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What is Secure Compilation?

Enable source-level security reasoning

y = &mut
P1 P2 c Pn

1/21




Do Secure Compilers Exist?

2/21



Do Secure Compilers Exist?

Yes!

2/21



Do Secure Compilers Exist?

Yes!

They rely on security mechanismes:

« enclaves - ASLR
- capabilities - CFI, SFI
- types * processes

tagged memory
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Define a formal criterion for secure compilation:

attainable

efficient (wrt existing ones)
« easy not too hard to prove

with clear security guarantees
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Robust Safety
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Robust Safety Across Compilation

Our code ) Malicious code (arbitrary)

newBlk(c) g
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verifyCh()

ey <ty Ch ()7 ret 0! no direct access to chain

addBIk(b)

f
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Malicious code (arbitrary)
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Concerns

RSC so far:

- attainable
. efficient
« possibly tricky to prove

PF-RSC: equivalent definition easier to prove
than RSC

(equivalence to be proven, generally true)
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RSC and PF-RSC

« <= must be proven (when needed)

- proofis (generally) trivial

- sanity-check for cross-language safety
encoding (V! ~ M)
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Take Home Message

What to make of this result?

-« encode safety properties in the systems

- ensure the desired property follows from
the encoding

- use our proof techniques to prove safety is
preserved
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The paper (or the techreport) contains more:

« one RSC [];» from to capabilities
« one RSC [y~ from , to capabilities
« one RSC [],: from , to enclaves

- a backtranslation-based RSC proof (for []; =)
- two simulation-based RSC proofs (for []; . and [];/)

- aFAC | ]]Lp from to capabilities
- a backtranslation-based FAC proof sketch (for [ -], .)

- a comparison of efficiency and proof complexity between [ ]; »
and [ ],
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Backtranslation Example

——

(1) callfO(lm4:1,2-3:1)? M
—~—
2)ret (1—»4:1,2-(3,k):1,3~11:k)! 1)
3)callf2(1~55:1,2~(3,k):1,3~15:k)?
~——— —
(€))
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Simulation-Based Proof

Set up cross-language relation g that:

+ knows trusted locations: 7 i o.

+ splits heaps ( and target) into trusted and untrusted;

+ constitutes trusted by trusted locations (7 # o);
+ relates trusted heap to
+ protects every trusted location by a capability;

+ capability protecting a trusted location is not in attacker code,
nor in the untrusted heap
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