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Do Secure Compilers Exist?

Yes!

They rely on security mechanisms:

• enclaves
• capabilities
• types
• tagged memory

• ASLR
• CFI, SFI
• processes
• . . .
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Goal:

Define a formal criterion for secure compilation:

• attainable
• efficient (wrt existing ones)
• easy not too hard to prove
• with clear security guarantees
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Contributions

• RSC : known criterion, meets our goals

• a compiler preserves all safety properties
• three compilers J⋅K that attain RSC

• relying on memory isolation (via capabilities or
enclaves)
no runtime checks!

• two proof techniques for RSC
• simplifications on existing ones

• a comparison between RSC and FAC

part 1

part 2
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Robust Safety

• Robustness
• Behaviour
• Safety
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chain is always valid
NO: addBlk( b )? ret ok!

verifyCh()? ret false!
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Concerns

RSC so far:

• attainable
• efficient

• possibly tricky to prove

PF -RSC : equivalent definition easier to prove
than RSC

(equivalence to be proven, generally true)
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Safety as a Dual and PF -RSC

• Safety = nothing bad happens

so if it were to happen it would finitely

• given any behaviour (A [JPK] α
Ð→ )

• if we can replicate that (∃A.A [P]
α
Ð→ )

• then α is not bad
because α does not violate safety
(by RS of P) (for α ≈ α)

PF -RSC formally:
if ∀A.A [JPK] α

Ð→

then ∃A.A [P]
α
Ð→ and α ≈ α
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RSC and PF -RSC

RSC : given M ≈M

if M ⊢ P thenM ⊢ JPK
PF -RSC : if ∀A.A [JPK] α

Ð→

then ∃A.A [P]
α
Ð→ and α ≈ α

⇐⇒

• ⇐⇒ must be proven (when needed)
• proof is (generally) trivial
• sanity-check for cross-language safety
encoding (M ≈M)
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Take Home Message

What to make of this result?

• encode safety properties in the systems
• ensure the desired property follows from
the encoding

• use our proof techniques to prove safety is
preserved
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What Else?

The paper (or the techreport) contains more:
• one RSC J⋅KL

U

LP from untyped while to capabilities

• one RSC J⋅KL
τ

Lπ from typed, concurrent while to capabilities

• one RSC J⋅KL
τ

LI from typed, concurrent while to enclaves

• a backtranslation-based RSC proof (for J⋅KL
U

LP )
• two simulation-based RSC proofs (for J⋅KL

τ

Lπ and J⋅KL
τ

LI )

• a FAC
q
⋅
yLU

LP from untyped while to capabilities

• a backtranslation-based FAC proof sketch (for
q
⋅
yLU

LP )

• a comparison of efficiency and proof complexity between J⋅KL
U

LP

and
q
⋅
yLU

LP
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Questions?
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Backtranslation Example

(1) call f 0 (

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

1↦ 4 ∶ �,
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

2↦ 3 ∶ �)?

(2) ret (1↦ 4 ∶ �,2↦ ⟨3,k⟩ ∶ �,
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

3↦ 11 ∶ k)!

(3) call f 2 (1↦ 55 ∶ �
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

,2↦ ⟨3,k⟩ ∶ �,3↦ 15 ∶ k
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

)?

main(z) ↦

let x = new 4 in L ∶∶ ⟨x,1⟩ ;

let x = new 3 in L ∶∶ ⟨x,2⟩ ;

call f 0;

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(1)

let x =!L(2) in L ∶∶ ⟨x,3⟩ ; ] (2)
let x = new L(1) in x ∶= 55;

let x = new L(3) in x ∶= 15;

call f 2;

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3)
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Simulation-Based Proof

Set up cross-language relation ≋β that:

• knows trusted locations: τ ⊬ ○.

• splits heaps (source and target) into trusted and untrusted;

• constitutes trusted heap by trusted locations (τ ⊬ ○);

• relates trusted heap to trusted heap

• protects every trusted location by a capability;

• capability protecting a trusted location is not in attacker code,
nor in the untrusted heap
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