-step) or to the 𝑦 one (Rule AM-
y-step).2 The rules rely on metaparameter 𝑍𝑥𝑦 , which is a pair of
two metaparameters 𝑍𝑥𝑦 := (𝑍𝑥 , 𝑍𝑦) — one for 𝑥 and one for 𝑦. We
overload the projections ↾𝑥𝑥𝑦 and ↾𝑦𝑥𝑦 to extract the corresponding
metaparameter from 𝑍𝑥𝑦 , e.g., 𝑍𝑥𝑦↾𝑥𝑥𝑦 = 𝑍𝑥 .

The role of 𝑍 is central to making the composed semantics work
as expected. It restricts how the combined semantics delegates exe-
cution to the components to ensure that the correct rule is applied.

With 𝑍 = (∅, ∅), consider the execution of the beqz instruc-
tion in Line 4 in Listing 1. The combined semantics B+S can use
Rule AM-x-step to delegate back to B for beqz instructions, cre-
ating a new speculative transaction (Rule B:AM-branch). However,

B+S can also use Rule AM-y-step, because beqz instructions are
also handled by S. Unfortunately, this does not start speculation,
which happens only on store instructions (Rule S:AM-NoSpec).

Intuitively, B+S should delegate back to B, so Rule AM-y-
step should not be applicable. This can be obtained by instantiating
𝑍B+S = (store, beqz), so that its projections are 𝑍B = store and

2To simplify notation, we omit that the Φ𝑥 \ Φ𝑦 parts of state Φ𝑥𝑦 in x-step (similar
Φ𝑦 \ Φ𝑥 in y-step) do not change between Φ𝑥𝑦 and Φ

′
𝑥𝑦 .

𝑍S = beqz. Now, B+S can only apply Rule AM-x-step on the
beqz of Line 4, because 𝑍S ensures that S cannot execute beqz
instructions, as depicted in the full rule for beqz

S below (where we
indicate the instructions derived from 𝑍S = beqz in blue):

(S:AM-NoSpec)

𝑝 (𝜎 (pc)) ∉ store ∪ beqz ⟨𝑝, 𝜎⟩ 𝜏−→ ⟨𝑝, 𝜎 ′⟩

⟨𝑝, ctr, 𝜎, 𝑛 + 1⟩
𝜏 beqz

S ⟨𝑝, ctr, 𝜎 ′, 𝑛⟩
Having clarified the intuition behind the semantics, we can define

the behaviour BehA𝑥𝑦 as the set of all traces generated from initial
states until termination using 𝑥𝑦 .

4.1.1 Oracle Combination. Instead of using one oracle, the com-
bination uses a pair of oracles, one from each source semantics.
When delegating back to either source, the correct oracle of the
source is handed over to the source semantics.

4.1.2 Symbolic Combination. Instead of using the AM semantics
for delegation, the combined symbolic semantics S

𝑥𝑦 uses the
symbolic source semantics for delegation. Furthermore, the new
notation (union, projections) is lifted to the symbolic combination to
create the symbolic states ΣS𝑥𝑦 . The behaviour BehS𝑥𝑦 (𝑝) of program
𝑝 is the set of all traces generated using the symbolic semantics.

4.2 Properties of Composition

We now illustrate the benefits of our composition framework. For
this, we first introduce a notion of well-formed composition (Sec-
tion 4.2.1), which intuitively tells when a combined semantics
“makes sense”. Then, we show that for well-formed compositions,
if the source semantics are SSS, so is the combined semantics (Sec-
tion 4.2.2). Since we proved this property for any well-formed
composition in our framework, all (well-formed) compositions we
present in Section 5 are SSS for free. This proof reuse and extensibil-
ity is our framework’s key advantage over having ad-hoc semantics
combining multiple speculation mechanisms, which requires one
to manually prove the SSS results we instead obtain for free.

4.2.1 Well-formed Compositions. The well-formedness conditions
for the composition ensures that the delegation is done properly
(Definition 3), they are the minimal set of assumptions that let us
derive SSS of the combined semantics for free:

Definition 3 (Well-formed composition). A composition 𝑥𝑦 of
two speculative semantics 𝑥 and 𝑦 is well-formed, written ⊢

𝑥𝑦 : WFC, if:

(1) (Confluence)Whenever Σ𝑥𝑦
𝜏

𝑥𝑦 Σ′𝑥𝑦 and Σ𝑥𝑦
𝜏

𝑥𝑦 Σ′′𝑥𝑦 ,
then Σ′𝑥𝑦 = Σ′′𝑥𝑦 .

(2) (Projection preservation) For all 𝑝 , BehA𝑥 (𝑝) = BehA𝑥𝑦 (𝑝)↾𝑥𝑥𝑦
and BehA𝑦 (𝑝) = BehA𝑥𝑦 (𝑝)↾

𝑦
𝑥𝑦 .

(3) (Relation preservation) If Σ𝑥𝑦 ≈𝑥𝑦 𝑋𝑥𝑦 and Σ𝑥𝑦
𝜏 ∗

𝑥𝑦 Σ′𝑥𝑦

then 𝑋𝑥𝑦
𝜏′
O𝑥𝑦
𝑥𝑦
∗ 𝑋 ′𝑥𝑦 and Σ′𝑥𝑦 ≈𝑥𝑦 𝑋 ′𝑥𝑦 .

(4) (Symbolic preservation) If ΣS𝑥𝑦
𝜏S S

𝑥𝑦 ΣS
′

𝑥𝑦 and ` (ΣS𝑥𝑦) =

Σ𝑥𝑦 , then there is Σ′𝑥𝑦 s.t. Σ𝑥𝑦
` (𝜏S)

𝑥𝑦 Σ′𝑥𝑦 and ` (ΣS′𝑥𝑦) = Σ′𝑥𝑦 .

Next, we explain the well-formedness conditions:

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Xaver Fabian, Marco Guarnieri, and Marco Patrignani

• Confluence (point 1) ensures that the non-determinism of the
combined semantics (that non-deterministically delegates back to
its sources) is not harmful. Consider the assignment in Line 1 in
Listing 1. B+S can delegate to either B or S to reduce the
assignment. If the combined semantics is confluent, then it does
not matter which source rule executes the assignment in Line 1 in
Listing 1, the semantics reaches the same state either way.
• Projection preservation (point 2) ensures that the combined

semantics is not hiding or forgetting traces of its sources. Any
observable emitted by a source semantics must be propagated to
the combined one, this is also the reason why Obs𝑥𝑦 is defined as
the union of the source Obs.
• To explain relation preservation (point 3), we need to mention

a technical detail: the state relation (denoted ≈𝑥𝑦 and defined in
our technical report) between the AM states (Σ𝑥𝑦) and the Oracle
ones (𝑋𝑥𝑦). Intuitively, two states are related if they are the same or
if one is waiting on a speculation of the other to end. Then, point
(3) ensures that whenever we start from related states (Σ𝑥𝑦 ≈𝑥𝑦
𝑋𝑥𝑦) and we do one or more steps of the AM composed semantics

(Σ𝑥𝑦
𝜏 ∗

𝑥𝑦 Σ′𝑥𝑦), then we can always find a related state (Σ′𝑥𝑦 ≈𝑥𝑦
𝑋 ′𝑥𝑦) that is reachable by performing one or more steps of the

composed oracle semantics (𝑋𝑥𝑦
𝜏 ′
O𝑥𝑦
𝑥𝑦
∗ 𝑋 ′𝑥𝑦). This fact is used

when proving that SNI of a program under the composed AM
semantics implies SNI under the composed oracle semantics (point
1 of Definition 2). Thus, it is not important for the AM and the
Oracle semantics to produce the same traces, just that the two AM
traces and the two Oracle traces are pairwise equivalent – which
follows from the state relation.
• Finally, symbolic preservation (point 4) ensures that any step

of the always-mispredict composed semantics corresponds to the
concretization of a step of the symbolic composed semantics (and
vice versa3). Note that proving symbolic preservation is almost
trivial whenever both source semantics enjoy the same property
(like our semantics B, S, and R).

4.2.2 SSS preservation. The key result of our framework is that
well-formed compositions whose sources are secure speculative
semantics (SSS) are also SSS (Theorem 4). Note that our proof of
Theorem 4, available in the companion technical report [18], holds
for any well-formed composition in our framework and, therefore,
it applies for free to all the compositions in Section 5.

Theorem 4 (𝑥𝑦 is SSS). If ⊢ 𝑥 SSS and ⊢ 𝑦 SSS and ⊢ 𝑥𝑦 :
WFC then ⊢ 𝑥𝑦 SSS.

As a corollary of Theorem 4, we obtain that the security of well-
formed compositions is related to the security of their components
(Theorem 5). In particular, whenever a program is insecure w.r.t. one
of the components, then it is insecure w.r.t. the composed semantics.
Dually, if a program is secure w.r.t. the composed semantics, then it
is secure w.r.t. the single components. Note, however, that there are
programs that are secure for the single components but insecure
w.r.t. the composed semantics like Listing 1.

Theorem 5 (Combined SNI Preservation). If ⊢ 𝑥𝑦 : WFC
and 𝑝 ⊬𝑥 SNI or 𝑝 ⊬𝑦 SNI, then 𝑝 ⊬𝑥𝑦 SNI.

3For space reasons, Definition 3 only reports one direction (with a simplified notation).

If ⊢ 𝑥𝑦 : WFC and 𝑝 ⊢𝑥𝑦 SNI, then 𝑝 ⊢𝑥 SNI and 𝑝 ⊢𝑦 SNI.

These results have an immediate practical impact on Spectec-
tor: (1) Spectector’s security analysis relies on the (symbolic)
speculative semantics, (2) the source semantics B, S, and R
are SSS, (3) well-formed compositions are also SSS, and (4) the com-
position of B, S, and R are well-formed. So, the Spectector
security analysis equipped with any combination of the B, S,
and R produces sound results, i.e., whenever the tool proves that a
program is leak-free then the program satisfies SNI. So, the next sec-
tion describes all the compositions and proves they are well-formed
(this implies that they are SSS thanks to Theorem 4), whereas the
section thereafter describes their implementation in Spectector.

5 INSTANTIATING OUR FRAMEWORK

This section describes all combinations of the speculative semantics
B, S, and R: S+R (Section 5.1), B+R (Section 5.2), B+S

(Section 5.3), and B+S+R (Section 5.4). For each one, we overview
the combined AM semantics using examples (whose traces we
computed using our Coq executable composed semantics) and we
prove that the combined semantics is well-formed, i.e., it satisfies
Definition 3. In the following, we describe in detail how the S+R
semantics can be instantiated as part of our framework; the other
combinations can be instantiated similarly and we only provide a
higher-level description. Full details and well-formedness proofs
are available in the companion technical report [18].

5.1 S+R Composition

To combine semantics using our framework, we need to define the
states, observations, and metaparameter 𝑍S+R for the composed
semantics S+R. The combined state ΣS+R is the union of the states
ΣS and ΣR; thus it contains the RSB R as well.

Spec. States ΣS+R ::= ΦS+R Spec. Instance ΦS+R ::= ⟨𝑝, ctr, 𝜎,R, 𝑛⟩
The union ObsS+R of the trace models ObsS and ObsR is defined as:
ObsS+R ::= startS 𝑛 | startR 𝑛 | rlbS 𝑛 | rlbR 𝑛 | bypass 𝑛 | ...

To define the metaparameter 𝑍S+R, we need to identify, for each
component semantics, the instructions that are related with specula-
tive execution. For S, the only instruction associated with specu-
lative execution is store, since the semantics can only speculatively
bypass stores. For R, even though the semantics speculates only
over ret instructions, call instructions also affect speculative execu-
tion since R pushes return addresses onto the R when executing
calls. Therefore, we set themetaparameter𝑍S+R to (call∪ret, store).
This ensures that in S+R, store instructions are only executed by
delegating back to call∪ret

S whereas call and ret instructions are
only executed by delegating back to store

R .
Theorem 6 states the combination of S and R described above

is well-formed. Given that S and R are SSS (Theorem 2 and
Theorem 3), we can derive “for free” that S+R is SSS (Theorem 4).

Theorem 6 (S+R is well-formed). ⊢ S+R : WFC

Listing 4 presents a program that contains a leak that can be
detected only by S+R but not by its components S and R.

Listing 4: S+R example

Automatic Detection of Speculative Execution Combinations CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

1 Manip_Stack:
2 sp ←− sp + 8
3 ret
4 Speculate:
5 call Manip_Stack
6 store secret , p
7 store pub , p
8 load eax , p
9 load edi , eax
10 ret
11 Main:
12 call Speculate
13 skip

In Listing 4, execution starts on Line 12 by calling the function
Speculate and it continues at Line 5. Next, the functionManip_Stack
is called and the stack pointer sp is incremented (Line 2). This modi-
fies the return address of the functionManip_Stack to now point to
Line 13 (the return address of the call to Speculate). Under R, mis-
predicting the return address ofManip_Stack using the RSB leads to
continuing the execution at Line 6. However, the store instructions
in Line 7 overwrites the secret value stored in Line 6. Then, the
load instructions in Line 8 and Line 9 emit only public values. As
a result, no secret is leaked and speculation ends. Similarly, under

S, speculation over store bypasses has no effect in Listing 4 be-
cause the store instruction in Line 6 is never reached and function
Manip_Stack returns to Line 13. Therefore, the leak is missed under

S and R, i.e., Listing 4 ⊢S SNI and Listing 4 ⊢R SNI.
However, under the combined semantics S+R, the store instruc-

tion on Line 7 is now speculatively bypassed and when returning
from function Manip_Stack the execution speculatively continues
from Line 8. Now, the load instructions are executed and the secret
is leaked, as shown in the traces below. Since secret is a high value,
there are low-equivalent configurations 𝜎1, 𝜎2 that differ in the
value of secret. Thus, there are two traces () that differs in the
observation load 𝑠𝑒𝑐𝑟𝑒𝑡 (highlighted in gray). Hence, the program
is not secure under the combined semantics, i.e., Listing 4 ⊬S+R SNI.

𝜏2
S+R ≠ 𝜏1

S+R
def
= call Speculate · · · startR 0 · · · startS 1 · · · rlbS 1

· · · startS 2 · bypass 7 · load 𝑝 · load 𝑠𝑒𝑐𝑟𝑒𝑡 · · ·
The relation between the source semantics and their composi-

tion is visualised in Figure 1, which shows the insecure programs
(with respect to SNI) detected under the different semantics. The
combined semantics encompasses all vulnerable programs of S

and R and additional programs like Listing 4. These additional
programs are the reason why the semantics S+R is “stronger than
the sum of its parts” S and R.

5.2 B+R Composition

In this combination, the instructions that influence speculative
execution are call and ret (R) and beqz (B). Thus, we set𝑍B+R =

(call ∪ ret, beqz) to account for this and to allow speculation from
both sources.

Theorem 7 states that B+R is well-formed. This allows us to
derive “for free” that B+R is SSS by applying Theorem 4.

Theorem 7 (B+R is well-formed). ⊢ B+R : WFC

S+R

S
R

Listing 2
Listing 3

Listing 4

Figure 1: Relating S, R and S+R wrt SNI.

Listing 5: B+R example

1 Manip_Stack:
2 sp <- sp + 8
3 ret
4 Speculate:
5 call Manip_Stack
6 x <- 0
7 beqz x, L2
8 load eax , secret
9 L2:
10 ret
11 Main:
12 call Speculate
13 skip

Listing 5 presents a leak that can be detected only under B+R. The
execution proceeds similarly to Listing 4 until the ret instruction in
Line 3 is reached. Under R, mispredicting the return address leads
to function Manip_Stack returning to Line 6. However, the beqz
instructions in Line 7 jumps to Line 10 (since 𝑥 is 0) and speculation
ends without leaking. Under B, the beqz instruction in Line 7 is
never executed and the function Manip_Stack returns to Line 13
without leaking. Hence, Listing 5 is secure (i.e., it satisfies SNI)
when considering R and B in isolation.

Under the combined semantics B+R, function Manip_Stack
returns to Line 6 and the beqz instruction is then mispredicted.
This leads to executing the load instructions in Line 8, which leaks
secret information. The resulting traces () are given below, where
we highlight the secret-dependent observations. Given the length
of the trace, we present only the most relevant parts, i.e., that both
kinds of speculations need to have started for the leak to appear.

𝜏2
B+R ≠ 𝜏1

B+R
def
= call 𝑆𝑝𝑒𝑐𝑢𝑙𝑎𝑡𝑒 · · · startR 0 · · · startB 1

· pc 8 · load 𝑠𝑒𝑐𝑟𝑒𝑡 · rlbB 1 · rlbR 0

Again, the two traces differ in the observation in the grey box and
we have Listing 5 ⊬B+R SNI.

5.3 B+S Composition

In this combination,speculation happens on beqz instructions (B)
and on store instructions (S). Thus, we set 𝑍B+S = (store, beqz).
Therefore, in the combined semantics B+S, beqz instructions are
only executed by delegating back to store

B and store instructions
are only executed by delegating back to beqz

S . This semantics is
also a well-formed composition (Theorem 8) and SSS.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Xaver Fabian, Marco Guarnieri, and Marco Patrignani

Theorem 8 (B+S is well-formed). ⊢ B+S : WFC

Listing 1 from Section 1 contains a leak that can only be detected
by B+S but not by its components. The traces associated with the
code () are given below, where secret-dependent observations
are highlighted in gray:

𝜏2
B+S ≠ 𝜏1

B+S
def
= · · · startS 1 · bypass 1 · · · · startB 2 · pc 5

· load 𝑝 · load 𝐴 + 𝑠𝑒𝑐𝑟𝑒𝑡 · rlbB 2 · rlbS 1 · · ·
The program is not secure under B+S, i.e., Listing 1 ⊬B+S SNI.

5.4 B+S+R Composition

We conclude this section by combining all three semantics B,
S, and R. Our framework (Section 4) allows only combining

a pair of source semantics into a combined one. For simplicity,
we present B+S+R as a direct combination of the three source
semantics (technically, we obtain B+S+R by combining B+S
with R). The metaparameter 𝑍B+S+R (which we represent as a
triple of values) is (call∪ ret∪ store, call∪ ret∪beqz, beqz∪ store).
As a result, the combined semantics B+S+R can only delegate
to the corresponding speculative semantics for the appropriate
speculation sources.

As before, B+S+R is a well-formed composition (Theorem 9)
and we get that B+S+R is SSS by applying Theorem 4.

Theorem 9 (B+S+R is well-formed). ⊢ B+S+R : WFC

Listing 6: B+S+R example

1 Manip_Stack:
2 sp <- sp + 8
3 ret
4 Speculate:
5 call Manip_Stack
6 x <- 0
7 beqz x, L2
8 load eax , p
9 load edi , eax
10 L2:
11 ret
12 Main:
13 store secret , p
14 store pub , p
15 call Speculate

Listing 6 depicts a leaky program that can be detected only under
B+S+R, since the program satisfies SNI under B, S and R.

Under B+S+R, the store instruction in Line 14 is bypassed There-
fore, when returning from Manip_Stack, the program mispredicts
the return address and speculatively returns to Line 6. Here, the
beqz instruction in Line 7 is mispredicted and the load instructions
are executed, which now leaks the secret value.

The resulting traces () are given below:

𝜏2
B+S+R ≠ 𝜏1

B+S+R
def
= · · · startS 1 · bypass 14 · call Speculate · · ·
· startR 2 · ret 6 · startB 3 · pc 8 · load 𝑝

· load 𝑠𝑒𝑐𝑟𝑒𝑡 · rlbB 3 · rlbR 2 · ·rlbS 1 · · ·
Thus, the program is not secure, i.e., Listing 6 ⊬B+S+R SNI.

6 IMPLEMENTATION AND EVALUATION

This section describes how our combined semantics can be used to
detect leaks introduced by the interaction of multiple speculation
mechanisms. For this, we extended Spectector, a symbolic analysis
tool for speculative leaks against B, with the semantics for S

and R and for all the combinations from Section 5 (Section 6.1).
Using Spectector, we analyze a corpus of 49 microbenchmarks
containing speculative leaks generated by different speculation
mechanisms (Section 6.2). With these experiments, we aim to show
that (1) our S and R speculative semantics can correctly identify
speculative leaks associated with speculation over store-bypasses
and return instructions, and (2) our combined semantics can detect
novel leaks that are otherwise undetectable when considering single
speculation mechanisms in isolation.

6.1 Implementation

We implemented all our semantics (the symbolic versions of S

and R plus all compositions from Section 5) as an extension of
Spectector [21]. The implementation of compositions closely fol-
lows the structure of our framework. As in Section 5, selecting
one of the composed semantics in Spectector sets the metapa-
rameter Z, which is used to delegate back to the correct individual
semantics. Spectector then uses symbolic execution together with
self-composition [6] and an SMT solver to check for SNI against

𝑥 . Due to this setup, we inherit all limitations of Spectector’s
speculative analysis, e.g., path explosion due to symbolic execution
and limitations in the translation from x86 to `Asm. We refer to [21]
for an in-depth discussion of such limitations.

6.2 Experiments

Benchmarks: We analyze 49 snippets of code containing leaks
resulting from speculation over branch, store/load, and ret instruc-
tions (and their combinations):
• Spectre-STL: 13 programs are variants of the Spectre-STL vul-

nerability. They exploit speculation over memory disambiguation,
and they have been used as benchmarks in prior work [14, 32]. For
each program, we also analyze a patched version where a manually
inserted lfence instruction stops speculation over store-bypasses
and prevents the leak.
• Spectre-RSB: 5 programs are variants of the Spectre-RSB

vulnerability. They exploit speculation over return instructions, and
they are obtained from the safeside [1] and transientfail [8]
projects4. For each program, we also analyze manually patched
versions obtained by (1) inserting lfences after call instructions (i.e.,
at the instruction address where ret speculatively returns), and (2)
using the modified retpoline defense proposed in [27, Section 6.1].
• Spectre-Comb: 4 programs contain leaks that arise from com-

bining speculation mechanisms. These are the programs depicted in
listing 1, listing 5, listing 4, and listing 6 and discussed in Section 5.
For each program, we also analyze a manually patched version
where lfence instructions prevent the speculative leaks.

4Out of the three Spectre-RSB examples from safeside [1], we analyze the only
one that works against an acyclic RSB like the one supported by R . Programs
ca_ip, ca_oop, and sa_ip from transientfail [8] rely on concurrent execution. Since
Spectector does not support concurrency, we hardcode the worst-case interleaving
in terms of speculative leakage in our benchmark.

Automatic Detection of Speculative Execution Combinations CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Test case S

None Fence

case01 (I) ◦ •◦
case02 (I) ◦ •◦
case03 (S) •◦ •◦
case04 (I) ◦ •◦
case05 (I) ◦ •◦
case06 (I) ◦ •◦
case07 (I) ◦ •◦
case08 (I) ◦ •◦
case09 (S) •◦ •◦
case10 (I) ◦ •◦
case11 (I) ◦ •◦
case12 (S) •◦ •◦
case13 (I) ◦ •◦

(a) Results for the Spectre-STL programs under the S semantics

against unpatched programs (column “None”) and programs

patched with lfence (column “Fence”)

Test case R
None Fence Retpoline

𝑟𝑒𝑡2𝑠𝑝𝑒𝑐_𝑐_𝑑 (I) ◦ •◦ •◦
𝑐𝑎_𝑖𝑝 (I) ◦ •◦ •◦
𝑐𝑎_𝑜𝑜𝑝 (I) ◦ •◦ •◦
𝑠𝑎_𝑖𝑝 (I) ◦ •◦ •◦
𝑠𝑎_𝑜𝑜𝑝 (I) ◦ •◦ •◦

(b) Results for the Spectre-RSB programs under the R semantics

against unpatched programs (column “None”), programs patched

with lfence (column “Fence”), and programs patched with the mod-

ified retpoline defense proposed in [27, §6.1] (column “Retpoline”)

Figure 2: Result of the analysis of our benchmarks for S and R. For each program, ◦ denotes that Spectector finds a

violation of SNI under the corresponding semantics, whereas •◦ denotes that Spectector proves the program secure under the

semantics. Next to each program, we report if the program is Secure or Insecure in its unpatched version.

Experimental setup:The benchmarks for Spectre-STL and Spectre-
RSB are implemented in C and compiled with Gcc 11.1.0 and
we manually inserted lfence/retpoline countermeasures in the
patched versions. The benchmarks for Spectre-Comb are directly
formalised in `Asm. We run all our experiments on a laptop with a
Dual Core Intel Core i5-7200U CPU and 8GB of RAM.

Spectre-STL: Figure 2a reports the results of analysing the pro-
grams in the Spectre-STL benchmark5. Using the S semantics,
Spectector successfully detected leaks (i.e., violations of SNI) in
all unpatched programs, except programs 03, 09, and 12 which
do not contain speculative leaks (consistently with other analysis
results [14, 32]). Observe that Binsec/Haunted [14] flags program
13 as secure since the program can only speculatively leak initial
values from the stack, which Binsec/Haunted treats as public by
default [2]. Since we assume initial memory values to be secret
(like Ponce de León and Kinder [32]), Spectector correctly de-
tected the leak in program 13. Spectector also successfully proved
that all patched programs (where an lfence is added between store
instructions) satisfy SNI and are free of speculative leaks.

Spectre-RSB: Figure 2b reports the analysis results on the Spectre-
RSB programs. Using R, Spectector successfully detected leaks
in all unpatched programs. Moreover, Spectector successfully
proved that the patched programs where a lfence instruction is
added after every call satisfy SNI, i.e., they are free of specula-
tive leaks. Spectector also successfully proved secure the pro-
grams patched using the modified retpoline defense proposed by
Maisuradze and Rossow [27], which replaces return instructions
with a construct that traps the speculation in an infinite loop.

5We had to slightly modify programs 02, 05, and 06 due to limitations of Spectector’s
x86 front-end when dealing with global values (programs 05 and 06) and 32-bit address-
ing (program 02). We had to limit the speculation window, due to vanilla Spectector’s
limitations in symbolic execution, when analyzing program 09, which contains a loop.

Spectre-Comb: Figure 3a reports the results of our analysis on
the Spectre-Comb programs, which involve leaks arising from
a combination of multiple speculation mechanisms. Spectector
equipped with the single semantics B, S, and R is not able to
detect the speculative leaks in any of the 4 programs and, therefore,
proves them secure. This is expected since the programs contain
leaks that arise from a combination of semantics. Spectector can
successfully identify leaks in listing 1, listing 5, listing 4 when
using, respectively, the semantics B+S, S+R, and B+R. Each
semantics, however, fail in detecting leaks in the other programs,
and all of them fail in detecting a leak in listing 6 as expected. Finally,
Spectector is able to successfully detect leaks in all programs
when using the B+S+R semantics that combines all speculation
mechanisms studied in this paper.

We also analyzed programs manually patched with lfence state-
ments (“listing 1 Fence”, “listing 5 Fence”, “listing 4 Fence”, and
“listing 6 Fence” in Figure 3a). As before, Spectector successfully
prove the security of patched programs. Even for leaks that arise
frommultiple speculation mechanisms, it is often sufficient to insert
a single lfence to secure the entire program, e.g., an lfence after
the beqz instruction in Listing 5 is enough to make the program
SNI with respect to B+S+R.

Figure 3b reports the average execution time (for 1000 execu-
tions) of Spectector’s analysis for the Spectre-Comb programs
under the different semantics. We highlight the following findings:
• For the programs patched with lfence, Spectector’s execu-

tion time under a combined semantics is larger than Spectector’s
execution times under the corresponding source semantics. This
follows from the combined semantics exploring (a) everything ex-
plored by the source semantics as well as (b) additional statements
resulting from extra interactions between the source semantics.
Note that the placement of lfences influence execution time. For
instance, the execution time for “listing 5 Fence” under R and

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Xaver Fabian, Marco Guarnieri, and Marco Patrignani

Test case B S R B+S S+R B+R B+S+R

listing 1 (I) •◦ •◦ •◦ ◦ •◦ •◦ ◦
listing 5 (I) •◦ •◦ •◦ •◦ ◦ •◦ ◦
listing 4 (I) •◦ •◦ •◦ •◦ •◦ ◦ ◦
listing 6 (I) •◦ •◦ •◦ •◦ •◦ •◦ ◦
listing 1 Fence (S) •◦ •◦ •◦ •◦ •◦ •◦ •◦
listing 5 Fence (S) •◦ •◦ •◦ •◦ •◦ •◦ •◦
listing 4 Fence (S) •◦ •◦ •◦ •◦ •◦ •◦ •◦
listing 6 Fence (S) •◦ •◦ •◦ •◦ •◦ •◦ •◦

(a) Results of the analysis. For each program, ◦ denotes that Spectector finds a violation of SNI whereas •◦ denotes that Spectector proves the

program secure under the corresponding semantics. Next to each program, we report if it is Secure or Insecure w.r.t. B+S+R.

listing 1 listing 5 listing 4 listing 6 listing 1
Fence

listing 5
Fence

listing 4
Fence

listing 6
Fence

0

10

20

30

40

Ex
ec
ut
io
n
Ti
m
e
(m

ill
is
ec
on

ds
)

B

S

R

B+S

B+R

S+R

B+S+R
non-spec

(b) Average execution time for Spectector’s analysis for the code snippets in the Spectre-Comb benchmark (over 1000 samples) for the relevant

individual and composed speculative semantics. The white bar (“non-spec”) represents the analysis time w.r.t. `Asm non-speculative semantics.

Figure 3: Results of the Spectre-Comb benchmark, where “listing 𝑥 Fence” is the patched version (using lfence) of “listing 𝑥”.

B+R is similar because the lfence is placed just after the branch
instruction of Line 7, thereby stopping B-speculation.
• For most of the unpatched programs, execution time under a

combined semantics is again larger than the execution times under
the source semantics. This is, however, not always the case. For
instance, Spectector’s execution time for listing 6 and S+R is
larger than its execution time for B+S+R. This is due to Spec-
tector’s terminating early after finding a violation of SNI, which
happens under B+S+R but not under S+R (see also Figure 3a).

7 DISCUSSION

Scope of the models: Lifting the results of the security analysis
for our speculative semantics to real-world CPUs is only possible to
the extent that these semantics capture the information flows in the
target system. Thus, Spectector’s result may incorrectly classify
programs as secure (if our semantics do not capture information
flows happening in real-world CPUs) or insecure (if our semantics
admit speculations that are impossible on real systems).

Other speculation mechanisms: There are many speculation
mechanisms beyond those modeled in B, S, and R:
• Speculation over indirect jumps [24] can be modeled as an

always-mispredict semantics (similarly to B) where mispredicted
paths can start from any other statement. This, however, makes

automated reasoning challenging due to the large number of spec-
ulative paths. Mechanisms like Intel Control-Flow-Integrity [34]
can improve the situation by restricting potential jump targets.
• CPUs speculate over ret instructions in different ways. For

instance, there are many different ways of implementing return
stack buffers (e.g., cyclic versus acyclic RSBs [27] or RSBs that
fall back to indirect branch prediction [41]). Some ARM proces-
sors, moreover, use straight-line speculation that allows CPUs to
speculatively bypass a ret instruction and execute the instructions
following it. Both kinds of speculation can bemodeled bymodifying
the Rule R:AM-Ret-Spec rule in R.
• Many proposals for value prediction over different kinds of

instructions exist [26, 29, 35]. While naive speculative semantics
might have to explore all possible values as prediction, semantics
that model specific prediction mechanisms might restrict the set of
predicted values (thereby leading to a more tractable analysis).

We expect that most of these mechanisms can be modeled as
speculative semantics satisfying our well-formedness conditions.
Hence, they could work with our composition framework.

Limitations of composition: Our composition framework has
two main limitations:

(1) The metaparameter 𝑍 is expressed in terms of `Asm instruc-
tions, i.e., the smallest unit of computation in our framework. Since
𝑍 restricts how the composed semantics delegates execution to its

Automatic Detection of Speculative Execution Combinations CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

sources, this limit the expressiveness of composed semantics. For
instance, S+R cannot speculate over the implict store writing the
return address to the stack that happens as part of call instructions.

(2) Our framework does not support combinations where a sin-
gle instruction perform speculation-relevant changes in both source
semantics. For instance, consider a combination of R with a se-
mantics modeling straight-line speculation. Here, both semantics
start different speculative transactions on executing ret instructions.
However, instantiating𝑍 as (∅, ∅), which enables both speculations,
violates the confluence well-formedness condition for the composed
semantics, whereas setting 𝑍 = (𝑥,𝑦) so that only one of 𝑥 and 𝑦 is
ret would only capture one of the two speculation mechanisms.

We leave addressing both limitations as future work.

8 RELATEDWORK

Speculative execution attacks: After Spectre [24] has been dis-
closed to the public in 2018, researchers have identified many other
speculative execution attacks [4, 7, 25, 27, 42]. These attacks differ
in the exploited speculation sources [23, 25, 27], the covert chan-
nels [33, 36, 37] used, or the target platforms [12]. We refer the
reader to Canella et al. [8] for a survey of existing attacks.

Security conditions for speculative leaks: Researchers have
proposed many program-level properties for security against spec-
ulative leaks, which can be classified in three main groups [10]:

(1) Non-interference definitions ensure the security of specu-
lative and non-speculative instructions. For instance, speculative
constant-time [9] (used also in [3, 14, 38]) extends the constant-time
security condition to account also for transient instructions.

(2) Relative non-interference definitions [11, 19, 21, 22] ensure
that transient instructions do not leak more information than what
is leaked by non-transient instructions. For instance, speculative
non-interference [21], which we build on, (used also in [20, 31])
restricts the information leaked by speculatively executed instruc-
tions (without constraining what can be leaked non-speculatively).

(3) Definitions that formalise security as a safety property [31,
32], whichmay over-approximate definitions from the groups above.

Operational semantics for speculative leaks: In the last few
years, there has been a growing interest in developing formal mod-
els and principled program analyses for detecting leaks caused by
speculatively executed instructions. We refer the reader to [10] for
a comprehensive survey on the topic. In the following, we discuss
the approaches that are more relevant to our paper.

Our speculative semantics S and R capture the effects of
transient instructions at a rather high-level, and they are inspired by
the always-mispredict B semantics from [21]. Our S semantics
is also similar to the CT-BPAS speculation contract used by the
Revizor testing tool [30]. In contrast, other approaches, which we
overview next, explicitly model microarchitectural components like
multiple pipeline stages, caches, and branch predictors.

For instance, KLEESpectre [39] and SpecuSym [22] consider a
semantics that explicitly model the cache, which enable reasoning
about the cache content. McIlroy et al. [28] go a step further and
model a multi-stage pipeline with explicit cache and branch pre-
dictor. Their semantics can only model speculation over branch
instructions since it lacks store-forwarding or RSB.

Cauligi et al. [9]’s semantics model speculation over branch in-
structions, store-bypasses, and return instructions. Differently from
our semantics, their 3-stage pipeline semantics explicitly models
several microarchitectural components like a reorder buffer and an
RSB. Their tool detects violations of speculative constant-time in-
duced by speculation over branch instructions and store-bypasses.

Binsec/Haunted [14] detect violations of speculative constant-
time due to speculation over store-bypasses and branch instructions.
For this, they explicitly model the store buffer, which S abstracts
away. Barthe et al. [5] extend the Jasmin [3] cryptographic verifi-
cation framework to reason about speculative constant-time and
supports speculation over store-bypasses and branch instructions.

While several of thesemodels supportmultiple speculationmech-
anisms, these mechanisms are hard-coded and no existing approach
provides a composition framework or extensible ways of extending
themain theoretical results to newmechanisms “for free”. Moreover,
while we could have used other semantics as a basis for our frame-
work, this would have resulted in more difficult proofs (since seman-
tics like the one in [9] are significantly more complex than ours).
Axiomatic semantics for speculative leaks: A few approaches
formalise the effects of speculatively executed instructions using
axiomatic semantics inspired by work on weak memory models. For
instance, Colvin and Winter [13] and Disselkoen et al. [15] capture
the effects of branch speculation but both lack program analyses.

Ponce de León and Kinder [32] illustrate how one can model
leaks resulting from speculation over branch instructions and store-
bypasses using the CAT modeling language for memory consis-
tency, and they present a bounded model checking analysis for
detecting speculative leaks. Interestingly, they talk about compos-
ing several of theirs semantics [32, §IV.F], which should allow them
to detect vulnerabilities like Listing 1 (whichwe detect under B+S).
However, they do not formally characterize compositions and, there-
fore, they cannot derive interesting results “for free” about the com-
posed semantics (like we do in Theorem 4). Moreover, even though
they state that composability is an advantage of axiomatic models,
our framework (and tool implementation) shows that composability
can be done with operational semantics as well.

9 CONCLUSION AND FUTUREWORK

This paper presented new speculative semantics for speculation on
store and return instructions. It also defined a general framework to
reason about the composition of different speculative semantics and
instantiated the framework with our new speculative semantics S

and R and the semantics by Guarnieri et al. [21]. Our framework
yields security of the composed semantics (almost) for free, given
the security of its parts. All the new semantics have been imple-
mented in the Spectector program analysis tool, which correctly
detects all vulnerabilities in existing and novel benchmarks.
Acknowledgments: This work was partially supported by the
Madrid regional government under the project S2018/TCS-4339
BLOQUES-CM, by the Spanish Ministry of Science, Innovation, and
University under the project RTI2018-102043-B-I00 SCUM, by the
Italian Ministry of Education under the Rita Levi Montalcini grant
(2019 call), by the German Ministry for Education and Research un-
der the project CISPA-Stanford Center for Cybersecurity (funding
number: 16KIS0761), and by a gift from Intel Corporation.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Xaver Fabian, Marco Guarnieri, and Marco Patrignani

REFERENCES

[1] 2019. SafeSide. https://github.com/google/safeside
[2] 2021. Result of case_13. https://github.com/binsec/haunted_bench/issues/2.
[3] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Arthur Blot, Benjamin

Grégoire, Vincent Laporte, Tiago Oliveira, Hugo Pacheco, Benedikt Schmidt,
and Pierre-Yves Strub. 2017. Jasmin: High-Assurance and High-Speed Cryp-
tography. In Proceedings of the 24th ACM SIGSAC Conference on Computer and
Communications Security (CCS ’17). ACM.

[4] Enrico Barberis, Pietro Frigo, Marius Muench, Herbert Bos, and Cristiano Giuf-
frida. 2022. Branch history injection: On the effectiveness of hardware mitigations
against cross-privilege Spectre-v2 attacks. In Proceedings of the 31st USENIX Se-
curity Symposium (USENIX Security ’22). USENIX Association.

[5] Gilles Barthe, Sunjay Cauligi, Benjamin Grégoire, Adrien Koutsos, Kevin Liao,
Tiago Oliveira, Swarn Priya, Tamara Rezk, and Peter Schwabe. 2021. High-
Assurance Cryptography in the Spectre Era. In Proceedings of the 42nd IEEE
Symposium on Security and Privacy (S&P ’21). IEEE.

[6] Gilles Barthe, Pedro R D’argenio, and Tamara Rezk. 2004. Secure information flow
by self-composition. In Proceedings of the 17th IEEE Computer Security Foundations
Workshop (CSF ’04). IEEE.

[7] Atri Bhattacharyya, Alexandra Sandulescu, Matthias Neugschwandtner, Alessan-
dro Sorniotti, Babak Falsafi, Mathias Payer, and Anil Kurmus. 2019. SMoTherSpec-
tre: Exploiting Speculative Execution through Port Contention. In Proceedings
of the 26th ACM SIGSAC Conference on Computer and Communications Security
(CCS ’19). ACM.

[8] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin von
Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, and Daniel Gruss.
2019. A Systematic Evaluation of Transient Execution Attacks and Defenses.
In Proceedings of the 28th USENIX Security Symposium (USENIX Security ’19).
USENIX Association.

[9] Sunjay Cauligi, Craig Disselkoen, Klaus v. Gleissenthall, Dean Tullsen, Deian
Stefan, Tamara Rezk, and Gilles Barthe. 2020. Constant-Time Foundations for
the New Spectre Era. In Proceedings of the 41st ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’20). ACM.

[10] Sunjay Cauligi, Craig Disselkoen, Daniel Moghimi, Gilles Barthe, and Deian
Stefan. 2022. SoK: Practical Foundations for Software Spectre Defenses. In
Proceedings of the 43rd IEEE Symposium on Security and Privacy (S&P ’22). IEEE.

[11] Kevin Cheang, Cameron Rasmussen, Sanjit Seshia, and Pramod Subramanyan.
2019. A Formal Approach to Secure Speculation. In Proceedings of the 32nd IEEE
Computer Security Foundations Symposium (CSF ’19). IEEE.

[12] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang Lin, and
Ten H. Lai. 2019. Stealing Intel Secrets from SGX Enclaves via Speculative
Execution. In Proceedings of the 4th IEEE European Symposium on Security and
Privacy (EuroS&P ’19). IEEE.

[13] Robert J. Colvin and Kirsten Winter. 2019. An Abstract Semantics of Speculative
Execution for Reasoning About Security Vulnerabilities. In Proceedings of the
19th Refinement Workshop (Refine ’19). Springer.

[14] Lesly-Ann Daniel, Sébastien Bardin, and Tamara Rezk. 2021. Hunting the Haunter
— Efficient relational symbolic execution for Spectre with Haunted RelSE. In
Proceedings of the 28th Annual Network and Distributed System Security Symposium
(NDSS ’21). The Internet Society.

[15] Craig Disselkoen, Radha Jagadeesan, Alan Jeffrey, and James Riely. 2019. The
Code That Never Ran: Modeling Attacks on Speculative Evaluation. In Proceedings
of the 40th IEEE Symposium on Security and Privacy (S&P ’19). IEEE.

[16] Xaver Fabian, Marco Guarnieri, and Marco Patrignani. 2022. https://github.com/
XFabian/Spectector-Combined

[17] Xaver Fabian, Marco Guarnieri, and Marco Patrignani. 2022. https://github.com/
XFabian/Spectecoq

[18] Xaver Fabian, Marco Guarnieri, and Marco Patrignani. 2022. Automatic Detection
of Speculative Execution Combinations. (2022). arXiv:2209.01179

[19] Roberto Guanciale, Musard Balliu, and Mads Dam. 2020. InSpectre: Breaking
and Fixing Microarchitectural Vulnerabilities by Formal Analysis. In Proceedings
of the 27th ACM SIGSAC Conference on Computer and Communications Security
(CCS ’20). ACM.

[20] Marco Guarnieri, Boris Köpf, Jan Reineke, and Pepe Vila. 2021. Hardware-
Software Contracts for Secure Speculation. In Proceedings of the 42nd IEEE Sym-
posium on Security and Privacy (S&P ’21). IEEE.

[21] Marco Guarnieri, Boris Köpf, José F. Morales, Jan Reineke, and Andrés Sánchez.
2020. Spectector: Principled Detection of Speculative Information Flows. In
Proceedings of the 41st IEEE Symposium on Security and Privacy (S&P ’20).

[22] Shengjian Guo, Yueqi Chen, Peng Li, Yueqiang Cheng, Huibo Wang, Meng Wu,
and Zhiqiang Zuo. 2020. SpecuSym: Speculative Symbolic Execution for Cache

Timing Leak Detection. In Proceedings of the 42nd ACM/IEEE International Con-
ference on Software Engineering (ICSE ’20). ACM.

[23] J. Horn. 2018. Speculative execution, variant 4: Speculative store bypass. https:
//bugs.chromium.org/p/project-zero/issues/detail?id=1528. Accessed: 2021-04-
11.

[24] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas,
Mike Hamburg, Moritz Lipp, StefanMangard, Thomas Prescher, Michael Schwarz,
and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative Execution. In
Proceedings of the 40th IEEE Symposium on Security and Privacy (S&P ’19).

[25] Esmaeil Mohammadian Koruyeh, Khaled N. Khasawneh, Chengyu Song, and
Nael Abu-Ghazaleh. 2018. Spectre Returns! Speculation Attacks Using the Return
Stack Buffer. In Proceedings of the 12th USENIXWorkshop on Offensive Technologies
(WOOT’18). USENIX Association.

[26] Mikko H. Lipasti, Christopher B. Wilkerson, and John Paul Shen. 1996. Value
locality and load value prediction. In Proceedings of the 7th International Confer-
ence on Architectural Support for Programming Languages and Operating Systems
(ASPLOS ’96). ACM.

[27] Giorgi Maisuradze and Christian Rossow. 2018. Ret2spec: Speculative Execution
Using Return Stack Buffers. In Proceedings of the 25th ACM SIGSAC Conference
on Computer and Communications Security (CCS ’18). ACM.

[28] Ross McIlroy, Jaroslav Sevcík, Tobias Tebbi, Ben L. Titzer, and Toon Verwaest.
2019. Spectre is here to stay: An analysis of side-channels and speculative
execution. (2019). arXiv:1902.05178

[29] Sparsh Mittal. 2017. A survey of value prediction techniques for leveraging value
locality. Concurrency and computation: practice and experience (2017).

[30] Oleksii Oleksenko, Christof Fetzer, Boris Köpf, and Mark Silberstein. 2022. Re-
vizor: Testing Black-Box CPUs against Speculation Contracts. In Proceedings of
the 27th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’22). ACM.

[31] Marco Patrignani and Marco Guarnieri. 2021. Exorcising Spectres with Secure
Compilers. In Proceedings of the 28th ACM Conference on Computer and Commu-
nications Security (CCS ’21). ACM.

[32] Hernán Ponce de León and Johannes Kinder. 2022. Cats vs. Spectre: An Axiomatic
Approach to Modeling Speculative Execution Attacks. In Proceedings of the 43rd
IEEE Symposium on Security and Privacy (S&P ’22). IEEE.

[33] Michael Schwarz, Martin Schwarzl, Moritz Lipp, Jon Masters, and Daniel Gruss.
2019. NetSpectre: Read Arbitrary Memory over Network. In Proceedings of
the 24th European Symposium on Research in Computer Security (ESORICS ’19).
Springer.

[34] Vedvyas Shanbhogue, Deepak Gupta, and Ravi Sahita. 2019. Security Analysis
of Processor Instruction Set Architecture for Enforcing Control-Flow Integrity.
In Proceedings of the 8th International Workshop on Hardware and Architectural
Support for Security and Privacy (HASP ’19). ACM.

[35] Rami Sheikh, Harold W. Cain, and Raguram Damodaran. 2017. Load value
prediction via path-based address prediction: Avoiding mispredictions due to
conflicting stores. In Proceedings of the 50th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO ’17). ACM.

[36] Julian Stecklina and Thomas Prescher. 2018. LazyFP: Leaking FPU Register State
using Microarchitectural Side-Channels. CoRR (2018). arXiv:1806.07480

[37] Caroline Trippel, Daniel Lustig, and Margaret Martonosi. 2018. MeltdownPrime
and SpectrePrime: Automatically-Synthesized Attacks Exploiting Invalidation-
Based Coherence Protocols. CoRR (2018). arXiv:1802.03802

[38] Marco Vassena, Craig Disselkoen, Klaus von Gleissenthall, Sunjay Cauligi,
Rami Gökhan Kıcı, Ranjit Jhala, Dean Tullsen, and Deian Stefan. 2021. Au-
tomatically Eliminating Speculative Leaks from Cryptographic Code with Blade.
Proceedings of the ACM on Programming Languages 5, POPL (2021).

[39] Guanhua Wang, Sudipta Chattopadhyay, Arnab Kumar Biswas, Tulika Mitra,
and Abhik Roychoudhury. 2020. KLEESpectre: Detecting Information Leakage
through Speculative Cache Attacks via Symbolic Execution. ACM Transactions
on Software Engineering and Methodology 29, 3 (2020).

[40] Guanhua Wang, Sudipta Chattopadhyay, Ivan Gotovchits, Tulika Mitra, and
Abhik Roychoudhury. 2021. oo7: Low-Overhead Defense Against Spectre Attacks
via Program Analysis. IEEE Transactions on Software Engineering 47, 11 (2021).

[41] Johannes Wikner and Kaveh Razavi. 2022. RETBLEED: Arbitrary Speculative
Code Execution with Return Instructions. In Proceedings of the 31st USENIX
Security Symposium (USENIX Security ’22). USENIX Association.

[42] Tao Zhang, Kenneth Koltermann, and Dmitry Evtyushkin. 2020. Exploring
Branch Predictors for Constructing Transient Execution Trojans. In Proceedings
of the 25th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’20). ACM.

https://github.com/google/safeside
https://github.com/binsec/haunted_bench/issues/2
https://github.com/XFabian/Spectector-Combined
https://github.com/XFabian/Spectector-Combined
https://github.com/XFabian/Spectecoq
https://github.com/XFabian/Spectecoq
https://arxiv.org/abs/2209.01179
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://arxiv.org/abs/1902.05178
https://arxiv.org/abs/1806.07480
https://arxiv.org/abs/1802.03802

	Abstract
	1 Introduction
	2 Background: uASM, Speculative Semantics and Security Definition
	2.1 Attacker Model and Security Definition
	2.2 uASM
	2.3 Non-speculative Semantics of uASM
	2.4 Spec-B: Speculating Over Branch Instructions

	3 Speculation on Stores and Returns
	3.1 Spec-S: Speculation on Store Instructions
	3.2 Spec-R: Speculation on Return Instructions

	4 A Framework for Composing Speculative Semantics
	4.1 Combined Speculative Semantics
	4.2 Properties of Composition

	5 Instantiating our Framework
	5.1 Spec-S+R Composition
	5.2 Spec-B+R Composition
	5.3 Spec-B+S Composition
	5.4 Spec-B+S+R Composition

	6 Implementation and Evaluation
	6.1 Implementation
	6.2 Experiments

	7 Discussion
	8 Related Work
	9 Conclusion and Future Work
	References

