
Robustly Safe Compilation

Marco Patrignani1,2 Deepak Garg3

10th April 2019

1 2

3

0/21

What is Secure Compilation?

P1 P2
. . . Pn

JP1K JP2K . . . JPnK

Rust
Asm

P P′

1/21

What is Secure Compilation?

P1 P2
. . . Pn

JP1K JP2K . . . JPnK

Rust
Asm

P P′

y = &mut

1/21

What is Secure Compilation?

P1 P2
. . . Pn

JP1K JP2K . . . JPnK

Rust
Asm

P P′

y = &mut

used linearly

1/21

What is Secure Compilation?

P1 P2
. . . Pn

JP1K JP2K . . . JPnK

Rust
Asm

P P′

y = &mut

used linearly

Jy = &mutK

1/21

What is Secure Compilation?

P1 P2
. . . Pn

JP1K JP2K . . . JPnK

Rust
Asm

P P′

y = &mut

Jy = &mutK

violate linearity
1/21

What is Secure Compilation?

P1 P2
. . . Pn

JP1K JP2K . . . JPnK

Rust
Asm

P P′

y = &mut

Jy = &mutK

Preserve the security properties of

1/21

What is Secure Compilation?

P1 P2
. . . Pn

JP1K JP2K . . . JPnK

Rust
Asm

P P′

y = &mut

Jy = &mutK

Preserve the security properties of

when interoperating with
1/21

What is Secure Compilation?

P1 P2
. . . Pn

JP1K JP2K . . . JPnK

Rust
Asm

P P′

y = &mut

Jy = &mutK

Preserve the security properties of

when interoperating with

PL sec

(e.g., no s
ide chann

els)

1/21

What is Secure Compilation?

P1 P2
. . . Pn

JP1K JP2K . . . JPnK

Rust
Asm

y = &mut

Jy = &mutK

Correct compilation

P P′

1/21

What is Secure Compilation?

P1 P2
. . . Pn

JP1K JP2K . . . JPnK

Rust
Asm

y = &mut

Jy = &mutK

Correct compilation

P P′

respect linearity
1/21

What is Secure Compilation?

P1 P2
. . . Pn

JP1K JP2K . . . JPnK

Rust
Asm

y = &mut

Jy = &mutK

Secure compilation

P P′

1/21

What is Secure Compilation?

P1 P2
. . . Pn

JP1K JP2K . . . JPnK

Rust
Asm

y = &mut

Jy = &mutK

P P′

Enable source-level security reasoning

1/21

Do Secure Compilers Exist?

Yes!

They rely on security mechanisms:

• enclaves
• capabilities
• types
• tagged memory

• ASLR
• CFI, SFI
• processes
• . . .

2/21

Do Secure Compilers Exist?

Yes!

They rely on security mechanisms:

• enclaves
• capabilities
• types
• tagged memory

• ASLR
• CFI, SFI
• processes
• . . .

2/21

Do Secure Compilers Exist?

Yes!

They rely on security mechanisms:

• enclaves
• capabilities
• types
• tagged memory

• ASLR
• CFI, SFI
• processes
• . . .

2/21

But...

Some secure compilers:

• P1 ∶ lack formal proof of their security
guarantees

• P2 ∶ prove preservation of ad-hoc security
properties

• P3 ∶ inefficient

comple
x

proofs

unclear h
ow to

generalise

dictated b
y

existing d
efinitions

3/21

But...

Some secure compilers:

• P1 ∶ lack formal proof of their security
guarantees

• P2 ∶ prove preservation of ad-hoc security
properties

• P3 ∶ inefficient

comple
x

proofs

unclear h
ow to

generalise

dictated b
y

existing d
efinitions

3/21

But...

Some secure compilers:

• P1 ∶ lack formal proof of their security
guarantees

• P2 ∶ prove preservation of ad-hoc security
properties

• P3 ∶ inefficient

comple
x

proofs

unclear h
ow to

generalise

dictated b
y

existing d
efinitions

3/21

But...

Some secure compilers:

• P1 ∶ lack formal proof of their security
guarantees

• P2 ∶ prove preservation of ad-hoc security
properties

• P3 ∶ inefficient

comple
x

proofs

unclear h
ow to

generalise

dictated b
y

existing d
efinitions

3/21

Goal:

Define a formal criterion for secure compilation:

• attainable
• efficient (wrt existing ones)
• easy not too hard to prove
• with clear security guarantees

4/21

Goal:

Define a formal criterion for secure compilation:

• attainable
• efficient (wrt existing ones)
• easy not too hard to prove

• with clear security guarantees

4/21

Goal:

Define a formal criterion for secure compilation:

• attainable
• efficient (wrt existing ones)
• easy not too hard to prove
• with clear security guarantees

4/21

Contributions

• RSC : known criterion, meets our goals

• a compiler preserves all safety properties
• three compilers J⋅K that attain RSC

• relying on memory isolation (via capabilities or
enclaves)
no runtime checks!

• two proof techniques for RSC
• simplifications on existing ones

• a comparison between RSC and FAC

part 1

part 2

5/21

Contributions

• RSC : known criterion, meets our goals
• a compiler preserves all safety properties

• three compilers J⋅K that attain RSC
• relying on memory isolation (via capabilities or
enclaves)
no runtime checks!

• two proof techniques for RSC
• simplifications on existing ones

• a comparison between RSC and FAC

part 1

part 2

5/21

Contributions

• RSC : known criterion, meets our goals
• a compiler preserves all safety properties

• three compilers J⋅K that attain RSC

• relying on memory isolation (via capabilities or
enclaves)
no runtime checks!

• two proof techniques for RSC
• simplifications on existing ones

• a comparison between RSC and FAC

part 1

part 2

5/21

Contributions

• RSC : known criterion, meets our goals
• a compiler preserves all safety properties

• three compilers J⋅K that attain RSC
• relying on memory isolation (via capabilities or
enclaves)

no runtime checks!
• two proof techniques for RSC

• simplifications on existing ones
• a comparison between RSC and FAC

part 1

part 2

5/21

Contributions

• RSC : known criterion, meets our goals
• a compiler preserves all safety properties

• three compilers J⋅K that attain RSC
• relying on memory isolation (via capabilities or
enclaves)
no runtime checks!

• two proof techniques for RSC
• simplifications on existing ones

• a comparison between RSC and FAC

part 1

part 2

5/21

Contributions

• RSC : known criterion, meets our goals
• a compiler preserves all safety properties

• three compilers J⋅K that attain RSC
• relying on memory isolation (via capabilities or
enclaves)
no runtime checks!

• two proof techniques for RSC

• simplifications on existing ones
• a comparison between RSC and FAC

part 1

part 2

5/21

Contributions

• RSC : known criterion, meets our goals
• a compiler preserves all safety properties

• three compilers J⋅K that attain RSC
• relying on memory isolation (via capabilities or
enclaves)
no runtime checks!

• two proof techniques for RSC
• simplifications on existing ones

• a comparison between RSC and FAC

part 1

part 2

5/21

Contributions

• RSC : known criterion, meets our goals
• a compiler preserves all safety properties

• three compilers J⋅K that attain RSC
• relying on memory isolation (via capabilities or
enclaves)
no runtime checks!

• two proof techniques for RSC
• simplifications on existing ones

• a comparison between RSC and FAC

part 1

part 2

5/21

Contributions

• RSC : known criterion, meets our goals
• a compiler preserves all safety properties

• three compilers J⋅K that attain RSC
• relying on memory isolation (via capabilities or
enclaves)
no runtime checks!

• two proof techniques for RSC
• simplifications on existing ones

• a comparison between RSC and FAC

part 1

part 2

5/21

Contributions

• RSC : known criterion, meets our goals
• a compiler preserves all safety properties

• three compilers J⋅K that attain RSC
• relying on memory isolation (via capabilities or
enclaves)
no runtime checks!

• two proof techniques for RSC
• simplifications on existing ones

• a comparison between RSC and FAC

part 1

part 2

5/21

Talk Roadmap

Robust Safety

Robustly Safe Compilation

Backtranslation Proof Technique

6/21

Robust Safety

• Robustness
• Behaviour
• Safety

7/21

Robustness

newBlk(c)

addBlk(b)

verifyCh()

Our code

8/21

Robustness

newBlk(c)

addBlk(b)

verifyCh()

Our code

Our imports

lib1 lib2 lib3
abs(c) printf(s) main(args)+

8/21

Robustness

A
newBlk(c)

addBlk(b)

verifyCh()

Our code

+

Our imports

lib1 lib2 lib3
abs(c) printf(s) main(args)

Malicious code (arbitrary)

8/21

Robustness

A
newBlk(c)

addBlk(b)

verifyCh()

Our code

+

Our imports

lib1 lib2 lib3
abs(c) printf(s) main(args)

Malicious code (arbitrary)

code-a
ttacker

interop
eration

formal
ly:

∀A. A
[P]

8/21

Program Behaviour

A
newBlk(c)

addBlk(b)

verifyCh()

Our code

+
lib1 lib2 lib3

Malicious code (arbitrary)

9/21

Program Behaviour

A
newBlk(c)

addBlk(b)

verifyCh()

Our code

+
lib1 lib2 lib3

Malicious code (arbitrary)
verifyCh()?

ret true!

9/21

Program Behaviour

A
newBlk(c)

addBlk(b)

verifyCh()

Our code

+
lib1 lib2 lib3

Malicious code (arbitrary)
verifyCh()?

ret true!

Observable
actions α?, α!

9/21

Program Behaviour

A
newBlk(c)

addBlk(b)

verifyCh()

Our code

+
lib1 lib2 lib3

Malicious code (arbitrary)
verifyCh()?

ret true!

Observable
actions α?, α!

Code behaviour =
sequence of actions

α
def
= α1?, α2!, . . .

9/21

Program Behaviour

A
newBlk(c)

addBlk(b)

verifyCh()

Our code

+
lib1 lib2 lib3

Malicious code (arbitrary)

Code behaviour =
sequence of actions

α
def
= α1?, α2!, . . .

verifyCh()? ret true!

9/21

Program Behaviour

A
newBlk(c)

addBlk(b)

verifyCh()

Our code

+
lib1 lib2 lib3

Malicious code (arbitrary)

Code behaviour =
sequence of actions

α
def
= α1?, α2!, . . .

verifyCh()? ret true!

addBlk(b)? ret ok!

verifyCh()? ret true!

9/21

Program Behaviour

A
newBlk(c)

addBlk(b)

verifyCh()

Our code

+
lib1 lib2 lib3

Malicious code (arbitrary)

Code behaviour =
sequence of actions

α
def
= α1?, α2!, . . .

verifyCh()? ret true!

addBlk(b)? ret ok!

verifyCh()? ret true!

code beh
aviour for

mally

A [P]
α
Ð→ _

9/21

Safety Properties

A
newBlk(c)

addBlk(b)

verifyCh() +
lib1 lib2 lib3

verifyCh()? ret true!

addBlk(b)? ret ok!

verifyCh()? ret true!

no bad thing happens (finitely)

safety = integrity, functional correctness,
weak secrecy, . . .

e.g.,
chain is always valid
NO: addBlk(b)? ret ok!

verifyCh()? ret false!

10/21

Safety Properties

A
newBlk(c)

addBlk(b)

verifyCh() +
lib1 lib2 lib3

verifyCh()? ret true!

addBlk(b)? ret ok!

verifyCh()? ret true!

no bad thing happens (finitely)

safety = integrity, functional correctness,
weak secrecy, . . .

e.g.,
chain is always valid
NO: addBlk(b)? ret ok!

verifyCh()? ret false!

10/21

Safety Properties

A
newBlk(c)

addBlk(b)

verifyCh() +
lib1 lib2 lib3

verifyCh()? ret true!

addBlk(b)? ret ok!

verifyCh()? ret true!

no bad thing happens (finitely)

safety = integrity, functional correctness,
weak secrecy, . . .

e.g.,
chain is always valid
NO: addBlk(b)? ret ok!

verifyCh()? ret false!

10/21

Safety Properties

A
newBlk(c)

addBlk(b)

verifyCh() +
lib1 lib2 lib3

verifyCh()? ret true!

addBlk(b)? ret ok!

verifyCh()? ret true!

no bad thing happens (finitely)

safety = integrity, functional correctness,
weak secrecy, . . .

e.g.,
chain is always valid
NO: addBlk(b)? ret ok!

verifyCh()? ret false!

M =safety property encoding

10/21

Robust Safety

• for a safety property

(M)
• no matter what we link against

(∀A, α)

• our program behaves in a way

(if A [P]
α
Ð→)

• that respects that safety property

(then
M ⊢ α)

robust sa
fety forma

lly

M ⊢ P

11/21

Robust Safety

• for a safety property

(M)

• no matter what we link against

(∀A, α)
• our program behaves in a way

(if A [P]
α
Ð→)

• that respects that safety property

(then
M ⊢ α)

robust sa
fety forma

lly

M ⊢ P

11/21

Robust Safety

• for a safety property

(M)

• no matter what we link against

(∀A, α)

• our program behaves in a way

(if A [P]
α
Ð→)

• that respects that safety property

(then
M ⊢ α)

robust sa
fety forma

lly

M ⊢ P

11/21

Robust Safety

• for a safety property

(M)

• no matter what we link against

(∀A, α)

• our program behaves in a way

(if A [P]
α
Ð→)

• that respects that safety property

(then
M ⊢ α)

robust sa
fety forma

lly

M ⊢ P

11/21

Robust Safety

• for a safety property (M)
• no matter what we link against (∀A, α)
• our program behaves in a way (if A [P]

α
Ð→)

• that respects that safety property (then
M ⊢ α)

robust sa
fety forma

lly

M ⊢ P

11/21

Robust Safety

• for a safety property (M)
• no matter what we link against (∀A, α)
• our program behaves in a way (if A [P]

α
Ð→)

• that respects that safety property (then
M ⊢ α)

robust sa
fety forma

lly

M ⊢ P

11/21

Robustly Safe Compilation

12/21

Robust Safety Across Compilation

A
newBlk(c)

addBlk(b)

verifyCh()

Our code

+
lib1 lib2 lib3

Malicious code (arbitrary)

13/21

Robust Safety Across Compilation

A

A

newBlk(c)

addBlk(b)

verifyCh()

Our code

+
lib1 lib2 lib3

Malicious code (arbitrary)

JnewBlk(c)K
JaddBlk(b)K
JverifyCh()K

Compiled code

+
code1 code2 code3

Target Attacker!

printf(s)breakCh() forgeBlk()

13/21

Robust Safety Across Compilation

A

A

newBlk(c)

addBlk(b)

verifyCh()

Our code

+
lib1 lib2 lib3

Malicious code (arbitrary)

JnewBlk(c)K
JaddBlk(b)K
JverifyCh()K

Compiled code

+
code1 code2 code3

Target Attacker!

verifyCh()? ret true!

assume safety(push verification here)

13/21

Robust Safety Across Compilation

A

A

newBlk(c)

addBlk(b)

verifyCh()

Our code

+
lib1 lib2 lib3

Malicious code (arbitrary)

JnewBlk(c)K
JaddBlk(b)K
JverifyCh()K

Compiled code

+
code1 code2 code3

Target Attacker!

verifyCh()? ret true!

assume safety(push verification here)

verifyCh()? ret 0!

prove safe
ty

13/21

Robust Safety Across Compilation

A

A

newBlk(c)

addBlk(b)

verifyCh()

Our code

+
lib1 lib2 lib3

Malicious code (arbitrary)

JnewBlk(c)K
JaddBlk(b)K
JverifyCh()K

Compiled code

+
code1 code2 code3

Target Attacker!

verifyCh()? ret true!

verifyCh()? ret 0! no direct access to chain

13/21

Robust Safety Across Compilation

A

A

newBlk(c)

addBlk(b)

verifyCh()

Our code

+
lib1 lib2 lib3

Malicious code (arbitrary)

JnewBlk(c)K
JaddBlk(b)K
JverifyCh()K

Compiled code

+
code1 code2 code3

Target Attacker!

verifyCh()? ret true!

verifyCh()? ret 0!

no block forging

13/21

Robust Safety Across Compilation

A

A

newBlk(c)

addBlk(b)

verifyCh()

Our code

+
lib1 lib2 lib3

Malicious code (arbitrary)

JnewBlk(c)K
JaddBlk(b)K
JverifyCh()K

Compiled code

+
code1 code2 code3

Target Attacker!

verifyCh()? ret true!

verifyCh()? ret 0!

RSC formally:
given M ≈M

if M ⊢ P thenM ⊢ JPK

13/21

Concerns

RSC so far:

• attainable
• efficient

• possibly tricky to prove

PF -RSC : equivalent definition easier to prove
than RSC

(equivalence to be proven, generally true)

14/21

Concerns

RSC so far:

• attainable
• efficient
• possibly tricky to prove

PF -RSC : equivalent definition easier to prove
than RSC

(equivalence to be proven, generally true)

14/21

Concerns

RSC so far:

• attainable
• efficient
• possibly tricky to prove

PF -RSC : equivalent definition

easier to prove
than RSC

(equivalence to be proven, generally true)

14/21

Concerns

RSC so far:

• attainable
• efficient
• possibly tricky to prove

PF -RSC : equivalent definition easier to prove
than RSC

(equivalence to be proven, generally true)

14/21

Concerns

RSC so far:

• attainable
• efficient
• possibly tricky to prove

PF -RSC : equivalent definition easier to prove
than RSC

(equivalence to be proven, generally true)

14/21

Backtranslation Proof Technique

15/21

Backtranslation: Build A FromA or α

newBlk(c)

addBlk(b)

verifyCh()

HP: P is RS

+
lib1 lib2 lib3

JnewBlk(c)K
JaddBlk(b)K
JverifyCh()K

Compiled code

+
code1 code2 code3

16/21

Backtranslation: Build A FromA or α

newBlk(c)

addBlk(b)

verifyCh()

HP: P is RS

+
lib1 lib2 lib3

JnewBlk(c)K
JaddBlk(b)K
JverifyCh()K

Compiled code

+
code1 code2 code3∀ A

For Any Attacker!

verifyCh()? ret 0!

addBlk(b)? ret ok!

verifyCh()? ret 0!

16/21

Backtranslation: Build A FromA or α

newBlk(c)

addBlk(b)

verifyCh()

HP: P is RS

+
lib1 lib2 lib3

JnewBlk(c)K
JaddBlk(b)K
JverifyCh()K

Compiled code

+
code1 code2 code3∀ A

For Any Attacker!

verifyCh()? ret 0!

addBlk(b)? ret ok!

verifyCh()? ret 0!

verifyCh()? ret true!

addBlk(b)? ret ok!

verifyCh()? ret true!
∃A

Exists Attacker!

16/21

Backtranslation: Build A FromA or α

newBlk(c)

addBlk(b)

verifyCh()

HP: P is RS

+
lib1 lib2 lib3

JnewBlk(c)K
JaddBlk(b)K
JverifyCh()K

Compiled code

+
code1 code2 code3∀ A

For Any Attacker!

verifyCh()? ret 0!

addBlk(b)? ret ok!

verifyCh()? ret 0!

verifyCh()? ret true!

addBlk(b)? ret ok!

verifyCh()? ret true!
∃A

Exists Attacker!

“same” trace

16/21

Backtranslation: Build A FromA or α

newBlk(c)

addBlk(b)

verifyCh()

HP: P is RS

+
lib1 lib2 lib3

JnewBlk(c)K
JaddBlk(b)K
JverifyCh()K

Compiled code

+
code1 code2 code3∀ A

For Any Attacker!

verifyCh()? ret 0!

addBlk(b)? ret ok!

verifyCh()? ret 0!

verifyCh()? ret true!

addBlk(b)? ret ok!

verifyCh()? ret true!
∃A

Exists Attacker!

“same” trace
α must be

safe

by HP

(all α are
safe)

16/21

Safety as a Dual and PF -RSC

• Safety = nothing bad happens

so if it were to happen it would finitely

• given any behaviour (A [JPK] α
Ð→)

• if we can replicate that (∃A.A [P]
α
Ð→)

• then α is not bad
because α does not violate safety
(by RS of P) (for α ≈ α)

PF -RSC formally:
if ∀A.A [JPK] α

Ð→

then ∃A.A [P]
α
Ð→ and α ≈ α

17/21

Safety as a Dual and PF -RSC

• Safety = nothing bad happens
so if it were to happen it would finitely

• given any behaviour (A [JPK] α
Ð→)

• if we can replicate that (∃A.A [P]
α
Ð→)

• then α is not bad
because α does not violate safety
(by RS of P) (for α ≈ α)

PF -RSC formally:
if ∀A.A [JPK] α

Ð→

then ∃A.A [P]
α
Ð→ and α ≈ α

17/21

Safety as a Dual and PF -RSC

• Safety = nothing bad happens
so if it were to happen it would finitely

• given any behaviour (A [JPK] α
Ð→)

• if we can replicate that (∃A.A [P]
α
Ð→)

• then α is not bad
because α does not violate safety
(by RS of P) (for α ≈ α)

PF -RSC formally:
if ∀A.A [JPK] α

Ð→

then ∃A.A [P]
α
Ð→ and α ≈ α

17/21

Safety as a Dual and PF -RSC

• Safety = nothing bad happens
so if it were to happen it would finitely

• given any behaviour (A [JPK] α
Ð→)

• if we can replicate that (∃A.A [P]
α
Ð→)

• then α is not bad
because α does not violate safety
(by RS of P) (for α ≈ α)

PF -RSC formally:
if ∀A.A [JPK] α

Ð→

then ∃A.A [P]
α
Ð→ and α ≈ α

17/21

Safety as a Dual and PF -RSC

• Safety = nothing bad happens
so if it were to happen it would finitely

• given any behaviour (A [JPK] α
Ð→)

• if we can replicate that (∃A.A [P]
α
Ð→)

• then α is not bad

because α does not violate safety
(by RS of P) (for α ≈ α)

PF -RSC formally:
if ∀A.A [JPK] α

Ð→

then ∃A.A [P]
α
Ð→ and α ≈ α

17/21

Safety as a Dual and PF -RSC

• Safety = nothing bad happens
so if it were to happen it would finitely

• given any behaviour (A [JPK] α
Ð→)

• if we can replicate that (∃A.A [P]
α
Ð→)

• then α is not bad
because α does not violate safety
(by RS of P) (for α ≈ α)

PF -RSC formally:
if ∀A.A [JPK] α

Ð→

then ∃A.A [P]
α
Ð→ and α ≈ α

17/21

Safety as a Dual and PF -RSC

• Safety = nothing bad happens
so if it were to happen it would finitely

• given any behaviour (A [JPK] α
Ð→)

• if we can replicate that (∃A.A [P]
α
Ð→)

• then α is not bad
because α does not violate safety
(by RS of P) (for α ≈ α)

PF -RSC formally:
if ∀A.A [JPK] α

Ð→

then ∃A.A [P]
α
Ð→ and α ≈ α

17/21

RSC and PF -RSC

RSC : given M ≈M

if M ⊢ P thenM ⊢ JPK
PF -RSC : if ∀A.A [JPK] α

Ð→

then ∃A.A [P]
α
Ð→ and α ≈ α

⇐⇒

• ⇐⇒ must be proven (when needed)
• proof is (generally) trivial
• sanity-check for cross-language safety
encoding (M ≈M)

18/21

RSC and PF -RSC

RSC : given M ≈M

if M ⊢ P thenM ⊢ JPK
PF -RSC : if ∀A.A [JPK] α

Ð→

then ∃A.A [P]
α
Ð→ and α ≈ α

⇐⇒

• ⇐⇒ must be proven (when needed)

• proof is (generally) trivial
• sanity-check for cross-language safety
encoding (M ≈M)

18/21

RSC and PF -RSC

RSC : given M ≈M

if M ⊢ P thenM ⊢ JPK
PF -RSC : if ∀A.A [JPK] α

Ð→

then ∃A.A [P]
α
Ð→ and α ≈ α

⇐⇒

• ⇐⇒ must be proven (when needed)
• proof is (generally) trivial

• sanity-check for cross-language safety
encoding (M ≈M)

18/21

RSC and PF -RSC

RSC : given M ≈M

if M ⊢ P thenM ⊢ JPK
PF -RSC : if ∀A.A [JPK] α

Ð→

then ∃A.A [P]
α
Ð→ and α ≈ α

⇐⇒

• ⇐⇒ must be proven (when needed)
• proof is (generally) trivial
• sanity-check for cross-language safety
encoding (M ≈M)

18/21

Take Home Message

What to make of this result?

• encode safety properties in the systems
• ensure the desired property follows from
the encoding

• use our proof techniques to prove safety is
preserved

19/21

Take Home Message

What to make of this result?

• encode safety properties in the systems

• ensure the desired property follows from
the encoding

• use our proof techniques to prove safety is
preserved

19/21

Take Home Message

What to make of this result?

• encode safety properties in the systems
• ensure the desired property follows from
the encoding

• use our proof techniques to prove safety is
preserved

19/21

Take Home Message

What to make of this result?

• encode safety properties in the systems
• ensure the desired property follows from
the encoding

• use our proof techniques to prove safety is
preserved

19/21

What Else?

The paper (or the techreport) contains more:
• one RSC J⋅KL

U

LP from untyped while to capabilities

• one RSC J⋅KL
τ

Lπ from typed, concurrent while to capabilities

• one RSC J⋅KL
τ

LI from typed, concurrent while to enclaves

• a backtranslation-based RSC proof (for J⋅KL
U

LP)
• two simulation-based RSC proofs (for J⋅KL

τ

Lπ and J⋅KL
τ

LI)

• a FAC
q
⋅
yLU

LP from untyped while to capabilities

• a backtranslation-based FAC proof sketch (for
q
⋅
yLU

LP)

• a comparison of efficiency and proof complexity between J⋅KL
U

LP

and
q
⋅
yLU

LP

20/21

Questions?

21/21

Backtranslation Example

(1) call f 0 (

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

1↦ 4 ∶ �,
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

2↦ 3 ∶ �)?

(2) ret (1↦ 4 ∶ �,2↦ ⟨3,k⟩ ∶ �,
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

3↦ 11 ∶ k)!

(3) call f 2 (1↦ 55 ∶ �
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

,2↦ ⟨3,k⟩ ∶ �,3↦ 15 ∶ k
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

)?

main(z) ↦

let x = new 4 in L ∶∶ ⟨x,1⟩ ;

let x = new 3 in L ∶∶ ⟨x,2⟩ ;

call f 0;

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(1)

let x =!L(2) in L ∶∶ ⟨x,3⟩ ;] (2)
let x = new L(1) in x ∶= 55;

let x = new L(3) in x ∶= 15;

call f 2;

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3)

21/21

Simulation-Based Proof

Set up cross-language relation ≋β that:

• knows trusted locations: τ ⊬ ○.

• splits heaps (source and target) into trusted and untrusted;

• constitutes trusted heap by trusted locations (τ ⊬ ○);

• relates trusted heap to trusted heap

• protects every trusted location by a capability;

• capability protecting a trusted location is not in attacker code,
nor in the untrusted heap

21/21

	Robust Safety
	Robustly Safe Compilation
	Backtranslation Proof Technique

