Robustly Safe Compilation

‘l‘ﬁ =/ Marco Patrignani'> Deepak Garg® g

10" April 2019

" ICISPA

HELMHOLTZ CENTER FOR
INFORMATION SECURITY

, @ Stanford , =

University T

L/

—
» _ MAX PLANCK INSTITUTE
3O [OR SOFTWARE SYSTEMS

| G

o/21

What is Secure Compilation?

1/21

What is Secure Compilation?

1/21

What is Secure Compilation?

used linearly 3

1/21

What is Secure Compilation?

used linearly 3

y = &mut
P1 P2 c Pn

1/21

What is Secure Compilation?

y = &mut

P

violate linearity

1/21

What is Secure Compilation?

Preserve the security properties of g

y = &mut
P1 P2 c Pn

1/21

What is Secure Compilation?

Preserve the security properties of g

y = &mut

P

when interoperating with

1/21

What is Secure Compilation?

Preserve the security properties of g

=

when interoperating with

1/21

What is Secure Compilation?

Correct compilation

Asm
y = &mut
P P e P,

1/21

What is Secure Compilation?

Correct compilation

respect linearity

1/21

What is Secure Compilation?

Secure compilation

y = &mut
P1 P2 c Pn

1/21

What is Secure Compilation?

Enable source-level security reasoning

y = &mut
P1 P2 c Pn

1/21

Do Secure Compilers Exist?

2/21

Do Secure Compilers Exist?

Yes!

2/21

Do Secure Compilers Exist?

Yes!

They rely on security mechanismes:

« enclaves - ASLR
- capabilities - CFI, SFI
- types * processes

tagged memory

2/21

Some secure compilers:

« P1:lack formal proof of their security
guarantees

3/21

Some secure compilers:

« P1:lack formal proof of their security
guarantees

- P2: prove preservation of ad-hoc security
properties

3/21

Some secure compilers:

« P1:lack formal proof of their security
guarantees

- P2: prove preservation of ad-hoc security
properties

« P3:inefficient

3/21

ecure compilers:

: lack formal proof of their security
guarantees

- P2: prove preservation of ad-hoc securit
properties
- P3:inefficient

3/21

Define a formal criterion for secure compilation:

4/21

Define a formal criterion for secure compilation:

- attainable
- efficient (wrt existing ones)
+ easy not too hard to prove

4/21

Define a formal criterion for secure compilation:

attainable

efficient (wrt existing ones)
« easy not too hard to prove

with clear security guarantees

4/21

Contributions

« RSC: known criterion, meets our goals

5/21

Contributions

« RSC: known criterion, meets our goals
- a compiler preserves all safety properties

5/21

Contributions

« RSC: known criterion, meets our goals
- a compiler preserves all safety properties
- three compilers [] that attain RSC

5/21

Contributions

« RSC: known criterion, meets our goals
- a compiler preserves all safety properties
- three compilers [] that attain RSC

- relying on memory isolation (via capabilities or
enclaves)

5/21

Contributions

« RSC: known criterion, meets our goals
- a compiler preserves all safety properties
- three compilers [] that attain RSC
- relying on memory isolation (via capabilities or
enclaves)
no runtime checks!

5/21

Contributions

« RSC: known criterion, meets our goals
- a compiler preserves all safety properties
- three compilers [] that attain RSC
- relying on memory isolation (via capabilities or
enclaves)
no runtime checks!
« two proof techniques for RSC

5/21

Contributions

« RSC: known criterion, meets our goals
- a compiler preserves all safety properties
- three compilers [] that attain RSC
- relying on memory isolation (via capabilities or
enclaves)
no runtime checks!

« two proof techniques for RSC
« simplifications on existing ones

5/21

Contributions

RSC': known criterion, meets our goals
- a compiler preserves all safety properties
three compilers [] that attain RSC
- relying on memory isolation (via capabilities or
enclaves)
no runtime checks!
two proof techniques for RSC
« simplifications on existing ones

- a comparison between RSC and FAC

5/21

Contributions

[- RSC: known criterion, meets our goals
paﬂ" « a compiler preserves all safety properties
« three compilers [-] that attain RSC
- relying on memory isolation (via capabilities or
enclaves)
no runtime checks!
« two proof techniques for RSC
« simplifications on existing ones

- a comparison between RSC and FAC

Contributions

[- RSC: known criterion, meets our goals
paﬂ" « a compiler preserves all safety properties
« three compilers [-] that attain RSC
- relying on memory isolation (via capabilities or
enclaves)
no runtime checks!
[- two proof techniques for RSC
pa®% . simplifications on existing ones

- a comparison between RSC and FAC

5/21

Talk Roadmap

Robust Safety
Robustly Safe Compilation

Backtranslation Proof Technique

6/21

Robust Safety

» Robustness
« Behaviour
- Safety

7/21

Our code

newBIlk(c)
addBIk(b)

verifyCh()

8/21

Robustness

Our code

newBlk(c)

addBlk(b) liby
verifyCh() printf(s)

8/21

Our code Malicious code (arbitrary) N

newBlk(c)
addBlk(b) A
verifyCh()

8/21

Our code Malicious code (arbitrary) 3

newBlk(c)
addBlk(b)
verifyCh()

8/21

Program Behaviour

Our code Malicious code (arbitrary) D

newBlk(c)
addBIk(b) A
verifyCh()

9/21

Program Behaviour

Our code Malicious code (arbitrary) D

newBlk(c)
addBIk(b) A
verifyCh()

9/21

Program Behaviour

Our code Malicious code (arbitrary) N

newBlk(c)
addBlk(b)
verifyCh()

Observable

actions a? «o!

9/21

Program Behaviour

Our code Malicious code (arbitrary) N

newBlk(c)
addBlk(b)
verifyCh()

Code behaviour =
Observable sequence of actions

— def

.) o
actions o7 «! a=o1?, a0l ...

9/21

Program Behaviour

Malicious code (arbitrary) D

Our code

newBlk(c)
addBIk(b)
verifyCh()

Code behaviour =

sequence of actions

— def D '
a =17, anl,

9/21

Program Behaviour

Malicious code (arbitrary) D

Our code

newBlk(c)
addBIk(b)
verifyCh()

Code behaviour =

sequence of actions

— def D '
a =17, anl,

9/21

Program Behaviour

Our code Malicious code (arbitrary) N

newBlk(c®
addBlk(E
verifyCh(

Code behaviour =

sequence of actions

— def >
a=oa1l, ol ...

L

9/21

Safety Properties

no bad thing happens (finitely) 8

newBlk(c)
addBlk(b)
verifyCh()

10/21

Safety Properties

no bad thing happens (finitely) 8

newBlk(c)
addBlk(b)
verifyCh()

safety = integrity, functional correctness,

weak secrecy, ...

10/21

Safety Properties

no bad thing happens (finitely) 8

newBlk(c)
addBIk(b)

verifs 7"

addBIlk(b)? ret ok!

verifyCh()? ret false!

SarcLy T ariLcgiiy, |unctiona|. COI’I’eCtness,

weak secrecy, ...

10/21

Safety Properties

no bad thing happens (finitely) 8

newBlk(c)
addBIk(b)

verifs 7"

addBIk(b)? ret ok!

verifyCh()? ret false!

SarcLy T ariLcgiiy, .UnCtlonal COI’I’GCU’IESS,
weak secrecy, ...

10/21

Robust Safety

- for a safety property

1/21

Robust Safety

- for a safety property
- no matter what we link against

1/21

Robust Safety

- for a safety property
- no matter what we link against

- our program behaves in a way

1/21

Robust Safety

- for a safety property
- no matter what we link against

- our program behaves in a way
« that respects that safety property

1/21

Robust Safety

- for a safety property (V1)
+ no matter what we link against ()
- our program behaves in a way (if)

- that respects that safety property (then
)

1/21

Robust Safety

- for a safety property (/)
+ no matter what we link against ()
- our program behaves in a way (if)

- that respects that safety property (then
)

1/21

Robustly Safe Compilation

Robust Safety Across Compilation

Mal|C|ous code (arbitrary)

newBlk(c)
addBlk(b)
verifyCh()

13/21

Robust Safety Across Compilation

Malicious code (arbitrary

newBlk(c) g
addBIk(b) A
verifyCh()

newBlk(c)
addBlk(b)
verifyCh() +

13/21

Robust Safety Across Compilation
M‘I siols code (arbitrary)

newBlk(c)
addBlk(b)
verifyCh()

newBlk(c)
addBlk(b)
verifyCh()

13/21

Robust Safety Across Compilation
Matisious code (arbitrary)

newBlk(c)
addBlk(b)
verifyCh()

verifyCh()? ret 0!

newBlk(c)
addBIk(b)

verifyCh() +

13/21

Robust Safety Across Compilation

Our code) Malicious code (arbitrary)

newBlk(c) g
addBlk(b) A
verifyCh()

ey <ty Ch ()7 ret 0! no direct access to chain

addBIk(b)

f

verifyCh() +

|

Compiled code Target Attacker!

13/21

Robust Safety Across Compilation

Our code) Malicious code (arbitrary)
9

newBlk(c)
addBlk(b)
verifyCh()

f

newBlk(c) verifyCh()? ret 0!

addBlk(b)
verifyCh() no block forging

Target Attacker!

13/21

Robust Safety Across Compilation

Malicious code (arbitrary)
9

newBlk(c)
addBlk(b)
verifyCh()

newBlk(c) verifyCh()? ret 0!

addBIk(b)
verifyCh() +

Compiled code Target Attacker!

Concerns

RSC so far:

+ attainable
« efficient

14/21

Concerns

RSC so far:

- attainable
. efficient
« possibly tricky to prove

14/21

Concerns

RSC so far:

- attainable
. efficient
« possibly tricky to prove

PF-RSC: equivalent definition

14/21

Concerns

RSC so far:

- attainable
. efficient
« possibly tricky to prove

PF-RSC: equivalent definition easier to prove
than RSC

14/21

Concerns

RSC so far:

- attainable
. efficient
« possibly tricky to prove

PF-RSC: equivalent definition easier to prove
than RSC

(equivalence to be proven, generally true)

14/21

Backtranslation Proof Technique

15/21

Backtranslation: Build A From A or

{

newBlk(c)
addBlk(b)
verifyCh()

newBlk(c)
addBlk(b)
verifyCh() +

Compiled code

|

16/21

Backtranslation: Build A From A or

newBlk(c)
addBlk(b)
verifyCh()

verifyCh()? ret 0!
addBlk(b)? ret ok!
verifyCh()? ret 0!

newBIlk(c)
addBIk(b)

verifyCh()

For Any Attacker!

Compiled code

|

16/21

Backtranslation: Build A From A or

m Exists Attacker!

newBlk(c)
addBlk(b)
verifyCh()

A

verifyCh()? ret 0!
addBlk(b)? ret ok!
verifyCh()? ret 0!

newBIlk(c)
addBIk(b)

verifyCh()

For Any Attacker!

Compiled code

|

16/21

Backtranslation: Build A From A or

Exists Attacker!

newBlk(c)
addBlk(b)
verifyCh()

********** TR Nt R “Same” trace

addBlk(b)? ret ok!

newBlk(c) verifyCh()? ret 0!

addBIk(b)

verifyCh()

For Any Attacker!

Compiled code

|

16/21

Backtranslation: Build A From A or

Exists Attacker!

newBlk(c)
addBlk(b)

T NG L BN “same” trace §
addBIk(b
verifyCh(

newBIlk(c)
addBlk(b)
verifyCh()

Compiled code For Any Attacker!

16/21

Safety as a Dual and PF-RSC

- Safety = nothing bad happens

17/21

Safety as a Dual and PF-RSC

- Safety = nothing bad happens
so if it were to happen it would finitely

17/21

Safety as a Dual and PF-RSC

- Safety = nothing bad happens
so if it were to happen it would finitely

- given any behaviour (A [[P]])

17/21

Safety as a Dual and PF-RSC

- Safety = nothing bad happens
so if it were to happen it would finitely

- given any behaviour (A [[P]])
- if we can replicate that ()

17/21

Safety as a Dual and PF-RSC

- Safety = nothing bad happens
so if it were to happen it would finitely

- given any behaviour (A [[P]])
- if we can replicate that ()
 then @ is not bad

17/21

Safety as a Dual and PF-RSC

- Safety = nothing bad happens
so if it were to happen it would finitely

- given any behaviour (A [[P]])
- if we can replicate that ()
« then @ is not bad

because « does not violate safety

(by) (for o = @)

17/21

Safety as a Dual and PF-RSC

- Safety = nothing bad happens
so if it were to happen it would finitely

- given any beha

- if we can replica

- then @ is not ba
because « does not violate safety
(by) (for o ~ @)

17/21

RSC and PF-RSC

18/21

RSC and PF-RSC

« <= must be proven (when needed)

18/21

RSC and PF-RSC

» < must be proven (when needed)
- proofis (generally) trivial

18/21

RSC and PF-RSC

« <= must be proven (when needed)

- proofis (generally) trivial

- sanity-check for cross-language safety
encoding (V! ~ M)

18/21

Take Home Message

What to make of this result?

19/21

Take Home Message

What to make of this result?

-« encode safety properties in the systems

19/21

Take Home Message

What to make of this result?

-« encode safety properties in the systems

- ensure the desired property follows from
the encoding

19/21

Take Home Message

What to make of this result?

-« encode safety properties in the systems

- ensure the desired property follows from
the encoding

- use our proof techniques to prove safety is
preserved

19/21

The paper (or the techreport) contains more:

« one RSC [];» from to capabilities
« one RSC [y~ from , to capabilities
« one RSC [],: from , to enclaves

- a backtranslation-based RSC proof (for []; =)
- two simulation-based RSC proofs (for []; . and [];/)

- aFAC |]]Lp from to capabilities
- a backtranslation-based FAC proof sketch (for [-], .)

- a comparison of efficiency and proof complexity between []; »
and [],

20/21

21/21

Backtranslation Example

——

(1) callfO(lm4:1,2-3:1)? M
—~—
2)ret (1—»4:1,2-(3,k):1,3~11:k)! 1)
3)callf2(1~55:1,2~(3,k):1,3~15:k)?
~——— —
(€))

21/21

Simulation-Based Proof

Set up cross-language relation g that:

+ knows trusted locations: 7 i o.

+ splits heaps (and target) into trusted and untrusted;

+ constitutes trusted by trusted locations (7 # o);
+ relates trusted heap to
+ protects every trusted location by a capability;

+ capability protecting a trusted location is not in attacker code,
nor in the untrusted heap

21/21

	Robust Safety
	Robustly Safe Compilation
	Backtranslation Proof Technique

