
Robust Safety for Move

Marco Patrignani1 Sam Blackshear2

1 2

Interested? We’re hiring!



Robust Safety for Move

Marco Patrignani1 Sam Blackshear2

1 2

Interested? We’re hiring!



The Move Language



Smart contract safety is an existential 
threat to broader crypto adoption

● 100M+ hacks are routine
● No reason to expect that future smart 

contract developer will do better…
● Safer SC languages, advanced 

testing/analysis/verification tools are 
the only way to grow the dev 
community in a sustainable way



Smart contracts are unconventional programs

● Smart contracts really only do three things:
○ Define new asset types
○ Read, write, and transfer assets
○ Check access control policies

Thus, need language support for
● Safe abstractions for custom assets, ownership, access control
● Strong isolation–writing safe open-source code that interacts 

directly with code written by motivated attackers
Not common tasks in conventional languages
Not well-supported by existing SC languages



In other smart contract langs, you typically cannot:

● Pass asset as an argument to a function, or return one from a function
● Store an asset in a data structure
● Let a callee function temporarily borrow an asset
● Declare an asset type in contract 1 that is used by contract 2
● Take an asset outside of the contract that created it

○ “trapped” forever in a hash table inside its defining contract

Assets, ownership are the fundamental building blocks of smart contracts, 
but there’s no vocabulary for describing them!

Move is the first smart contract language to tackle this problem



“If you give me a coin, I will give you a car title”

“If you show me your title and pay a fee, I will give you 

a car registration”

CarTitle, CarRegistration, Coin are user-defined types declared in different modules. 

Can flow across trust boundaries without losing integrity

Assets and ownership encoded via substructural 
types



Destruction“Double-spending”Duplication

Protection against:

Ensures that digital assets behave like physical ones

Type system prevents misuse of asset values



Move design optimizes for safety + predictability

● No dynamic dispatch (no re-entrancy)

● No mixing of aliasing and mutability (like Rust)

● Type/memory/resource safety enforced by bytecode verifier

● Strong isolation aka “robust safety” by default

○ See upcoming CSF ‘23 paper

● Mathematically ill-defined ops (e.g., int overflow) abort: “SafeMath by default”

● Co-developed with the Move Prover formal verification tool (see CAV’20, TACAS ‘21 papers)



Contributions of this Work



Contributions

• formalise Robust Safety (RS) for Move
• identify the prerequisites for RS

• prove all Move programs attain RS

• implement and evaluate missing tool(s) for
RS prerequisites

next

then

paper

8/21



Contributions

• formalise Robust Safety (RS) for Move
• identify the prerequisites for RS

• prove all Move programs attain RS

• implement and evaluate missing tool(s) for
RS prerequisites

next

then

paper

8/21



Contributions

• formalise Robust Safety (RS) for Move
• identify the prerequisites for RS

• prove all Move programs attain RS

• implement and evaluate missing tool(s) for
RS prerequisites

next

then

paper

8/21



Contributions

• formalise Robust Safety (RS) for Move
• identify the prerequisites for RS

• prove all Move programs attain RS

• implement and evaluate missing tool(s) for
RS prerequisites

next

then

paper

8/21



Contributions

• formalise Robust Safety (RS) for Move
• identify the prerequisites for RS

• prove all Move programs attain RS

• implement and evaluate missing tool(s) for
RS prerequisites

next

then

paper

8/21



Contributions

• formalise Robust Safety (RS) for Move
• identify the prerequisites for RS

• prove all Move programs attain RS

• implement and evaluate missing tool(s) for
RS prerequisites

next

then

paper

8/21



Robust Safety (for Move)



What is Robust Safety?

Robust Safety:
maintaining key safety properties even
when interacting with arbitrary un-
trusted code

Bengtson et al. TOPLAS’11, Gordon& Jeffrey JCS’03, Swasey et al. OOPSLA’17 and many more

• key safety properties: programmer-inserted
invariants

• arbitrary untrusted code: active attacker
(with code-like capabilities)

9/21



What is Robust Safety?

Robust Safety:
maintaining key safety properties even
when interacting with arbitrary un-
trusted code

Bengtson et al. TOPLAS’11, Gordon& Jeffrey JCS’03, Swasey et al. OOPSLA’17 and many more

• key safety properties: programmer-inserted
invariants

• arbitrary untrusted code: active attacker
(with code-like capabilities)

9/21



What is Robust Safety?

Robust Safety:
maintaining key safety properties even
when interacting with arbitrary un-
trusted code

Bengtson et al. TOPLAS’11, Gordon& Jeffrey JCS’03, Swasey et al. OOPSLA’17 and many more

• key safety properties: programmer-inserted
invariants

• arbitrary untrusted code: active attacker
(with code-like capabilities) 9/21



A (massaged!) Move Example

1 module NextCoin {
2 struct Coin has key { value: u64 }
3 struct Info has key { tot_supply: u64 }
4

5 spec { ∀c: Coin, info.tot_supply = sum(c.value) }
6

7 public fun mint(... , value: u64): Coin {
8 let info = borrow_global_mut< Info> (...);
9 info.tot_supply = info.tot_supply + value;

10 Coin { value } // invariant broken and restored
11 }
12

13 public fun value_mut(coin: &mut Coin): &mut u64 {
14 &mut coin.value // not robustly safe!
15 }
16 }

10/21



Threat Model

• trusted code: the code with invariants
(NextCoin)

• attackers: active, write code (e.g., other
smart contracts) and interact with the
trusted code to break safety

• safety: specified by the
programmer-inserted invariants (spec)

11/21



Threat Model

• trusted code: the code with invariants
(NextCoin)

• attackers: active, write code (e.g., other
smart contracts) and interact with the
trusted code to break safety

• safety: specified by the
programmer-inserted invariants (spec)

11/21



Threat Model

• trusted code: the code with invariants
(NextCoin)

• attackers: active, write code (e.g., other
smart contracts) and interact with the
trusted code to break safety

• safety: specified by the
programmer-inserted invariants (spec)

11/21



Local Invariant Verification

• spec holds for module NextCoin locally

verification done by
• Move bytecode verifier Blackshear et al. Whitepaper’19

• Move Prover Zhong et al. CAV’20

• (when attackers are not considered)
1 spec { ∀c: Coin, info.tot_supply = sum(c.value) }
2

3 public fun mint(... , value: u64): Coin {
4 let info = borrow_global_mut< Info> (...);
5 info.tot_supply = info.tot_supply + value;
6 Coin { value } // invariant broken and restored
7 }

12/21



Local Invariant Verification

• spec holds for module NextCoin locally
verification done by

• Move bytecode verifier Blackshear et al. Whitepaper’19

• Move Prover Zhong et al. CAV’20

• (when attackers are not considered)
1 spec { ∀c: Coin, info.tot_supply = sum(c.value) }
2

3 public fun mint(... , value: u64): Coin {
4 let info = borrow_global_mut< Info> (...);
5 info.tot_supply = info.tot_supply + value;
6 Coin { value } // invariant broken and restored
7 }

12/21



Local Invariant Verification

• spec holds for module NextCoin locally
verification done by

• Move bytecode verifier Blackshear et al. Whitepaper’19

• Move Prover Zhong et al. CAV’20

• (when attackers are not considered)
1 spec { ∀c: Coin, info.tot_supply = sum(c.value) }
2

3 public fun mint(... , value: u64): Coin {
4 let info = borrow_global_mut< Info> (...);
5 info.tot_supply = info.tot_supply + value;
6 Coin { value } // invariant broken and restored
7 }

12/21



Global Invariant Verification

1 spec { ∀c: Coin, info.tot_supply = sum(c.value) }
2

3 public fun value_mut(coin: &mut Coin): &mut u64 {
4 &mut coin.value // not robustly safe!
5 }

• spec does not hold globally
(when attackers are considered)

1 fun attacker(c: &mut Coin) {
2 let value_ref = Coin::value_mut(c);
3 ∗value_ref = ∗value_ref + 1000; // violates spec!
4 }

13/21



Global Invariant Verification

1 spec { ∀c: Coin, info.tot_supply = sum(c.value) }
2

3 public fun value_mut(coin: &mut Coin): &mut u64 {
4 &mut coin.value // not robustly safe!
5 }

• spec does not hold globally
(when attackers are considered)

1 fun attacker(c: &mut Coin) {
2 let value_ref = Coin::value_mut(c);
3 ∗value_ref = ∗value_ref + 1000; // violates spec!
4 }

13/21



From Local to Global Verification

• Problem: value_mut leaks an
invariant-based value

• Solution: enforce encapsulation on
invariant-based values

• Trivial? perhaps
• Not-so-trivial? formalising the sufficient

conditions for RS and designing an efficient
analysis that checks these conditions

14/21



From Local to Global Verification

• Problem: value_mut leaks an
invariant-based value

• Solution: enforce encapsulation on
invariant-based values

• Trivial? perhaps
• Not-so-trivial? formalising the sufficient

conditions for RS and designing an efficient
analysis that checks these conditions

14/21



From Local to Global Verification

• Problem: value_mut leaks an
invariant-based value

• Solution: enforce encapsulation on
invariant-based values

• Trivial? perhaps
• Not-so-trivial? formalising the sufficient

conditions for RS and designing an efficient
analysis that checks these conditions

14/21



Robust Safety Definition

A Move module Ω with invariants ι has RS iff:

• Ω is well-typed

⊢ Ω ∶ wt
• Ω has verified ι locally

Λ ⊢loc Ω ∶ ι

• Ω has encapsulated ι

Ξ ⊢enc Ω ∶ ι

• for all attackers A

∀A.Ω ⊢ A ∶ atk

running Ω and A

(Ω +A)↝ α

respects ι

α ⊩ ι

what are Λ and Ξ?

15/21



Robust Safety Definition

A Move module Ω with invariants ι has RS iff:

• Ω is well-typed

⊢ Ω ∶ wt

• Ω has verified ι locally

Λ ⊢loc Ω ∶ ι
• Ω has encapsulated ι

Ξ ⊢enc Ω ∶ ι

• for all attackers A

∀A.Ω ⊢ A ∶ atk

running Ω and A

(Ω +A)↝ α

respects ι

α ⊩ ι

what are Λ and Ξ?

15/21



Robust Safety Definition

A Move module Ω with invariants ι has RS iff:

• Ω is well-typed

⊢ Ω ∶ wt

• Ω has verified ι locally

Λ ⊢loc Ω ∶ ι

• Ω has encapsulated ι

Ξ ⊢enc Ω ∶ ι
• for all attackers A

∀A.Ω ⊢ A ∶ atk

running Ω and A

(Ω +A)↝ α

respects ι

α ⊩ ι

what are Λ and Ξ?

15/21



Robust Safety Definition

A Move module Ω with invariants ι has RS iff:

• Ω is well-typed

⊢ Ω ∶ wt

• Ω has verified ι locally

Λ ⊢loc Ω ∶ ι

• Ω has encapsulated ι

Ξ ⊢enc Ω ∶ ι

• for all attackers A

∀A.Ω ⊢ A ∶ atk

running Ω and A

(Ω +A)↝ α

respects ι

α ⊩ ι

what are Λ and Ξ?

15/21



Robust Safety Definition

A Move module Ω with invariants ι has RS iff:

• Ω is well-typed ⊢ Ω ∶ wt
• Ω has verified ι locally

Λ ⊢loc Ω ∶ ι

• Ω has encapsulated ι

Ξ ⊢enc Ω ∶ ι

• for all attackers A

∀A.Ω ⊢ A ∶ atk

running Ω and A

(Ω +A)↝ α

respects ι

α ⊩ ι

what are Λ and Ξ?

15/21



Robust Safety Definition

A Move module Ω with invariants ι has RS iff:

• Ω is well-typed ⊢ Ω ∶ wt
• Ω has verified ι locally Λ ⊢loc Ω ∶ ι
• Ω has encapsulated ι

Ξ ⊢enc Ω ∶ ι

• for all attackers A

∀A.Ω ⊢ A ∶ atk

running Ω and A

(Ω +A)↝ α

respects ι

α ⊩ ι

what are Λ and Ξ?

15/21



Robust Safety Definition

A Move module Ω with invariants ι has RS iff:

• Ω is well-typed ⊢ Ω ∶ wt
• Ω has verified ι locally Λ ⊢loc Ω ∶ ι
• Ω has encapsulated ι Ξ ⊢enc Ω ∶ ι
• for all attackers A

∀A.Ω ⊢ A ∶ atk

running Ω and A

(Ω +A)↝ α

respects ι

α ⊩ ι

what are Λ and Ξ?

15/21



Robust Safety Definition

A Move module Ω with invariants ι has RS iff:

• Ω is well-typed ⊢ Ω ∶ wt
• Ω has verified ι locally Λ ⊢loc Ω ∶ ι
• Ω has encapsulated ι Ξ ⊢enc Ω ∶ ι
• for all attackers A ∀A.Ω ⊢ A ∶ atk

running Ω and A

(Ω +A)↝ α

respects ι

α ⊩ ι

what are Λ and Ξ?

15/21



Robust Safety Definition

A Move module Ω with invariants ι has RS iff:

• Ω is well-typed ⊢ Ω ∶ wt
• Ω has verified ι locally Λ ⊢loc Ω ∶ ι
• Ω has encapsulated ι Ξ ⊢enc Ω ∶ ι
• for all attackers A ∀A.Ω ⊢ A ∶ atk

running Ω and A (Ω +A)↝ α

respects ι

α ⊩ ι

what are Λ and Ξ?

15/21



Robust Safety Definition

A Move module Ω with invariants ι has RS iff:

• Ω is well-typed ⊢ Ω ∶ wt
• Ω has verified ι locally Λ ⊢loc Ω ∶ ι
• Ω has encapsulated ι Ξ ⊢enc Ω ∶ ι
• for all attackers A ∀A.Ω ⊢ A ∶ atk

running Ω and A (Ω +A)↝ α

respects ι α ⊩ ι

what are Λ and Ξ?

15/21



Robust Safety Definition

A Move module Ω with invariants ι has RS iff:

• Ω is well-typed ⊢ Ω ∶ wt
• Ω has verified ι locally Λ ⊢loc Ω ∶ ι
• Ω has encapsulated ι Ξ ⊢enc Ω ∶ ι
• for all attackers A ∀A.Ω ⊢ A ∶ atk

running Ω and A (Ω +A)↝ α

respects ι α ⊩ ι

what are Λ and Ξ?
15/21



Tools for Robust Safety in Move



Move Bytecode Verifier Blackshear et al. Whitepaper’19

Only who declares Coin can:

• Create a value of type Coin

• “Unpack” a Coin into its field(s)
• Acquire a reference to a field of Coin via a

Rust-style mutable or immutable borrow

16/21



Move Prover for Local Invariants Λ

• assume invariants specified by the
programmer hold at the entry of each
public function

• ensure that they continue to hold at the exit

1 spec { ∀c: Coin, info.tot_supply = sum(c.value) }
2

3 public fun mint(... , value: u64): Coin {
4 Coin { value } // invariant broken
5 }

17/21



Move Prover for Local Invariants Λ

• assume invariants specified by the
programmer hold at the entry of each
public function

• ensure that they continue to hold at the exit
1 spec { ∀c: Coin, info.tot_supply = sum(c.value) }
2

3 public fun mint(... , value: u64): Coin {
4 Coin { value } // invariant broken
5 }

17/21



Encapsulator(s) for . . . Encapsulation Ξ

• Two classes of attackers:
• Blockchain-based (imm) Ξimm

• non Blockchain-based (mut) Ξmut

• encapsulation:
when control goes to the attacker

calls (mut) and returns (imm & mut)

any resource with an invariant

using abstract values v̂

is not accessible to the attacker

any relevant v̂ is not in A’s state

18/21



Encapsulator(s) for . . . Encapsulation Ξ

• Two classes of attackers:
• Blockchain-based (imm) Ξimm

• non Blockchain-based (mut) Ξmut

• encapsulation:
when control goes to the attacker

calls (mut) and returns (imm & mut)

any resource with an invariant

using abstract values v̂

is not accessible to the attacker

any relevant v̂ is not in A’s state

18/21



Encapsulator(s) for . . . Encapsulation Ξ

• Two classes of attackers:
• Blockchain-based (imm) Ξimm

• non Blockchain-based (mut) Ξmut

• encapsulation:
when control goes to the attacker

calls (mut) and returns (imm & mut)

any resource with an invariant

using abstract values v̂

is not accessible to the attacker

any relevant v̂ is not in A’s state

18/21



Encapsulator(s) for . . . Encapsulation Ξ

• Two classes of attackers:
• Blockchain-based (imm) Ξimm

• non Blockchain-based (mut) Ξmut

• encapsulation:
when control goes to the attacker

calls (mut) and returns (imm & mut)

any resource with an invariant

using abstract values v̂

is not accessible to the attacker

any relevant v̂ is not in A’s state

18/21



Encapsulator(s) for . . . Encapsulation Ξ

• Two classes of attackers:
• Blockchain-based (imm) Ξimm

• non Blockchain-based (mut) Ξmut

• encapsulation:
when control goes to the attacker

calls (mut) and returns (imm & mut)

any resource with an invariant

using abstract values v̂

is not accessible to the attacker

any relevant v̂ is not in A’s state

18/21



Encapsulator(s) for . . . Encapsulation Ξ

• Two classes of attackers:
• Blockchain-based (imm) Ξimm

• non Blockchain-based (mut) Ξmut

• encapsulation:
when control goes to the attacker

calls (mut) and returns (imm & mut)

any resource with an invariant
using abstract values v̂

is not accessible to the attacker

any relevant v̂ is not in A’s state

18/21



Encapsulator(s) for . . . Encapsulation Ξ

• Two classes of attackers:
• Blockchain-based (imm) Ξimm

• non Blockchain-based (mut) Ξmut

• encapsulation:
when control goes to the attacker

calls (mut) and returns (imm & mut)

any resource with an invariant
using abstract values v̂

is not accessible to the attacker
any relevant v̂ is not in A’s state

18/21



Encapsulator Details

• static intraprocedural escape analysis
• abstract values v̂ ∈ {NonRef,OkRef, InvRef}

• NonRef ⊑ InvRef OkRef ⊑ InvRef

(Ξimm -BorrowFld-Relevant)
f ∈ ι

Ω, P, ι,BorrowFld ⟨f⟩ ⊢ ⟨L̂, v̂∶∶Ŝ⟩↝ ⟨L̂, InvRef∶∶Ŝ⟩
(Ξimm -BorrowFld-Irrelevant)

f ∉ ι

Ω, P, ι,BorrowFld ⟨f⟩ ⊢ ⟨L̂, v̂∶∶Ŝ⟩↝ ⟨L̂, v̂∶∶Ŝ⟩

(Ξimm -Return)
∣∣Ω(P ).rety∣∣ = n ∀i ∈ 1..n. v̂i ≠ InvRef

Ω, P, ι,Ret ⊢ ⟨L̂, v̂1 ∶∶ v̂n∶∶Ŝ⟩↝ ⟨L̂, v̂1 ∶∶ v̂n∶∶Ŝ⟩

19/21



Encapsulator Details

• static intraprocedural escape analysis
• abstract values v̂ ∈ {NonRef,OkRef, InvRef}

• NonRef ⊑ InvRef OkRef ⊑ InvRef

(Ξimm -BorrowFld-Relevant)
f ∈ ι

Ω, P, ι,BorrowFld ⟨f⟩ ⊢ ⟨L̂, v̂∶∶Ŝ⟩↝ ⟨L̂, InvRef∶∶Ŝ⟩

(Ξimm -BorrowFld-Irrelevant)
f ∉ ι

Ω, P, ι,BorrowFld ⟨f⟩ ⊢ ⟨L̂, v̂∶∶Ŝ⟩↝ ⟨L̂, v̂∶∶Ŝ⟩

(Ξimm -Return)
∣∣Ω(P ).rety∣∣ = n ∀i ∈ 1..n. v̂i ≠ InvRef

Ω, P, ι,Ret ⊢ ⟨L̂, v̂1 ∶∶ v̂n∶∶Ŝ⟩↝ ⟨L̂, v̂1 ∶∶ v̂n∶∶Ŝ⟩

19/21



Encapsulator Details

• static intraprocedural escape analysis
• abstract values v̂ ∈ {NonRef,OkRef, InvRef}

• NonRef ⊑ InvRef OkRef ⊑ InvRef

(Ξimm -BorrowFld-Relevant)
f ∈ ι

Ω, P, ι,BorrowFld ⟨f⟩ ⊢ ⟨L̂, v̂∶∶Ŝ⟩↝ ⟨L̂, InvRef∶∶Ŝ⟩
(Ξimm -BorrowFld-Irrelevant)

f ∉ ι

Ω, P, ι,BorrowFld ⟨f⟩ ⊢ ⟨L̂, v̂∶∶Ŝ⟩↝ ⟨L̂, v̂∶∶Ŝ⟩

(Ξimm -Return)
∣∣Ω(P ).rety∣∣ = n ∀i ∈ 1..n. v̂i ≠ InvRef

Ω, P, ι,Ret ⊢ ⟨L̂, v̂1 ∶∶ v̂n∶∶Ŝ⟩↝ ⟨L̂, v̂1 ∶∶ v̂n∶∶Ŝ⟩

19/21



Encapsulator Details

• static intraprocedural escape analysis
• abstract values v̂ ∈ {NonRef,OkRef, InvRef}

• NonRef ⊑ InvRef OkRef ⊑ InvRef

(Ξimm -BorrowFld-Relevant)
f ∈ ι

Ω, P, ι,BorrowFld ⟨f⟩ ⊢ ⟨L̂, v̂∶∶Ŝ⟩↝ ⟨L̂, InvRef∶∶Ŝ⟩
(Ξimm -BorrowFld-Irrelevant)

f ∉ ι

Ω, P, ι,BorrowFld ⟨f⟩ ⊢ ⟨L̂, v̂∶∶Ŝ⟩↝ ⟨L̂, v̂∶∶Ŝ⟩

(Ξimm -Return)
∣∣Ω(P ).rety∣∣ = n ∀i ∈ 1..n. v̂i ≠ InvRef

Ω, P, ι,Ret ⊢ ⟨L̂, v̂1 ∶∶ v̂n∶∶Ŝ⟩↝ ⟨L̂, v̂1 ∶∶ v̂n∶∶Ŝ⟩

19/21



Encapsulator Evaluation

Bench Mod Fun Rec Instr Err Tp Te

starcoin 60 431 88 8243 2 3178 10
diem 13 102 19 1830 0 1651 1
mai 45 411 77 7881 0 4209 12
bridge 36 352 85 8060 0 2428 8
blackhole 36 324 72 6030 0 2289 7
alma 35 333 67 6318 0 2102 8
starswap 33 335 67 6617 0 14993 7
meteor 32 323 69 5981 0 1641 7
taohe 11 40 7 305 0 1022 1
stdlib 9 66 5 933 1 1151 1
Total 310 2717 556 52198 3 34664 62

20/21



Encapsulator Evaluation

Bench Mod Fun Rec Instr Err Tp Te

starcoin 60 431 88 8243 2 3178 10
diem 13 102 19 1830 0 1651 1
mai 45 411 77 7881 0 4209 12
bridge 36 352 85 8060 0 2428 8
blackhole 36 324 72 6030 0 2289 7
alma 35 333 67 6318 0 2102 8
starswap 33 335 67 6617 0 14993 7
meteor 32 323 69 5981 0 1641 7
taohe 11 40 7 305 0 1022 1
stdlib 9 66 5 933 1 1151 1
Total 310 2717 556 52198 3 34664 62

20/21



Questions?

21/21


	The Move Language
	Contributions of this Work
	Robust Safety (for Move)
	Tools for Robust Safety in Move

