
Computationally Bounded Robust Compilation
and Universally Composable Security
Robert Künneman

CISPA Helmholtz Center for Information Security
robert.kuennemann@cispa.de

Marco Patrignani
University of Trento

marco.patrignani@unitn.it

Ethan Cecchetti
University of Wisconsin–Madison∗

cecchetti@wisc.edu

Abstract—Universal Composability (UC) is the gold standard
for cryptographic security, but mechanizing proofs of UC is
notoriously difficult. A recently-discovered connection between
UC and Robust Compilation (RC)—a novel theory of secure
compilation—provides a means to verify UC proofs using tools
that mechanize equality results. Unfortunately, the existing meth-
ods apply only to perfect UC security, and real-world protocols
relying on cryptography are only computationally secure.

This paper addresses this gap by lifting the connection between
UC and RC to the computational setting, extending techniques
from the RC setting to apply to computational UC security.
Moreover, it further generalizes the UC–RC connection beyond
computational security to arbitrary equalities, providing a frame-
work to subsume the existing perfect case, and to instantiate
future theories with more complex notions of security. This
connection allows the use of tools for proofs of computational in-
distinguishability to properly mechanize proofs of computational
UC security. We demonstrate this power by using CRYPTOVERIF
to mechanize a proof that parts of the Wireguard protocol are
computationally UC secure. Finally, all proofs of the framework
itself are verified in Isabelle/HOL.

I. INTRODUCTION

In cryptography, universal composability (UC) [16] is a
framework for the specification and analysis of cryptographic
protocols with a key guarantee about compositionality [15,
36, 53]: If a protocol is UC-secure, it behaves like some
high-level, secure-by-construction ideal functionality no matter
what the protocol interacts with. If that protocol is then used
as a building block inside a larger protocol, it is safe to
replace the smaller protocol with its ideal functionality when
reasoning about the security of the larger protocol. In other
words, UC protocols are secure even when composed with
larger protocols.

Proving that a protocol attains UC security is notoriously
complex and error-prone, so it is important to provide ways
to mechanize these proofs. Patrignani et al. [43] recently
identified a simple and scalable way to define proofs of UC
by relying on a surprising connection between UC and Robust
Compilation (RC).
RC is a hierarchy of criteria for secure compilation intro-

duced by Abate et al. [2, 3]. The criteria describe the security
of a compiler by which (hyper)properties [21] it preserves.

Patrignani et al. [43] identify that UC security is deeply
connected to Robust Hyperproperty-Preserving Compila-
tion (RHC), the RC requirement that a compiler preserve

∗Work done in part while author was at the University of Maryland.

arbitrary hyperproperties. Unfortunately, the connection they
identify considers only perfect UC security, where the pro-
tocol and ideal functionality exhibit identical behaviors. Real
cryptographic protocols are almost never perfectly secure, they
rely on cryptographic primitives whose security depends on
computational hardness assumptions. As a result, real “UC-
secure” protocols rely on a computational definition of UC
security, which allows the protocol to behave differently from
the ideal functionality, but only in ways that are indistinguish-
able to a computationally bounded adversary. Since the results
of Patrignani et al. [43] apply only to the perfect case, they
provide little help in verifying the far more prevalent proofs
of computational UC security.

For example, consider the following single-bit commitment
protocol due to Canetti and Fischlin [17]. To commit to bit b,
generate a 4n-bit pseudo-random value pr , and output pr if
b = 0 and pr ⊕ σ if b = 1 where σ is a public 4n-bit truly
random value. This protocol does not perfectly UC emulate a
functionality that simply indicates a bit has been committed by
does nothing else before opening. An unbounded attacker can
simply check if the commitment is one of the (exponentially
many) possible pseudo-random values and correctly guess the
value of b with overwhelming probability. The protocol is,
however, computationally UC secure given a pseudo-random
generator with the right structure [17], a proof that relies on a
polynomial adversary’s inability to distinguish pr from a truly
random value.

This work addresses the limitation of Patrignani et al. [43]
by lifting their results to the computational case, allowing us
to consider the security of protocols like Canetti and Fischlin’s
commitment. To accomplish this goal, we replace equality
of behaviors with computational indistinguishability in both
the UC and RC theories. Making this switch in both the UC
and RC contexts produces a notion of robust compilation that
corresponds precisely to the already-established definition of
computational UC security.

On the RC side, the change requires two fundamental
modifications. First, Patrignani et al. [43] describe programs
as producing probability distributions over possible traces and
consider a protocol (or compiler) secure if the ideal func-
tionality (source program) and protocol (compiled program)
produce identical distributions. Computational indistinguisha-
bility, however, does not relate individual distributions. It
relates families of distributions {Xn} and {Yn} indexed by

mailto:robert.kuennemann@cispa.de
mailto:marco.patrignani@unitn.it
mailto:cecchetti@wisc.edu

a security parameter n, and requires an adversary’s ability
to distinguish between Xn and Yn to shrink quickly as n
grows. We thus expand the definition of program behavior to
include explicit security parameters. Second, RC definitions
in general define robustness for all programs against all
adversaries, while computational UC-security concerns only
polynomial-time programs and attackers. We therefore extend
the RC framework to consider specific classes of protocols
and attackers.

With these two modifications to the RC theory of Abate
et al. [2], we can define a new class of hyperproperties, CH ,
where each hyperproperty is the set of behaviors that are
computationally indistinguishable from some ideal function-
ality. We also define a notion of Computationally-Robust
Hyperproperty-Preserving Compilation (CRHC), a new no-
tion of RC that preserves CH against polynomial-time at-
tackers. Finally, we prove that computational UC security is
equivalent to CRHC .

Technically, proving CRHC amounts to proving that some
source program (an ideal functionality), linked with an ex-
istentially bound attacker (a simulator) is computationally
indistinguishable from a target program (a protocol). Fortu-
nately, existing tools such as CRYPTOVERIF [13] provide
ways to mechanize such proofs. Thus, we showcase the
ability to provide scalable proofs of computational UC via
proofs of CRHC by using CRYPTOVERIF to mechanize a
proof of computational indistinguishability for the Wireguard
protocol [37].

Notably, the results of lifting the connection between UC
and RC to the computational case contain nothing specific
about computational indistinguishability and polynomial time.
As a result, we are able to substantially generalize the the-
ory by using any equivalence ≡ defining indistinguishable
behaviors, and an arbitrary predicate Q on programs and
contexts to define the class of programs and contexts. Doing
so produces a notion of UC security up-to ≡, an RC notion
of Q-robust preservation of ≡-hyperproperties, and a proof
that the two are equivalent. This result immediately subsumes
the original connection of Patrignani et al. [43], using = as ≡
and the trivial predicates allowing all programs and contexts,
our lifted result, using computational indistinguishability as the
equivalence and polynomial time as the predicate, and suggests
more definitions and connections to explore.

To summarize, the main contributions of this paper are:

• Section III explicitly models security parameters and
computational indistinguishability in the RC framework,
and uses these structures to extend the result of Patrignani
et al. [43] to computational security.

• Section IV generalizes the computational result to arbi-
trary indistinguishability relations, making perfect secu-
rity, computational security, and many other interesting
equivalences special cases of a general theorem.

• Section VI uses these results to mechanize the proof of
UC for the WireGuard protocol using the CRYPTOVERIF
tool, which provides computational security guarantees.

The rest of this paper provides background notions related to
the main results (Section II), interesting details of the proofs
of our main theorems (Section V), the presentation of related
work (Section VII), and conclusions (Section VIII).

All theorems in Sections III, IV, and V are verified in
the Isabelle/HOL theorem prover [32], while theorems in
Section VI are verified in CRYPTOVERIF [13]. The proof
development is available at: https://uc-is-sc.github.io/.

II. BACKGROUND

This section presents relevant background notions on Uni-
versal Composability (Section II-A), Robust Compilation
(Section II-B) and their connection (Section II-C).

For aide reading [40], throughout the paper we will use
blue italic for functionalities and source programs, bold red
for protocols and target programs, and black for terms not
specific to either context.

A. Universally Composable Security

Universally Composable (UC) security [16] defines a se-
curity notion that combines functional correctness and privacy
and is both transitive as well as closed under protocol composi-
tion. This is achieved by refinement: a “secure” protocol is one
that is “at least as secure” as a protocol where all parties for-
ward their communication to a single entity that (a) computes
the correct output (which they forward to the environment)
and (b) leaks only the minimal amount of information via the
network (which is conservatively modelled by sending this
information to the attacker). There is a distinction between
the environment, which models the trusted input and output
from either higher-level protocols or the user of the system,
and the attacker, which models the hostile network. Together,
the environment Z , protocol π and attacker A constitute a
system that can be executed. The execution ends when the
environment decides whether it is interacting with the real
protocol or an ideal simulation and outputs a final bit to
indicate its guess. Let EXEC(Z,A,π) be a random variable
describing the outcome of this probabilistic process.

The strongest notion of “at least as secure as” says that any
attack on a protocol can be simulated using the functionality.
That is, only knowing the “acceptable” leakage built into
the functionality is enough to convincingly reproduce any
real attacker’s behavior. For an encryption functionality, for
instance, this leakage is the message length.

If this simulation can always produce identical behavior to
the real attacker, the protocol is said to perfectly emulate the
ideal functionality.

Definition 1 (Perfect UC Emulation). A protocol π perfectly
UC-emulates a functionality F , denoted π ⊢=

UC F if, for all
(unbounded) adversaries A, there is a simulator S , such that
for all environments Z ,

EXEC(Z,A,π) = EXEC(Z,S ,F)

For realistic cryptographic protocols, however, perfect em-
ulation is impossible. Their security almost invariably relies

https://uc-is-sc.github.io/

on computational hardness assumptions, so an unbounded
attacker or environment can easily glean information beyond
the ideal functionality’s “acceptable” leakage. As a result, the
random variables will not be identically distributed.

To still recover a meaningful notion of security, we include
a security parameter n and compare the behaviors asymptoti-
cally in n. That is, instead of considering EXEC(Z,A,π) to
be a single random variable, we consider it to be a family
of random variables, {EXECn(Z,A,π)}, one for each value
of n. Two such families are indistinguishable if the difference
between them shrinks very rapidly (usually exponentially) as n
grows. This notion is defined formally as follows.

Definition 2 (Indistinguishability [16]). Two ensembles of
binary probability distributions X = {Xn} and Y = {Yn}
are indistinguishable, denoted X ≈ Y , if, for all c ∈ N, there
is some N ∈ N such that

∀n > N. |Pr[Xn = 1]− Pr[Yn = 1]| < n−c

Indistinguishability is not enough by itself. The computa-
tional hardness assumptions of the cryptographic primitives
force us to limit the computational power of the parties
within the system. In particular, the UC framework demands
that all protocols, attackers, and environments execute in
polynomial time. The result is the following formal definition
of computational UC security.

Definition 3 (Computational UC Emulation [16]). A poly-time
protocol π computationally UC-emulates a functionality F ,
denoted π ⊢≈

UC F if, for all PPT adversaries A, there is a PPT
simulator S , such that for all PPT environments Z ,

EXEC(Z,A,π) ≈ EXEC(Z,S ,F)

B. Robust Compilation

The Robust Compilation (RC) framework [2, 3] formalizes
security of compilers as their ability to preserve arbitrary
classes of (hyper)properties [21] robustly, i.e., in the presence
of active adversaries linked with compiled code.

Compilers (denoted by J·K) are functions that translate
components, or partial programs (P), from a source lan-
guage (S) to a target language (T). In both languages, a partial
program P can link with a program context A to form a whole
program, denoted A▷◁P . Whole programs come equipped with
an operational semantics called a robust trace semantics (⇝),
which captures all security-relevant behavior of A ▷◁ P in a
trace of events (t) where each event indicates whether it comes
from the context or the program.

In their original work, Abate et al. [2] define what criteria
compilers must meet to prove that they preserve:

• trace properties, including all trace properties, safety
properties, and dense properties, a variation of liveness,

• hyperproperties, including all hyperproperties, subset-
closed hyperproperties, and 2-hypersafety, and

• relational hyperproperties.
A compiler that robustly preserves all hyperproperties satisfies
RHC , defined formally as follows.

Definition 4 (Robust Hyperproperty-Preserving Compiler).

⊢ J·K : RHC def
= ∀P ,A.∃A.∀t.A ▷◁ JPK⇝ t iff A ▷◁ P ⇝ t

For a compiler to preserve arbitrary hyperproperties, the
traces exhibited by any compiled component while interacting
with an arbitrary target context must be the same to the
traces exhibited by a the source component linked with an
existentially quantified source context.

C. Existing UC–RC Connection

As Patrignani et al. [43] prove, Definition 1 and Definition 4
are equivalent. By inspecting the quantifiers, and their order
(which match), it is possible to see that UC functionalities
correspond to RC source components, UC protocols corre-
spond to RC compiled components, and UC environments
correspond to RC traces. The elements that provide a central
role in the security argument are also related. The universally
quantified UC protocol attackers are still universally quantified
RC target contexts and the existentially quantified UC simu-
lators are still existentially quantified RC source contexts.

With this equivalence, Patrignani et al. [43] demonstrate that
by providing an RHC proof for a compiler that translates a
program encoding a functionality into its protocol, one can ob-
tain a UC proof. More importantly, since Definition 4 amounts
to proving trace equivalence between programs, Patrignani
et al. [43] use the Deepsec tool [20] in order to provide the
RHC proof and thus the first mechanized proof of UC.

However, the equivalence formalized by Patrignani et al.
[43] only amounts to a perfect notion of UC. In the following
section, we set out to lift this limitation.

III. COMPUTATIONAL ROBUST HYPERPROPERTY
PRESERVATION

To see the connection between perfect UC and RHC , we
look at the relationship between the definition of UC security
and the behavior of a program W , denoted Behav(W).
Patrignani et al. [43] define Behav(W) = {t | W ⇝ t} as
the set of traces W can produce, and a trace t as a pair (τ , ρ),
where τ is a (potentially infinite) sequence of actions and ρ
is the probability that W will produce τ . They also include
all actions of the environment in τ (including outputting the
final bit), so we can view Behav(W) as containing different
probability distributions for different environments. If we let
Behav(W)|Z denote the probability distribution over final bits
for just the subset of behaviors consistent with environment Z ,
the structure of RHC begins to look very much like the
structure of UC security.

Indeed, we can rephrase Definition 4 to require equality
of behaviors and then universally quantify over environments.
The result is the following definition of RHC .

∀P ,A.∃A.∀Z.Behav(A ▷◁ JPK)|Z = Behav(A ▷◁ P)|Z

And recall from Definition 1 that π perfectly UC-emulates F if

∀A.∃S .∀Z. EXEC(Z,A,π) = EXEC(Z,S ,F)

These definitions have a nearly-identical structure, which
we use as a guide for moving to computational security.
There are two main differences between perfect UC and
computational UC that we need to represent in the language
of robust compilation. First, the equality on distributions is
replaced with computational indistinguishability. Second, the
relationship between real and ideal protocols (and thus target
and source programs, respectively) is further loosened to
consider only attackers, simulators, and programs that are
polynomial time.

This section now presents these changes to the existing RC
theory (Section III-A) followed by the novel notion of com-
putational robust compilation (CRHC , Section III-B). Then,
it presents what class of hyperproperties CRHC preserves
(Section III-C) before presenting the main result of this paper,
connecting omputational UC and CRHC (Section III-D).

A. Computational Indistinguishability

Defining indistinguishability of program behaviors requires
modifying the structures introduced by Patrignani et al. [43].
Recall from Section II-A that indistinguishability, denoted
X ≈ Y , is defined over families of distributions, X = {Xn}
and Y = {Yn}, and requires the ability of an adversary
to separate Xn from Yn to shrink rapidly as n grows. To
modify the above definition of RHC to match the struc-
ture of computational UC security, we would like to say
Behav(W1)|Z ≈ Behav(W2)|Z .

Unfortunately, with Behav(W) structured as a set of
pairs (τ , ρ), as described above, we can interpret Behav(W)|Z
as a single probability distribution, but not the requisite family
of them. Luckily, because the semantics of the program are left
abstract, we can straightforwardly introduce a security param-
eter n. We thus define a program execution by a triple (τ , ρ, n)
instead of a pair. Here τ and ρ are the same as before, and
n is a security parameter. With this change, we can view
Behav(W) as a family of behaviors, indexed by n, which
we can similarly restrict by an environment to get a family of
distributions. That is,

Behavn(W)
def
= {(τ , ρ) | W ⇝ (τ , ρ, n)}

Behav(W)
def
= {Behavn(W)}

Behav(W)|Z
def
= {Behavn(W)|Z}

Definition 2 now applies with these families of distributions.
Quantifying over all possible environments, however, results

in a definition of statistical indistinguishability, not computa-
tional indistinguishability. Achieving the computational goal
requires restricting to only polynomial-time environments.
Because we assume the program interfaces of the different
languages match, the space of environments is the same, we
use the same PPT set to represent all probabilistic poly-time
environments.

These two modifications are sufficient to define computa-
tionally indistinguishable program behaviors.

Definition 5 (Computational Indistinguishability of Programs).
Whole programs W1 and W2 have computationally indistin-
guishable behavior if

∀Z ∈ PPT.Behav(W1)|Z ≈ Behav(W2)|Z

We denote this equivalence by ≊ for both whole programs
and sets of traces. That is, the above equivalence defines both
W1 ≊ W2 and Behav(W1) ≊ Behav(W2).

B. Computational Robust Compilation

Recall that computational UC security allows not only this
looser computational notion of indistinguishability, but also re-
stricts all protocols, attackers, and simulators to be polynomial
time. The language of robust compilation, however, quantifies
over all programs and contexts, not just poly-time ones.

Without bounding the computational power of programs and
contexts, we cannot hope to represent computational UC secu-
rity. To see why, consider the single-bit commitment protocol
due to Canetti and Fischlin [17] discussed in Section I. In the
RC context, if we consider a compiler that takes Canetti and
Fischlin’s commitment ideal functionality and produces their
commitment protocol, we would hope to call that compiler
robust. But because the language of RC always considers all
contexts (attackers) and a computationally unbounded attacker
can break the protocol, we cannot. To address this concern,
we expand the framework with a notion of computationally-
robust preservation of hyperproperties that considers only
polynomial-time programs and contexts.

As in UC, execution complexity depends on the context
(adversary), the program (protocol), and how they interact. We
therefore define a poly-time predicate over whole programs.
As with the program semantics, we leave this predicate ab-
stract to avoid the need to restrict to a specific computational
model with specific execution times. Because the source and
target languages may have different semantics and computa-
tional models, we include both a source-language predicate
poly and a target-language predicate poly.

These predicates are sufficient to define a more permis-
sive notion of robust compilation: the computationally-robust
hyperproperty-preserving compiler (CRHC).

Definition 6 (Computationally-Robust Hyperproperty-Preser-
vating Compiler).

⊢ J·K : CRHC def
= ∀P .∀A.poly(A ▷◁ JPK) =⇒

∃A. poly(A ▷◁ P) ∧ (A ▷◁ JPK ≊ A ▷◁ P)

This computational notion considers only executions of
poly-time programs in both the source and target language.
It demands that, for any target context A where A ▷◁ JPK is
poly-time, there must be a source context A such that A ▷◁ P
is also poly-time and the behaviors of the whole programs are
computationally indistinguishable.

CRHC and Optimizations: CRHC demands that, if
there is any target context A such that A ▷◁ JPK is poly-time,
then there must be some source context A such that A ▷◁ P
is also poly-time. This requirement has an odd ramification:

a CRHC compiler may not optimize a super-polynomial pro-
gram into a poly-time one, say, by introducing memoization.
This may appear to be a limitation, but from a security
standpoint it is not. Computational UC security considers
only the behavior of poly-time programs and poly-time ideal
functionalities. It says nothing about the security of a system
with super-polynomial protocols, adversaries, environments, or
ideal functionalities. Correspondingly, the security defined by
CRHC does not aim to be meaningful for super-polynomial
programs. Instead, it demands that the compiler produce super-
polynomial outputs on any super-polynomial inputs, allowing
us to restrict all relevant analysis to the polynomial case.

C. Identifying Preserved Hyperproperties

In the original work defining RHC , Abate et al. [2] identify
that RHC is equivalent to a compiler robustly preserving all
hyperproperties. Recall that a hyperproperty is a set of sets
of traces. This means that, for J·K to be RHC , then for any
hyperproperty H and partial program P , if the behavior of P
is in H for every possible source context, then the behavior
of JPK is in H for every possible target context.

More formally, let T = {t} be the set of all traces and
T = P(T) be the set of sets of traces. Then

⊢ J·K : RHC ⇐⇒
∀H ⊆ T.∀P . (∀A.Behav(A ▷◁ P) ∈ H) =⇒

(∀A.Behav(A ▷◁ JPK) ∈ H)

This connection with RHC raises a question in our context:
what hyperproperties does computational robustness preserve?
Or, more generally speaking: which class of (hyper)properties
can UC security actually express? One might guess that
CRHC is equivalent to computationally-preserving all hy-
perproperties. That is, preserving all hyperproperties when
considering only poly-time programs. However, restricting to
poly-time environments, which attempt to distinguish program
behaviors, makes this guess incorrect. Instead, CRHC corre-
sponds to preserving a narrower class of hyperproperties, CH ,
which represent computationally-indistinguishable programs.

To define CH , we first define CH (F), a single hyperprop-
erty representing the family of behaviors that are computation-
ally indistinguishable from what F can produce when given
an appropriate context. Formally,

CH (F)
def
= {T ∈ T | ∃S. poly(S ▷◁ F)

∧ (∀Z ∈ PPT. T |Z ≈ Behav(S ▷◁ F)|Z)}

Intuitively, Behav(W) ∈ CH (F) means that there is some
simulator S such that the behavior of S ▷◁ F cannot be
distinguished from the behavior of W . If we instead consider
a partial program P and quantify over poly-time contexts,

∀A. poly(A ▷◁ P) =⇒ Behav(A ▷◁ P) ∈ CH (F)

means that P computationally emulates F .
The class CH that a CRHC compiler preserves (for poly-

time programs) is precisely the set of all of these hyperprop-
erties. That is, we define CH

def
= {H | ∃F.H = CH (F)} and

obtain the following result.

Theorem 1 (CRHC is Computational Preservation of CH).

⊢ J·K : CRHC ⇐⇒ ∀H ∈ CH .

∀P . (∀A. poly(A ▷◁ P) =⇒ Behav(A ▷◁ P) ∈ H) =⇒
(∀A.poly(A ▷◁ JPK) =⇒ Behav(A ▷◁ JPK) ∈ H)

This theorem, proven in Isabelle/HOL (compRHCisRHPX),
is a special case of Theorem 3 (see Section IV).

Theorem 1 shows that CRHC is equivalent to preserving
secure emulation. That is, a compiler J·K satisfies CRHC if
and only if, whenever a source program P computationally
emulates some functionality F in the source language, then the
compiled JPK also computationally emulates F in the target
language.

D. Connecting Computational UC and CRHC

This equivalence between CRHC and secure emulation
of functionalities suggests a similarly deep connection to
computational UC security. Indeed, the modifications to get
from RHC to CRHC were designed explicitly to mirror the
differences between perfect UC and computational UC. To
prove this correspondence formally, we rely on four axioms
laid out by Patrignani et al. [43] to move between the Inter-
active Turing Machine (ITM) semantics of the UC framework
and the abstract semantics of the RC framework. We modify
Axioms 1, 2, and 4 only to add the security parameter n.

The first uses the function z(m) to define a canonical
environment for a trace prefix m that produces exactly this
prefix and then halts the execution with final bit 1. It says
that a trace prefix is possible if and only if a corresponding
execution is possible for the ITM.

Axiom 1 (UC and RC Semantics [43]). If m = (µ, ρ, n) and
µ is a finite sequence of actions, then

A ▷◁ P ⇝ m ⇐⇒ Pr[EXECTn(z(m), A, P) = µ] = ρ > 0.

The second axiom requires that the canonical environment
for a trace correctly represent the behavior of all environments
that produce the same trace.

Axiom 2 (Canonical Environment Correctness [43]). If Z is
non-probabilistic, m = (µ, ρ, n), and for some A′ and π′,
Pr[EXECTn(Z,A′,π′) = µ] > 0, then for all A and π,

Pr[EXECTn(Z,A,π) = µ] = Pr[EXECTn(z(m),A,π) = µ]

This axiom assumed that the environment Z is non-
probabilistic, meaning the probability of m depends only
on the randomness of A and π. This assumption simplifies
reasoning and is not a limitation, because we also assume
that anything a probabilistic environment can do, a non-
probabilistic one can do as well.

Axiom 3 (Non-Probabilistic Environment Completeness). For
any Z ∈ PPT, if EXEC (Z,A,π) ̸≈ EXEC (Z,S ,F), then
there exists some non-probabilistic poly-time Z ′ such that
EXEC (Z ′,A,π) ̸≈ EXEC (Z ′,S ,F).

Patrignani et al.’s [43] version of Axiom 3 uses (in)equality
instead of (in)distinguishability and does not bound Z and Z ′,

but is otherwise the same. Intuitively, this axiom is valid
because, for any distinguishing Z , one can select from the
random choices made by Z (but not the attacker or protocol)
the ones that maximize Z’s ability to distinguish the real and
ideal worlds. Fixing those choices produces a deterministic
environment that distinguishes at least as well as Z .

Finally, we assume that trace prefixes specify whether or
not the environment has decided on a final bit b, and if so,
what that value is. The UC framework assumes the environ-
ment terminates execution with that final bit, but we follow
Patrignani et al. [43] and abstract this process over an arbitrary
encoding with an extraction function β : µ → {0, 1,⊥} with
the following property.

Axiom 4 (Finite Traces Contain the Final Bit [43]).

Pr[EXECn(Z,A,π) = b]

=
∑

β(µ)=b

Pr[EXECTn(Z,A,π) = µ]

Using these axioms, we are able to prove the desired
correspondence between UC security and CRHC .

Theorem 2 (Computational UC and CRHC Coincide).

⊢ J·K : CRHC ⇐⇒ ∀P . JPK⊢≈
UC P

This theorem is verified in Isabelle/HOL (compRHCeqUC).
As we will see in Section VI, Theorem 2 creates a powerful

new means of mechanizing a proof of UC. It is now sufficient
to show that the compiler that translates F into π satisfies
CRHC or, equivalently, preserves CH for polynomial-time
programs. That is, it suffices to prove computational indis-
tinguishability between F and π, given the correct simula-
tor S . These proofs can be carried out using existing tools.
We will use CRYPTOVERIF [13] and discuss alternatives in
Section VII.

IV. GENERALIZING EQUIVALENCES AND PREDICATES

In Sections III-A and III-B we modified RHC to obtain the
computational analogue CRHC . Very little about that process,
however, was specific to polynomial time or computational
indistinguishability. Indeed, we can generalize nearly all of
those modifications and achieve a far more general result that
subsumes our results from Section III, as well as the perfect
security results of Patrignani et al. [43], and points to other
notions of security as well.

In Section III-A, we loosened the requirement of equality of
behaviors to computational indistinguishability. This change
required modifying the definition of traces to interpret a set
of traces as a family of probability distributions. To capture
both the original equality view and this looser view, we can
generalize to an arbitrary equivalence relation ≡ over sets of
traces, which we will apply to program behaviors.

In Section III-B, we expanded the robust compilation
framework with polynomial-time predicates. We required that
behaviors only be preserved for poly-time programs, though
we restricted the existentially quantified source contexts to be

poly-time as well. There is nothing special about poly-time
in that process. Indeed, we could instead have used abstract
predicates Q and Q over source and target programs.

Making this change leads to a more general notion of
predicate-robust hyperproperty preservation (PRHC) param-
eterized on an equivalence and two predicates.

Definition 7 (Predicate-Robust Hyperproperty-Preservating
Compiler).

⊢ J·K : PRHC (≡,Q,Q)
def
= ∀P .∀A.Q(A ▷◁ JPK) =⇒

∃A.Q(A ▷◁ P) ∧ (Behav(A ▷◁ JPK) ≡ Behav(A ▷◁ P))

That is, source contexts linked with source programs can
produce all the behavior of compiled programs linked with
target contexts (up to ≡) when only considering programs
satisfying Q and Q, the respective predicates for the source
and target language.

This notion generalizes both RHC and CRHC . If we
instantiate ≡ with set equality (=) and both Q and Q
with the trivial predicate True that holds for all programs,
PRHC (=,True,True) requires source contexts to produce
exactly the behavior of target contexts when considering all
programs—precisely RHC .

Proposition 1 (PRHC expresses RHC).

⊢ J·K : PRHC (=,True,True)

⇕
∀P .∀A.∃A.Behav(A ▷◁ JPK) = Behav(A ▷◁ P)

which is the definition of ⊢ J·K : RHC .

Similarly, we can instantiate ≡ with computational indistin-
guishability (≊), interpreting traces as families of distributions
and restricting to poly-time environments, Q with poly , and
Q with poly. Here PRHC (≊, poly ,poly) says that source
contexts must produce behavior indistinguishable from tar-
get contexts when considering only polynomial programs—
precisely CRHC .

Proposition 2 (PRHC expresses CRHC).

⊢ J·K : PRHC (≊,poly, poly) ⇐⇒ ⊢ J·K : CRHC

We also generalize the result from Section III-C identi-
fying which hyperproperties CRHC compilers preserve. To
formalize this idea, we extend robust preservation of a specific
class X of hyperproperties, due to Abate et al. [2], with
predicates in the same way that PRHC extends RHC , produc-
ing the following definition of predicate-robust hyperproperty
preservation (PRHP).

Definition 8 (Predicate-Robust Hyperproperty Preservation).

⊢ J·K : PRHP(X,Q,Q)
def
= ∀H ∈ X.∀P .

(∀A.Q(A ▷◁ P) =⇒ Behav(A ▷◁ P) ∈ H) =⇒
(∀A.Q(A ▷◁ JPK) =⇒ Behav(A ▷◁ JPK) ∈ H)

That is, a PRHP(X,Q,Q) compiler is one where, for
any hyperproperty H ∈ X , if a source program P produces

only behaviors in H when restricting to source contexts that
satisfy Q , then the compiled program JPK must also produce
only behaviors in H when considering only target contexts
satisfying Q.

As with PRHC , this generalizes previous notions. It can
express robust preservation of all hyperproperties through
PRHP(P(T),True,True), setting X to all hyperproperties
and Q and Q to True to consider all contexts. It can
also express computationally-robust preservation of CH (Sec-
tion III-C), by setting X = CH and Q and Q to poly and
poly , respectively.

Finally, we can relate PRHC and PRHP by defining the
class of hyperproperties that a PRHC compiler preserves in
terms of the equivalence ≡ and the predicates Q and Q. As in
Section III-C, we define the class of hyperproperties by the set
of functionalities F that a program securely emulates. Where
CH (F) is the set of behaviors computationally indistinguish-
able from F , the general hyperproperty Hyp≡,Q(F) is the set
of behaviors equivalent to F up to ≡ when considering only
whole programs that satisfy predicate Q . Formally,

Hyp≡,Q(F)
def
=

{T ∈ T | ∃S.Q(S ▷◁ F) ∧ T ≡ Behav(S ▷◁ F)}

As with CH , we again define a class of hyperproperties as the
set of all of these hyperproperties:

HypCls≡,Q
def
= {H | ∃F.H = Hyp≡,Q(F)}.

This is precisely the class we are looking for. When
using the same equivalence and the source-language predi-
cate Q , predicate-robustly preserving this class is equivalent
to predicate-robustly preserving behavior up to ≡.

Theorem 3 (PRHC is PRHP).

⊢ J·K : PRHC (≡,Q,Q)

⇕
⊢ J·K : PRHP(HypCls≡,Q ,Q,Q)

This theorem is verified in Isabelle/HOL (RHPXeqRRHC).
Note that, for all F , CH (F) = Hyp≊,poly(F), meaning

CH = HypCls≊,poly . Theorem 1 therefore follows as a special
case of Theorem 3 using Proposition 2.

A. Connecting to UC Security

One obvious question this generalization raises is: how
do these generalized notions of RC correspond to UC se-
curity? Recall that the definitional structure of UC security
is extremely similar to the structure of RHC (and CRHC
and PRHC). UC security explicit demands environments that
distinguish between executions while PRHC allows arbitrary
equivalence relations over behaviors, but otherwise they are
nearly identical. Because the equivalence relation is arbitrary,
we can consider the class of equivalences that consider differ-
ences in behaviors between the source and target program for
each environment separately, as we did in Section III.

Taking this view, the predicates Q and Q represent restric-
tions on the behavior of the protocols, ideal functionalities,
attackers, and simulators, and the equivalence ≡ must specify
any restrictions on environments as well as how similar the
behaviors must be. Setting the predicates to True and ≡ to =,
as we did above, yields that requirement that behaviors must
be identical, with no restriction on protocols, functionalities,
attackers, simulators, or environments. That definition corre-
sponds precisely to perfect UC security (Definition 1). Since
we have already shown the same assignments produce the
definition of RHC , this correspondence immediately re-proves
the result of Patrignani et al. [43].

Similarly, if we use poly and poly as predicates and
computational indistinguishability, we recover a definition of
computational UC security (Definition 3), and immediately
recover Theorem 2.

We are not, however, limited to these two cases. For
instance, consider using the trivial predicate True to leave
protocols and attackers unrestricted, and instantiating ≡ with
∼=, which leaves environments unrestricted but demands only
indistinguishable behaviors. That is,

T1
∼= T2

def
= ∀Z. T1|Z ≈ T2|Z

The result is not perfect UC security, as the behaviors may
differ, but it is also not computational, as there is no restriction
on the complexity of any component of the system. Instead,
PRHC (∼=,True,True) corresponds to a third version of UC
security: statistical UC security, where the distributions of
behaviors must be statistically close, but not identical.

There are also other indistinguishability notions that appear
in both the cryptography and language-based security litera-
tures, and this result can connect them to each other. Examples
from the cryptographic domain include Rényi divergence [9],
which is often used in lattice-based cryptography as it provides
a definition for when a search problem is computationally
difficult, Kullback-Leibler divergence [39], which has been
used to to simplify proofs relating to fundamental definitions
like adversarial advantage, and more [e.g. 5].

In language-based security, properties like noninterfer-
ence [28] and observational determinism [38, 47] are often de-
fined using an equivalence that erases certain (secret) parts of
the trace and demands the remaining (public) portion be iden-
tical [21, 48, 55]. Different variations of these equivalences
define different notions of noninterference (e.g., termination-
sensitive or insensitive, timing sensitive, or constant time), or
generalize to programs that include explicit declassifications
or endorsements [19, 49, 54]. Even other equivalence notions,
like differential privacy [22], may be possible, particularly in
combination with existing language-based results [51, 52, 57].

By inserting these equivalences into our framework, we
immediately obtain a formal definition for the security they
define from both a robust compilation and a UC standpoint.
The result is a meaningful way to relate more cryptographic
security to secure compilation and more language-based se-
curity to cryptography. Moreover, it provides the language
needed to combine the two. For example, some existing work

⊢ J·K : PRHP(HypCls≡,Q ,Q,Q)

∀P .Emul≡,Q,Q(P) ⊆ Emul≡,Q,Q(JPK)∀P .P ∈ Emul≡,Q,Q(JPK)

⊢ J·K : PRHC (≡,Q,Q)

Lemma 4
Lemma 3Lemma 1

Theorem 3

(a) Proof structure of Theorem 3 using arbitrary ≡, Q, and Q .

∀P .P ∈ Emul≊,poly,poly(JPK)

∀P . JPK⊢≈
UC P

⊢ J·K : PRHC (≊,poly, poly)

⊢ J·K : CRHC

Lemma 2 Proposition 2
Lemma 1

Theorem 2

(b) Proof structure of Theorem 2.

Fig. 1. Visual depiction of the proofs of our main theorems. We prove solid black implications directly, derive dotted the orange implication as a special
case, and conclude dashed purple results.

combines noninterference-style definitions with computational
hardness [25, 26], and our work gives a way to situate those
equivalences more broadly points to ways to extend and
expand them.

Finally, the relation ≡ does not need to be an equivalence
relation. Our proofs demand only that it is reflexive and
transitive (i.e., a preorder), not symmetric. Indeed, instantiating
≡ with ⊆ produces a notion of behavioral refinement.

V. PROOF APPROACH

To prove Theorems 1 and 3, we develop an approach that
connects directly to the definition of UC security, and allows
a simple and direct proof of Theorem 2. Extending it with the
generalization in Section IV provides similar proof connecting
RHC to perfect UC security, simplifying and clarifying the
proof by contradiction of Patrignani et al. [43].

Our proofs rely on the idea of an emulation set, which we
denote Emul(P), that represents the set of functionalities that
P securely emulates. As in Section IV, we use a completely
general definition of “securely emulates” and parameterize
Emul on an arbitrary equivalence ≡ and predicates Q and Q ′.

Emul≡,Q,Q′(P)
def
=

{F | ∀A.Q(A ▷◁ P) =⇒ ∃S.Q ′(S ▷◁ F)

∧ Behav(A ▷◁ P) ≡ Behav(S ▷◁ F)}.

This definition follows a very similar structure to PRHC .
Setting ≡ to set equality (=) and both predicates to True
again yields a definition of perfect emulation, while setting ≡
to computational indistinguishability (≊) and the predicates to
poly produces a definition of computational emulation. The
structure also allows for a very simple proof that a compiler
is PRHC if and only if all compiled programs securely
emulate their source program (using the same predicates and
equivalence).

Lemma 1 (Emulation is PRHC).

⊢ J·K : PRHC (≡,Q,Q) ⇐⇒ ∀P .P ∈ Emul≡,Q,Q(JPK)

Moreover, Axioms 1 – 4 (Section III-D) directly connect this
definition to UC-style semantics. For instance, the following
results hold.

Lemma 2 (Emulation is UC).

π ⊢=
UC F ⇐⇒ F ∈ Emul=,True,True(π)

π ⊢≈
UC F ⇐⇒ F ∈ Emul≊,poly,poly(π)

Lemmas 1 and 2 combine to provide direct proofs for the
perfect security result of Patrignani et al. [43] and Theorem 2.

Emulation sets are also helpful in stating the class of
hyperproperties a PRHC compiler preserves, making them
useful in the proof of Theorem 3. In particular, a program P ’s
behavior is in Hyp≡,Q′(F) in any context satisfying predi-
cate Q precisely when F ∈ Emul≡,Q,Q′(P). That is,

∀A.Q(A ▷◁ P) =⇒ Behav(A ▷◁ P) ∈ Hyp≡,Q(F)

⇕
F ∈ Emul≡,Q,Q(P)

Applying this insight to PRHP (Definition 8) yields the
following result.

Lemma 3 (Emululation specifies PRHP).

⊢ J·K : PRHP(HypCls≡,Q ,Q,Q)

⇕
∀P .Emul≡,Q,Q(P) ⊆ Emul≡,Q,Q(JPK)

The final hurdle to proving Theorem 3 is to notice that this
subset relationship is equivalent to containment.

Lemma 4 (Emulation Subset is Containment).

F ∈ Emul≡,Q,Q(P) ⇐⇒ Emul≡,Q,Q(F) ⊆ Emul≡,Q,Q(P)

This result relies on the reflexivity of ≡ to show that
F ∈ Emul≡,Q,Q(F), and the transitivity of ≡ to show that
anything that F emulates P also emulates. Notably, there is
no need for ≡ to be symmetric.

The proofs of all theorems in Sections III and IV, which are
verified in Isabelle/HOL, follow directly from the combination
of these four lemmas using the structures shown in Figure 1.

VI. A MECHANIZED PROOF OF UC FOR WIREGUARD

We now describe how to leverage the results from Sec-
tion III into a mechanized proof of UC security for the
Wireguard protocol using the CRYPTOVERIF tool. In particu-
lar, Theorem 2 means we can prove UC security by proving
that a compiler that transforms the Wireguard ideal function-
ality into the Wireguard protocol satisfies CRHC . We encode
our notion of whole programs as CRYPTOVERIF games, and
since CRYPTOVERIF is designed to analyze computational
equivalence ≊ between two games, we can use it to verify
CRHC .

We begin with some background on CRYPTOVERIF and
Wireguard (Sections VI-A and VI-B) before describing how
we model Wireguard in CRYPTOVERIF (Section VI-C). Fi-
nally, we discuss the computational indistinguishability proof
itself and limitations (Sections VI-D and VI-E).

A. The CRYPTOVERIF Tool

CRYPTOVERIF is a mechanized prover for properties of
security protocols in the computational model. A CRYP-
TOVERIF proof is a polynomial-length sequence of crypto-
graphic games—where an active attacker attempts to break
some security property and is allowed to run multiple ses-
sions in parallel. Each game is represented in a language
with a probabilistic semantics where all computations run in
polynomial time, and the goal is to show that each game
is indistinguishable from the next. CRYPTOVERIF proofs
are thus proofs of computational indistinguishability between
two games, one of which is generally trivially secure (e.g.,
distinguishing between two encryptions of 0).

We use the game language of CRYPTOVERIF as an instance
for both the source and target languages of the compilers
described in Section III. Those languages require semantics
that are probabilistic and where processes run in polynomial
time, assumptions which CRYPTOVERIF satisfies. Our strategy
is to encode both the ideal functionality and the protocol as
games, and prove that they are computationally indistinguish-
able. This, in turn, shows that the compiler that translates the
functionality into the protocol (and does nothing else) satisfies
CRHC , and thus the protocol UC-realises the functionality.

CRYPTOVERIF provides two input languages, channels and
oracles. We use the oracle language, as it is closer to CRYP-
TOVERIF’s internal representation and thus grants more flexi-
bility in the encoding. In this model, the parties to a protocol
are represented by oracles, which are simple probabilistic pro-
grams with shared state. The adversary controls the network as
well as the scheduling of messages by invoking these oracles.
An adversary invoking an oracle models sending a message to
a party and then receiving a response. This structure supports
the attacker injecting messages—by invoking an oracle with
an input it generated—dropping messages—by declining to
send the output of one oracle as the input to another—or
simply observing all network traffic. CRYPTOVERIF models
parties that answer many requests in a uniform way, such as
servers, by replicating an oracle: given some finite bound n,

the attacker can use n different copies of the oracle, each with
their own state.

B. The Wireguard Protocol

Wireguard is a widely-used protocol for establishing a
VPN tunnel between two remote hosts in order to securely
encapsulate all Internet Protocol (IP) traffic between them. It
consists of two parts: a key exchange and a record subprotocol.
To establish a tunnel, the key exchange subprotocol requires
the IP address and long-term public key for the remote host.
It then uses an instantiation of the Noise framework for
key exchange with fast, modern cryptographic primitives, like
Curve25519 and BLAKE2, to establishes two ephemeral keys
(one per direction) that parties use to encrypt and authenticated
messages in the subsequent record subprotocol. The record
subprotocol can then use these symmetric keys to construct a
secure channel.

We verify a model of Wireguard introduced by Lipp
et al. [37], which is already encoded in CRYPTOVERIF.1 For
the sake of simplicity, we focus on the 2-party version of
Wireguard, with a sender and receiver who are both honest
throughout the run.

We also only model the record protocol, where payloads are
transmitted after parties have agreed on a common, ephemeral
symmetric session key. The compositional nature of UC secu-
rity means that one could obtain a proof of the full Wireguard
protocol simply by combining our proof with a corresponding
proof for the key exchange protocol, which we leave for future
work. We make this choice due to a conceptual challenge in
proving the security of key exchange. The key confirmation
message in Wireguard—as well as other secure channel proto-
cols like TLS—leaks a very small amount of information about
the key, complicating composition arguments. Fischlin et al.
[24] discuss this problem and provide a (non-composable)
solution, while the model of Lipp et al. [37, p. 242] omits
this message altogether.

Finally, we introduce a modification to the original model.
As an argument to the protocol, Lipp et al. [37] include a
secret bit that the two parties share. Before sending a payload,
a party waits for two messages from the adversary and uses
the secret bit to determine which one to transmit. The attacker
must then determine the value of this secret bit. This modeling
choice deviates from any actual Wireguard implementation,
which should not include this secret bit or a second payload.
Instead, a more faithful model would take this direction from
the environment, not the adversary. To represent this more
realistic model, we build a simple model of communication
between the Wireguard parties (sender and receiver), add a
dummy adversary, and use the CRYPTOVERIF attacker to
model the environment. We then add functionality from Lipp
et al.’s model in a piece-wise fashion until we have recovered
the full record protocol.

1They provide several models. We build on a model
in which long-term keys can be dynamically corrupted
(WG.25519.AB-BA.S_i_compr.S_r_compr.replay_prot.cv).

C. Modeling Wireguard in CRYPTOVERIF

Model Structure: Recall that CRYPTOVERIF proves
computational indistinguishability between two cryptographic
games, one representing the “real world,” which we denote
Ad▷◁PWG, and one representing the “ideal world,” which we
denote SWG ▷◁PWG . The real world consists of the sender and
the receiver (both in PWG) and the dummy attacker (Ad). The
ideal world consists of the sender and receiver’s functionalities
(PWG) and a simulator (SWG) that we devise to carry out the
UC proof. Both the real and the ideal worlds interact with the
same environment. In our model, the role of the environment
is taken by the CRYPTOVERIF attacker.

The Simulator: The simulator plays a key role in UC
proofs, since it determines the success of the proof itself.
Our simulator is inspired by simulators used in UC proofs of
encryption functionalities. As the simulator performs multiple
input/output steps, it is split over multiple oracles. The oracle
below is the part of the simulator that receives a cyphertext
from the environment and sends it to the functionality.

1 let Sim() =
2 foreach i_Nrr <= n_M do (
3 Oe2aR (xc:bitstring, xn:counter_t) ··=
4 get rcvd_counters(xn) in yield
5 else insert rcvd_counters(xn);
6 get simtable(zm,tc,tn)
7 suchthat tc = xc && tn = xn
8 in run SenderFSim(xn)).

Line 2 creates nM instances of the simulator, indexed by
iNrr. Line 3 declares nM many instances of the Oe2aR oracle
(Oracles modelling communication from the environment via
the dummy attacker to the Receiver), which together constitute
the simulator. Each Oe2aR instance receives a message con-
taining a bitstring xc and a counter xn from the environment.
Then it checks if the counter has been received in the past. If
it has, the simulator aborts (yield), otherwise it registers the
counter. Finally, each oracle instance checks if it has already
received the bitstring with the same counter, and continues as
SenderFsim, which forwards the bitstring to the sender part of
the functionality.

Using CRYPTOVERIF Oracles: We use the oracle inter-
face of CRYPTOVERIF to describe both games and the attacker.
Concretely, each CRYPTOVERIF game provides the attacker
with a set of oracles that can be queried by the attacker.
CRYPTOVERIF does not provide private communication (e.g.,
private channels), and this affects both the protocols and the
various parties encoded in the real and ideal games.

Modeling Private Communication: Private communica-
tion between protocol/functionality and attacker/simulator is
necessary to ensure that the trace does not immediately reveal
whether a run is in the real world or ideal world. In a process
calculus, private channels can serve this purpose [12, 20]. In
a stateful language, shared state is sufficient, but it requires
proper encoding [10, 44]. CRYPTOVERIF does not provide
private communication natively, so we must encode it.

Oracles are allowed to share state and access each others
variables directly. While unusual from a semantics perspec-

tive, this method is often preferred by cryptographers for its
simplicity, so we rely on the exposure of oracle states to model
private communication between them. If oracles are replicated
(as in the case here), their variables must be accessed as arrays.
For instance, zm[simId] would access the variable zm defined
on line 6 of the copy of the above Sim oracle with ID simId.
Concretely, this means any oracle with the following code
snippet could access zm.

find simId <= n_M suchthat defined(zm[simId])
then return(zm[simId]).

Here, the construct find ... suchthat non-deterministically
sets such an index matching the specified requirements:
simId ≤ n_M, and oracle simId has initialized zm.

In the real world, the only necessary private communication
is between the protocol (PWG) and the dummy attacker (Ad).
Since the dummy attacker Ad is just a proxy that forwards
all messages between PWG and the environment, represented
by the CRYPTOVERIF attacker, we elide the dummy attacker
and have PWG communicate directly with the environment
/ CRYPTOVERIF attacker. For example, the Sender directly
returns to the CRYPTOVERIF attacker in Oe2S, without calling
the dummy attacker.

1 let Sender(ks:key_t) =
2 foreach i_Nis <= n_M do (
3 Oe2S(m:bitstring, counter:counter_t) ··=
4 let preparemsgsucc(cipher_data:bitstring)
5 = prepare_msg(m, counter, ks)
6 in return(cipher_data)
7).

The ideal world requires more interesting private com-
munication between the ideal functionality (PWG) and the
simulator (SWG). However, SWG is not stateless, so we need
to manually inline the receiving party where it is called. We
carefully track names to ensure that the receiving entity only
accesses information that would be passed by communication.
Unfortunately, this manual encoding can be error prone, since
CRYPTOVERIF allows the receiver to access any part of the
sender state without a warning.

To illustrate this private communication, see the following
SenderFSim oracle, which accesses the variables m, counter,
and c that are defined outside of its scope, in the oracle Sender

above.

1 let SenderFSim(xn:counter_t) =
2 find senderid <= n_M
3 suchthat defined(m[senderid],
4 counter[senderid],
5 c[senderid])
6 && counter[senderid] = xn
7 then return(m[senderid]).

SenderFSim constitutes the adversary/simulator interface of the
sender part of the functionality (whereas Sender constitutes
the environment interface and sets m). Because we model
multiple sessions of the overall protocol running in parallel,
the simulator may receive an out-of-order message from the
environment, so the simulator needs to identify the correct
session of the functionality. It does so by providing the

(public) counter xn, which SenderFSim uses to search the
correct (internal) session identifier. First, the functionality
finds the session, identified via senderid, that emitted the
cyphertext. The functionality searches for a session that (a) is
terminated, i.e., one where m[senderid], Fcounter[senderid
] and c[senderid]) are defined, and (b) where the oracle’s
counter Fcounter[senderid] matches the counter xn received
from the simulator. Up to now, we have simply encoded that
the functionality, after producing its output to the simulator,
waits for another message that it matches against xn; this is
necessary because oracles can only produce one output per
input. Finally, the functionality returns the message of the
session now identified: m[senderid].

The final model is around 200 lines of CRYPTOVERIF code.

D. Computational Indistinguishability Proof

We prove our two models (real and ideal) are computation-
ally indistinguishable through a series of eight CRYPTOVERIF
games that the tool does not find automatically. Two of
those games are cryptographic reductions, while the others are
perfect equivalences. We guide CRYPTOVERIF to these games
with a proof script consisting of seven steps.

The scrip starts from the real world Ad ▷◁ PWG. The first
step applies the IND-CTXT assumption of the encryption
scheme, which guarantees ciphertext integrity. This check
matches a structural check in the ideal functionality and
ensures that every received ciphertext was sent by the sender.
The second step applies the IND-CPA assumption of the en-
cryption scheme, which guarantees ciphertext confidentiality.
This step replaces message encryptions with encryptions of
zero. The other five steps consist of removing dead code,
inlining variables, and minimally modifying code structure to
produce exactly the ideal world SWG ▷◁ PWG .

E. Discussion

The lack of private communication such as private channels
led us to use cross-oracle state sharing to transfer information
between oracles and to inline parties where they are called.
This is a manual process that is highly prone to encoding
errors, and we believe adding private channels to CRYP-
TOVERIF would mitigate this issue. Indeed, this feature seems
available internally, but we confirmed through the manual and
communication with the maintainers that is is not exposed to
the user. In the long term, the addition of a module system
that allows for compositional proofs might be even better,
as it could syntactically ensure that composition is correctly
encoded, for example according to Patrignani et al. [43, Axiom
5 to 7]. In addition, such a system could easily validate that
states are properly encapsulated, e.g., that simulator oracles
cannot directly access the state of the functionality.

VII. RELATED WORK

The most closely-related work is that of Patrignani et al.
[43], which highlights the UC–RC connection but does not
broach the topic of computational indistinguishability. The
authors use the connection to mechanize the proof that 1-bit

commitment protocols [16, 36] are UC secure in the static as
well as in the dynamic corruption cases.

A. Universally Composable Cryptographic Models

Universal composability [16] extended simulated-based no-
tions of correctness and privacy for multi-party computa-
tion [29] to the interactive case, additionally ensuring that
security guarantees are preserved when a protocol is used
as a subroutine within a larger protocol. Many competing
frameworks [7, 15, 30, 35, 53] followed to improve on
perceived inadequacies in the model or to correct subtle errors
in the proofs. Currently, the original UC framework is in
its sixth version. A common point of contention is how to
define polynomial runtime in a reactive system. Hofheinz
et al. [31] explain the problem in great detail and propose a
solution that is (conceptually) reflected in all these frameworks
[15, 16, 30, 35, 53], at least in their latest versions. Our abstract
poly-time predicate over attacker-protocol combinations (see
Section III) can capture the poly-time notions in each of them.

These frameworks define UC bottom-up, fixing a plethora of
technical details like the machine model (often interactive Tur-
ing Machines), message formats, message and process sched-
ulers, virtualisation mechanisms, addressing mechanisms, etc.
None of these details are at all similar to how networks and
programs operate in the real world, yet many of the differences
between the frameworks boil down to technical minutia at very
low-level of abstraction. This is reflected in the proofs, which
are as hard to formalize as they are to write down.

By contrast, our results operate at a much higher level of
abstraction. Patrignani et al. [43] provide a high-level compo-
sition proof for this model, which we verified in Isabelle/HOL
is not impacted by any of our modifications (composition).
Indeed, that result relies on a small set of assumptions [43,
Axioms 5 to 7] that most likely hold for any of the frameworks
discussed above.

Canetti, Stoughton, and Varia [18] confirmed these is-
sues, when they mechanized parts of UC in EasyCrypt [10],
lamenting that “despite the relative simplicity [of their case
studies], [proving UC] took an immense amount of work.”
It is thus unsurprising that other attempts to mechanize the
concept [4, 11, 36] avoid this technical baggage and build their
frameworks on formal languages that provide a much higher
degree of abstraction. Still, all these frameworks perceive UC
as a property between programs written in one and the same
language. With Theorem 2, one can use RC as a tool to
transfer such properties across language boundaries.

B. Alternative Tools for CRYPTOVERIF

We verified our case study in CRYPTOVERIF, but there are
a variety of other tools for cryptographic verification.

EasyCrypt [23] is a stand-alone theorem prover with focus
on cryptographic primitives and small protocols. It reasons
at at a code level using probabilistic relational Hoare logic
and external SMT solvers. There are also various embeddings
of probabilistic languages in general-purpose theorem provers
like CryptHOL [11] and FCF [44]. They all require most of

the proof to be written out, although some automated proof
tactics can help with simple steps.

Squirrel [8] is a protocol-specific prover for computational
indistinguishability based on a computationally-sound attacker
model that can be symbolically reasoned about. In contrast
to CRYPTOVERIF and EasyCrypt, which focus on program
transformations to deduce equivalences, Squirrel’s reasoning
focusses on (symbolic) traces. Currently Squirrel proofs are
as detailed as proofs in EasyCrypt and similar tools, though
the project aims to reduce the complexity.

Only EasyCrypt has previously been used for UC-style
proofs [18]. Leveraging our results, we were able to produce a
proof in CRYPTOVERIF, which we chose because it promised
a higher degree of automation. Our case study confirms this
promise, though manual guidance was still required.

C. Language-Based Tools for Cryptographic Security

Several language-based tools exist with the goal of easing
the process of developing and verifying secure cryptographic
protocols. Languages like Wysteria [45], Wys∗ [46] and Sym-
phony [50] are designed to simplify the design and imple-
mentation of secure distributed systems using cryptography.
Viaduct [6] and Jif/Split [56, 58] use security policies specified
by information flow labels to automatically partition programs,
synthesizing uses of particular cryptographic primitives when
necessary. These systems generally do not contain formal
proofs of security, and we hope our results will make it easier
to provide them with UC-style guarantees.

Security type systems can also help prove security. An
information-flow type system can ensure proper combination
of specific cryptographic primitives [25, 26]. Owl [27] uses a
security type system with built-in primitives to enforce com-
putational guarantees. While these builtins do not fit our goal
of abstracting (any) primitive via functionalities, they provide
a meaningful level of composition and are worth investigating.
In general, type-systems are fast and compositional.

D. Robust Compilation

Abate et al. [2] introduced a large hierarchy of RC criteria
that have been used to reason about the security of compilers
that preserve memory safety [1, 41], absence of speculation
leaks [42], and cryptographic constant time [33, 34]. They
require source and target languages to have the same trace
model, though they show how to lift that limitation in subse-
quent work [3]. While we also require our languages to share
a trace model, we make that choice for simplicity. The same
approach should generalize our result as well. Interestingly,
lifting the same limitation in UC would let us formalize the
existence of two distinct, but related, environments, one in the
real and one in the ideal world. We are unaware of a notion
of UC with distinct environments; after all, they are all just
(interactive) Turing Machines.

VIII. CONCLUSION

In this work, we have generalized the connection between
UC and RC to the computational setting, and then generalized

the connection further to arbitrary indistinguishability relations
and predicates over programs. We showcased the benefits of
this expanded connection by using CRYPTOVERIF, a tool
for proving computational indistinguishability, to mechanize
a proof of UC security for the Wireguard protocol.

These results let us conclude that CRYPTOVERIF can be
used to modularize cryptographic proofs, which are currently
very monolithic. We believe our demonstrated connections will
extend similar benefits to other tools, though we leave this
investigation for future work.

Additionally, there exists a compiler from CRYPTOVERIF
into OCaml [14] that the authors proved, already in 2013,
robustly preserves hyperproperties. Though the RC framework
was only developed years later, the result is equivalent. Since
translating from the ideal functionality into the protocol is
a compiler, we can create a toolchain that translates CRYP-
TOVERIF ideal functionalities all the way to executable OCaml
protocols. This toolchain would combine properties of sequen-
tial composition of compilers [34] and our results to ensure
end-to-end guarantees of UC security for real-world executable
protocols. However, as we hint at the end of Section VI,
a module system in CRYPTOVERIF would streamline the
creation of this toolchain, which we also leave for future work.

ACKNOWLEDGMENTS

Thanks to the anonymous reviewers for their insightful
comments and suggestions. This work was partially supported
by a gift from: the Italian Ministry of Education through
funding for the Rita Levi Montalcini grant (call of 2019).

REFERENCES

[1] C. Abate, A. Azevedo de Amorim, R. Blanco, A. N.
Evans, G. Fachini, C. Hriţcu, T. Laurent, B. C. Pierce,
M. Stronati, and A. Tolmach, “When good components
go bad: Formally secure compilation despite dynamic
compromise,” in 25th ACM Conference on Computer and
Communication Security (CCS ’18), Oct. 2018.

[2] C. Abate, R. Blanco, D. Garg, C. Hriţcu, M. Patrignani,
and J. Thibault, “Journey beyond full abstraction: Explor-
ing robust property preservation for secure compilation,”
in 32nd IEEE Computer Security Foundations Symposium
(CSF ’19), Jun. 2019.

[3] C. Abate, R. Blanco, Ş. Ciobâcă, A. Durier, D. Garg,
C. Hriţcu, M. Patrignani, E. Tanter, and J. Thibault, “An
extended account of trace-relating compiler correctness
and secure compilation,” ACM Transactions on Program-
ming Languages and Systems (TOPLAS), vol. 43, no. 4,
Nov. 2021.

[4] C. Abate, P. G. Haselwarter, E. Rivas, A. V. Muylder,
T. Winterhalter, C. Hriţcu, K. Maillard, and B. Spitters,
“SSProve: A foundational framework for modular crypto-
graphic proofs in Coq,” in 34th IEEE Computer Security
Foundations Symposium (CSF ’21), Jun. 2021.

[5] M. Abboud and T. Prest, “Cryptographic divergences:
New techniques and new applications,” in Security and
Cryptography for Networks (SCN), 2020.

[6] C. Acay, R. Recto, J. Gancher, A. C. Myers, and E. Shi,
“Viaduct: An extensible, optimizing compiler for secure
distributed programs,” in 42nd ACM SIGPLAN Confer-
ence on Programming Language Design and Implemen-
tation (PLDI ’21), Jun. 2021.

[7] M. Backes, B. Pfitzmann, and M. Waidner, “The reactive
simulatability (RSIM) framework for asynchronous sys-
tems,” Information and Computation, vol. 205, no. 12,
pp. 1685–1720, Dec. 2007.

[8] D. Baelde, S. Delaune, C. Jacomme, A. Koutsos, and
S. Moreau, “An interactive prover for protocol verifica-
tion in the computational model,” in 42nd IEEE Sym-
posium on Security and Privacy (IEEE S&P ’21), May
2021.

[9] S. Bai, T. Lepoint, A. Roux-Langlois, A. Sakzad,
D. Stehlé, and R. Steinfeld, “Improved security proofs in
lattice-based cryptography: Using the Rényi divergence
rather than the statistical distance,” Journal of Cryptol-
ogy, vol. 31, no. 2, pp. 610–640, Apr. 2018.

[10] G. Barthe, B. Grégoire, S. Heraud, and S. Z. Béguelin,
“Computer-aided security proofs for the working cryp-
tographer,” in 31st International Cryptology Conference
(CRYPTO ’11), Aug. 2011.

[11] D. Basin, A. Lochbihler, U. Maurer, and S. R. Sefidgar,
“Abstract modeling of system communication in con-
structive cryptography using CryptHOL,” in 34th IEEE
Computer Security Foundations Symposium (CSF ’21),
Jun. 2021.

[12] B. Blanchet, “An efficient cryptographic protocol verifier
based on prolog rules,” in 14th IEEE Computer Security
Foundations Workshop (CSFW ’01), Jun. 2001.

[13] ——, “CryptoVerif: Cryptographic protocol verifier in
the computational model,” 2022, accessed May 2023.
[Online]. Available: https://bblanche.gitlabpages.inria.fr/
CryptoVerif/

[14] D. Cadé and B. Blanchet, “Proved generation of imple-
mentations from computationally secure protocol speci-
fications,” Journal of Computer Security (JCS), vol. 23,
no. 3, pp. 331–402, 2015.

[15] J. Camenisch, S. Krenn, R. Küsters, and D. Rausch,
“iUC: Flexible universal composability made simple,”
in 25th International Conference on The Theory and
Application of Cryptology and Information Security (Asi-
aCrypt ’19), Dec. 2019.

[16] R. Canetti, “Universally composable security: a new
paradigm for cryptographic protocols,” in 42nd IEEE
Symposium on Foundations of Computer Science
(FOCS ’01), Oct. 2001.

[17] R. Canetti and M. Fischlin, “Universally composable
commitments,” in 21st International Cryptology Confer-
ence (CRYPTO ’01), Aug. 2001.

[18] R. Canetti, A. Stoughton, and M. Varia, “EasyUC:
Using EasyCrypt to mechanize proofs of universally
composable security,” in 32nd IEEE Computer Security
Foundations Symposium (CSF ’19), Jun. 2019.

[19] E. Cecchetti, A. C. Myers, and O. Arden, “Nonmalleable

information flow control,” in 24th ACM Conference on
Computer and Communication Security (CCS ’17), Oct.
2017.

[20] V. Cheval, S. Kremer, and I. Rakotonirina, “DEEPSEC:
Deciding equivalence properties in security protocols
theory and practice,” in 39th IEEE Symposium on Security
and Privacy (IEEE S&P ’18), May 2018.

[21] M. R. Clarkson and F. B. Schneider, “Hyperproperties,”
Journal of Computer Security (JCS), vol. 18, no. 6, pp.
1157–1210, 2010.

[22] C. Dwork, “Differential privacy,” in 33rd International
Colloquium on Automata, Languages, and Programming
(ICALP ’06), Jul. 2006.

[23] EasyCrypt Development Team, “EasyCrypt: Computer-
aided cryptographic proofs,” 2023. [Online]. Available:
https://github.com/EasyCrypt/easycrypt

[24] M. Fischlin, F. Günther, B. Schmidt, and B. Warinschi,
“Key confirmation in key exchange: A formal treatment
and implications for TLS 1.3,” in 37th IEEE Symposium
on Security and Privacy (S&P ’16), May 2016.

[25] C. Fournet and T. Rezk, “Cryptographically sound imple-
mentations for typed information-flow security,” in 35th

ACM SIGPLAN Symposium on Principles of Program-
ming Languages (POPL ’08), Jan. 2008.

[26] C. Fournet, J. Planul, and T. Rezk, “Information-flow
types for homomorphic encryptions,” in 18th ACM
Conference on Computer and Communication Security
(CCS ’11), Oct. 2011.

[27] J. Gancher, S. Gibson, P. Singh, S. Dharanikota, and
B. Parno, “Owl: Compositional verification of security
protocols via an information-flow type system,” in 44th

IEEE Symposium on Security and Privacy (S&P ’23),
May 2023.

[28] J. A. Goguen and J. Meseguer, “Security policies and
security models,” in 3rd IEEE Symposium on Security
and Privacy (S&P ’82), Apr. 1982.

[29] O. Goldreich, Foundations of Cryptography: Volume 1.
New York, NY, USA: Cambridge University Press, 2006.

[30] D. Hofheinz and V. Shoup, “GNUC: A new univer-
sal composability framework,” Journal of Cryptology,
vol. 28, no. 3, pp. 423–508, Oct. 2015.

[31] D. Hofheinz, D. Unruh, and J. Müller-Quade, “Polyno-
mial runtime and composability,” Journal of Cryptology,
vol. 26, no. 3, pp. 375–441, Jul. 2013.

[32] Isabelle Development Team, “Isabelle/HOL proof
assistant,” 2022, accessed May 2023. [Online]. Available:
https://isabelle.in.tum.de/

[33] M. Kolosick, B. A. Shivakumar, S. Cauligi,
M. Patrignani, M. Vassena, R. Jhala, and
D. Stefan, “Robust constant-time cryptography,” in
6th Workshop on Principles of Secure Compilation
(PriSC ’23), Jan. 2023. [Online]. Available:
https://kolosick.com/robust-crypto-prisc.pdf

[34] M. Kruse, M. Backes, and M. Patrignani, “Secure
composition of robust and optimising compilers,” Tech.
Rep. arXiv:2307.08681, Jun. 2023. [Online]. Available:

https://bblanche.gitlabpages.inria.fr/CryptoVerif/
https://bblanche.gitlabpages.inria.fr/CryptoVerif/
https://github.com/EasyCrypt/easycrypt
https://isabelle.in.tum.de/
https://kolosick.com/robust-crypto-prisc.pdf

https://arxiv.org/abs/2307.08681
[35] R. Küsters, M. Tuengerthal, and D. Rausch, “The IITM

model: a simple and expressive model for universal
composability,” Journal of Cryptology, vol. 33, no. 4,
pp. 1461–1584, Jul. 2020.

[36] K. Liao, M. A. Hammer, and A. Miller, “ILC: A calculus
for composable, computational cryptography,” in 40th

ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI ’19), Jun. 2019.

[37] B. Lipp, B. Blanchet, and K. Bhargavan, “A mechanised
cryptographic proof of the WireGuard virtual private
network protocol,” in 4th IEEE European Symposium on
Security and Privacy (EuroS&P ’19), Jun. 2019.

[38] J. McLean, “Proving noninterference and functional cor-
rectness using traces,” Journal of Computer Security
(JCS), vol. 1, no. 1, pp. 37–57, Jan. 1992.

[39] D. Micciancio and M. Walter, “Gaussian sampling over
the integers: Efficient, generic, constant-time,” in 27th In-
ternational Cryptology Conference (CRYPTO ’07), Aug.
2017.

[40] M. Patrignani, “Why should anyone use colours?
or, syntax highlighting beyond code snippets,” CoRR,
vol. abs/2001.11334, 2020. [Online]. Available: https:
//arxiv.org/abs/2001.11334

[41] M. Patrignani and D. Garg, “Robustly safe compila-
tion, an efficient form of secure compilation,” ACM
Transactions on Programming Languages and Systems
(TOPLAS), vol. 43, no. 1, Feb. 2021.

[42] M. Patrignani and M. Guarnieri, “Exorcising spectres
with secure compilers,” in 28th ACM Conference on
Computer and Communication Security (CCS ’21), Nov.
2021.

[43] M. Patrignani, R. Künnemann, and R. S. Wahby,
“Universal composability is robust compilation,” Tech.
Rep. arXiv:1910.08634, Dec. 2022. [Online]. Available:
https://arxiv.org/abs/1910.08634

[44] A. Petcher and G. Morrisett, “The foundational cryptog-
raphy framework,” in 4th Principles of Security and Trust
(POST ’15), Apr. 2015.

[45] A. Rastogi, M. A. Hammer, and M. Hicks, “Wyste-
ria: A programming language for generic, mixed-mode
multiparty computations,” in 35th IEEE Symposium on
Security and Privacy (S&P ’14), May 2014.

[46] A. Rastogi, N. Swamy, and M. Hicks, “Wys∗: A DSL for
verified secure multi-party computations,” in 8th Princi-
ples of Security and Trust (POST ’19), Apr. 2019.

[47] A. Roscoe, “CSP and determinism in security mod-
elling,” in 16th IEEE Symposium on Security and Privacy
(S&P ’95), May 1995.

[48] A. Sabelfeld and A. C. Myers, “Language-based
information-flow security,” IEEE Journal on Selected
Areas in Communications, vol. 21, no. 1, pp. 5–19, Jan.
2003.

[49] ——, “A model for delimited information release,” in In-
ternational Symposium on Software Security, Nov. 2003.

[50] I. Sweet, D. Darais, D. Heath, R. Estes, W. Harris,

and M. Hicks, “Symphony: Expressive secure multiparty
computation with coordination,” in 7th International Con-
ference on the Art, Science, and Engineering of Program-
ming (〈Programming〉 ’23), Mar. 2023.

[51] Y. Wang, Z. Ding, G. Wang, D. Kifer, and D. Zhang,
“Proving differential privacy with shadow execution,”
in 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’19), Jun.
2019.

[52] Y. Wang, Z. Ding, Y. Xiao, D. Kifer, and D. Zhang,
“DPGen: Automated program synthesis for differential
privacy,” in 28th ACM Conference on Computer and
Communication Security (CCS ’21), Nov. 2021.

[53] D. Wikström, “Simplified universal composability frame-
work,” in 13th IACR Theory of Cryptography Conference
(TCC ’16), Jan. 2016.

[54] S. Zdancewic and A. C. Myers, “Robust declassification,”
in 14th IEEE Computer Security Foundations Workshop
(CSFW ’01), Jun. 2001.

[55] ——, “Observational determinism for concurrent pro-
gram security,” in 16th IEEE Computer Security Foun-
dations Workshop (CSFW ’03), Jun. 2003.

[56] S. Zdancewic, L. Zheng, N. Nystrom, and A. C. Myers,
“Secure program partitioning,” ACM Transactions on
Computer Systems (TOCS), vol. 20, no. 3, pp. 283–328,
Aug. 2002.

[57] D. Zhang and D. Kifer, “LightDP: Towards automat-
ing differential privacy proofs,” in 44th ACM SIGPLAN
Symposium on Principles of Programming Languages
(POPL ’17), Jan. 2017.

[58] L. Zheng, S. Chong, A. C. Myers, and S. Zdancewic,
“Using replication and partitioning to build secure dis-
tributed systems,” in 24th IEEE Symposium on Security
and Privacy (S&P ’04), May 2003.

https://arxiv.org/abs/2307.08681
https://arxiv.org/abs/2001.11334
https://arxiv.org/abs/2001.11334
https://arxiv.org/abs/1910.08634

	Introduction
	Background
	Universally Composable Security
	Robust Compilation
	Existing UC–RC Connection

	Computational Robust Hyperproperty Preservation
	Computational Indistinguishability
	Computational Robust Compilation
	Identifying Preserved Hyperproperties
	Connecting Computational UC and cr:comprhc

	Generalizing Equivalences and Predicates
	Connecting to UC Security

	Proof Approach
	A Mechanized proof of UC for Wireguard
	The CryptoVerif Tool
	The Wireguard Protocol
	Modeling Wireguard in CryptoVerif
	Computational Indistinguishability Proof
	Discussion

	Related Work
	Universally Composable Cryptographic Models
	Alternative Tools for CryptoVerif
	Language-Based Tools for Cryptographic Security
	Robust Compilation

	Conclusion

