
Secure Compilation:
Formal Foundations
and (Some) Applications

Marco Patrignani

03 April 2024

Who Am I ?

Marco Patrignani

Bsc, Msc

PhD

Postdoc

VAP

JRGL

Asst. Prof.

time
I I I I I I I I

Special Thanks to: (wrt the contents of this talk)

please interrupt & ask questions

for offline questions: I leave tomorrow

2/35

Special Thanks to: (wrt the contents of this talk)

please interrupt & ask questions

for offline questions: I leave tomorrow

2/35

Special Thanks to: (wrt the contents of this talk)

please interrupt & ask questions

for offline questions: I leave tomorrow

2/35

Foundations of Secure
Compilation

Programming Languages: Pros and Cons

Good PLs (, , , , . . .) provide:

• helpful abstractions to write secure code

but

• when compiled (J⋅K) and linked with
adversarial target code

• these abstractions are NOT enforced

3/35

Programming Languages: Pros and Cons

Good PLs (, , , , . . .) provide:

• helpful abstractions to write secure code

but

• when compiled (J⋅K) and linked with
adversarial target code

• these abstractions are NOT enforced

3/35

Programming Languages: Pros and Cons

Good PLs (, , , , . . .) provide:

• helpful abstractions to write secure code

but

• when compiled (J⋅K) and linked with
adversarial target code

• these abstractions are NOT enforced

3/35

Secure Compilation: Example

ChaCha20 Poly1305 . . .

JChaCha20K JPoly1305K J. . .K

F∗ HACL*. Zinzindohouè et al., CCS’17

Asm

4/35

Secure Compilation: Example

ChaCha20 Poly1305 . . .

JChaCha20K JPoly1305K J. . .K

F∗ HACL*. Zinzindohouè et al., CCS’17

Asm

160x C/C++ code (unsafe)
4/35

Secure Compilation: Example

ChaCha20 Poly1305 . . .

JChaCha20K JPoly1305K J. . .K

F∗ HACL*. Zinzindohouè et al., CCS’17

Asm

Preserve the security of

4/35

Secure Compilation: Example

ChaCha20 Poly1305 . . .

JChaCha20K JPoly1305K J. . .K

F∗ HACL*. Zinzindohouè et al., CCS’17

Asm

Preserve the security of

when interoperating with
4/35

Secure Compilation: Example

ChaCha20 Poly1305 . . .

JChaCha20K JPoly1305K J. . .K

F∗ HACL*. Zinzindohouè et al., CCS’17

Asm

Correct compilation

4/35

Secure Compilation: Example

ChaCha20 Poly1305 . . .

JChaCha20K JPoly1305K J. . .K

F∗ HACL*. Zinzindohouè et al., CCS’17

Asm

Secure compilation

4/35

Secure Compilation: Example

ChaCha20 Poly1305 . . .

JChaCha20K JPoly1305K J. . .K

F∗ HACL*. Zinzindohouè et al., CCS’17

Asm

Enable source-level security reasoning

4/35

Quest for Foundations

What does it mean
for a compiler to

be secure?

Analogous questions are answered for type
systems, correct compilation, . . .

5/35

Quest for Foundations

What does it mean
for a compiler to

be secure?
Analogous questions are answered for type
systems, correct compilation, . . .

5/35

Once Upon a Time in Process Algebra

Challenge: define that their implementation of
secure channels via cryptography was secure

Fully Abstract Compilation (FAC)

6/35

Once Upon a Time in Process Algebra

Challenge: define that their implementation of
secure channels via cryptography was secure

Fully Abstract Compilation (FAC)

6/35

Fully Abstract Compilation Influence ACM CSUR’19

• ⋅ FAC: useful for language
expressiveness
but complex and with an unclear
security implication

• ⋅ Challenge: easier/more
efficient/more precise
alternatives

preserve classes of
(hyper)properties Clarkson & Schneider JCS ’10

7/35

Fully Abstract Compilation Influence ACM CSUR’19• ⋅ FAC: useful for language
expressiveness
but complex and with an unclear
security implication

• ⋅ Challenge: easier/more
efficient/more precise
alternatives

preserve classes of
(hyper)properties Clarkson & Schneider JCS ’10

7/35

Fully Abstract Compilation Influence ACM CSUR’19• ⋅ FAC: useful for language
expressiveness
but complex and with an unclear
security implication

• ⋅ Challenge: easier/more
efficient/more precise
alternatives

preserve classes of
(hyper)properties Clarkson & Schneider JCS ’10

7/35

Fully Abstract Compilation Influence ACM CSUR’19• ⋅ FAC: useful for language
expressiveness
but complex and with an unclear
security implication

• ⋅ Challenge: easier/more
efficient/more precise
alternatives

preserve classes of
(hyper)properties Clarkson & Schneider JCS ’10

7/35

Robust Compilation (RC) Criteria CSF’19, ESOP’20, Toplas’21

Robust Relational Hyperproperty
Preservation

Robust K-Relational Hyperproperty
Preservation

Robust 2-Relational Hyperproperty
Preservation

Robust Relational Property
Preservation

Robust K-Relational Property
Preservation

Robust 2-Relational Property
Preservation

Robust Relational relaXed safety
Preservation

Robust Finite-Relational relaXed
safety Preservation

Robust K-Relational relaXed
safety Preservation

Robust 2-Relational relaXed
safety Preservation

Robust Relational Safety
Preservation

Robust Finite-Relational
Safety Preservation

Robust K-Relational Safety
Preservation

Robust 2-Relational Safety
Preservation

Robust Hyperproperty
Preservation

Robust Subset-Closed Hyperproperty
Preservation

Robust K-Subset-Closed Hyperproperty
Preservation

Robust 2-Subset-Closed Hyperproperty
Preservation

Robust Trace Property Preservation

Robust Hypersafety Preservation

Robust K-Hypersafety Preservation

Robust 2-Hypersafety Preservation

Robust Safety Property PreservationRobust Dense Property Preservation

Robust Trace Equivalence
Preservation

Robust Termination-Insensitive
Noninterference Preservation

+ determinacy

Re
la

tio
na

l
Hy

pe
rp

ro
pe

rt
ie

s
Hy

pe
rp

ro
pe

rt
ie

s
Tr

ac
e

Pr
op

er
tie

s

Tradeoffs for code efficiency, security guarantees, proof complexity

8/35

Robust Compilation (RC) Criteria CSF’19, ESOP’20, Toplas’21

Robust Relational Hyperproperty
Preservation

Robust K-Relational Hyperproperty
Preservation

Robust 2-Relational Hyperproperty
Preservation

Robust Relational Property
Preservation

Robust K-Relational Property
Preservation

Robust 2-Relational Property
Preservation

Robust Relational relaXed safety
Preservation

Robust Finite-Relational relaXed
safety Preservation

Robust K-Relational relaXed
safety Preservation

Robust 2-Relational relaXed
safety Preservation

Robust Relational Safety
Preservation

Robust Finite-Relational
Safety Preservation

Robust K-Relational Safety
Preservation

Robust 2-Relational Safety
Preservation

Robust Hyperproperty
Preservation

Robust Subset-Closed Hyperproperty
Preservation

Robust K-Subset-Closed Hyperproperty
Preservation

Robust 2-Subset-Closed Hyperproperty
Preservation

Robust Trace Property Preservation

Robust Hypersafety Preservation

Robust K-Hypersafety Preservation

Robust 2-Hypersafety Preservation

Robust Safety Property PreservationRobust Dense Property Preservation

Robust Trace Equivalence
Preservation

Robust Termination-Insensitive
Noninterference Preservation

+ determinacy

Re
la

tio
na

l
Hy

pe
rp

ro
pe

rt
ie

s
Hy

pe
rp

ro
pe

rt
ie

s
Tr

ac
e

Pr
op

er
tie

s

Tradeoffs for code efficiency, security guarantees, proof complexity
8/35

Robust Compilation (RC) Criteria CSF’19, ESOP’20, Toplas’21

Robust Relational Hyperproperty
Preservation

Robust K-Relational Hyperproperty
Preservation

Robust 2-Relational Hyperproperty
Preservation

Robust Relational Property
Preservation

Robust K-Relational Property
Preservation

Robust 2-Relational Property
Preservation

Robust Relational relaXed safety
Preservation

Robust Finite-Relational relaXed
safety Preservation

Robust K-Relational relaXed
safety Preservation

Robust 2-Relational relaXed
safety Preservation

Robust Relational Safety
Preservation

Robust Finite-Relational
Safety Preservation

Robust K-Relational Safety
Preservation

Robust 2-Relational Safety
Preservation

Robust Hyperproperty
Preservation

Robust Subset-Closed Hyperproperty
Preservation

Robust K-Subset-Closed Hyperproperty
Preservation

Robust 2-Subset-Closed Hyperproperty
Preservation

Robust Trace Property Preservation

Robust Hypersafety Preservation

Robust K-Hypersafety Preservation

Robust 2-Hypersafety Preservation

Robust Safety Property PreservationRobust Dense Property Preservation

Robust Trace Equivalence
Preservation

Robust Termination-Insensitive
Noninterference Preservation

+ determinacy

Re
la

tio
na

l
Hy

pe
rp

ro
pe

rt
ie

s
Hy

pe
rp

ro
pe

rt
ie

s
Tr

ac
e

Pr
op

er
tie

s

Tradeoffs for code efficiency, security guarantees, proof complexity
8/35

Robust Criteria: Intuition

Each point has two equivalent criteria:
• Property − ful ∶

+ clearly tells what class it preserves

- harder to prove
• Property − free ∶

+ easier to prove
- unclear what security classes are preserved

9/35

Robust Criteria: Intuition

Each point has two equivalent criteria:
• Property − ful ∶

+ clearly tells what class it preserves
- harder to prove

• Property − free ∶

+ easier to prove
- unclear what security classes are preserved

9/35

Robust Criteria: Intuition

Each point has two equivalent criteria:
• Property − ful ∶

+ clearly tells what class it preserves
- harder to prove

• Property − free ∶

+ easier to prove

- unclear what security classes are preserved

9/35

Robust Criteria: Intuition

Each point has two equivalent criteria:
• Property − ful ∶

+ clearly tells what class it preserves
- harder to prove

• Property − free ∶

+ easier to prove
- unclear what security classes are preserved

9/35

In Depth Example: RSC ESOP’19, TOPLAS’21

J⋅K = compiler

π/π = set of traces
P = partial program
A/A = attacker

t/t = trace of events
[⋅] = linking

↝/↝ = trace semantics
m/m = prefix of a trace

J⋅K ∶ RSP def
=

∀π ≈ π ∈ Safety .

∀P.

if (∀A, t.

A [P]↝t

⇒ t ∈ π)

then (∀A, t.

A [JPK]↝t⇒

t ∈ π)

J⋅K ∶ RSC def
=

∀P,A,m.

if A [JPK]↝m

then ∃A,

m ≈m.A [P]↝m

10/35

In Depth Example: RSC ESOP’19, TOPLAS’21

J⋅K = compiler
π/π = set of traces

P = partial program
A/A = attacker

t/t = trace of events
[⋅] = linking

↝/↝ = trace semantics
m/m = prefix of a trace

J⋅K ∶ RSP def
= ∀π ≈ π ∈ Safety .

∀P.

if (∀A, t.

A [P]↝t

⇒ t ∈ π)

then (∀A, t.

A [JPK]↝t⇒

t ∈ π)

J⋅K ∶ RSC def
=

∀P,A,m.

if A [JPK]↝m

then ∃A,

m ≈m.A [P]↝m

10/35

In Depth Example: RSC ESOP’19, TOPLAS’21

J⋅K = compiler
π/π = set of traces
P = partial program

A/A = attacker
t/t = trace of events
[⋅] = linking

↝/↝ = trace semantics
m/m = prefix of a trace

J⋅K ∶ RSP def
= ∀π ≈ π ∈ Safety . ∀P.

if (∀A, t.

A [P]↝t

⇒ t ∈ π)

then (∀A, t.

A [JPK]↝t⇒

t ∈ π)

J⋅K ∶ RSC def
=

∀P,A,m.

if A [JPK]↝m

then ∃A,

m ≈m.A [P]↝m

10/35

In Depth Example: RSC ESOP’19, TOPLAS’21

J⋅K = compiler
π/π = set of traces
P = partial program
A/A = attacker

t/t = trace of events

[⋅] = linking
↝/↝ = trace semantics
m/m = prefix of a trace

J⋅K ∶ RSP def
= ∀π ≈ π ∈ Safety . ∀P.

if (∀A, t.

A [P]↝t

⇒ t ∈ π)

then (∀A, t.

A [JPK]↝t⇒

t ∈ π)

J⋅K ∶ RSC def
=

∀P,A,m.

if A [JPK]↝m

then ∃A,

m ≈m.A [P]↝m

10/35

In Depth Example: RSC ESOP’19, TOPLAS’21

J⋅K = compiler
π/π = set of traces
P = partial program
A/A = attacker

t/t = trace of events
[⋅] = linking

↝/↝ = trace semantics

m/m = prefix of a trace

J⋅K ∶ RSP def
= ∀π ≈ π ∈ Safety . ∀P.

if (∀A, t.A [P]↝t

⇒ t ∈ π)

then (∀A, t.

A [JPK]↝t⇒

t ∈ π)

J⋅K ∶ RSC def
=

∀P,A,m.

if A [JPK]↝m

then ∃A,

m ≈m.A [P]↝m

10/35

In Depth Example: RSC ESOP’19, TOPLAS’21

J⋅K = compiler
π/π = set of traces
P = partial program
A/A = attacker

t/t = trace of events
[⋅] = linking

↝/↝ = trace semantics

m/m = prefix of a trace

J⋅K ∶ RSP def
= ∀π ≈ π ∈ Safety . ∀P.

if (∀A, t.A [P]↝t⇒ t ∈ π)

then (∀A, t.

A [JPK]↝t⇒

t ∈ π)

J⋅K ∶ RSC def
=

∀P,A,m.

if A [JPK]↝m

then ∃A,

m ≈m.A [P]↝m

10/35

In Depth Example: RSC ESOP’19, TOPLAS’21

J⋅K = compiler
π/π = set of traces
P = partial program
A/A = attacker

t/t = trace of events
[⋅] = linking

↝/↝ = trace semantics

m/m = prefix of a trace

J⋅K ∶ RSP def
= ∀π ≈ π ∈ Safety . ∀P.

if (∀A, t.A [P]↝t⇒ t ∈ π)

then (∀A, t.

A [JPK]↝t⇒

t ∈ π)

J⋅K ∶ RSC def
=

∀P,A,m.

if A [JPK]↝m

then ∃A,

m ≈m.A [P]↝m

10/35

In Depth Example: RSC ESOP’19, TOPLAS’21

J⋅K = compiler
π/π = set of traces
P = partial program
A/A = attacker

t/t = trace of events
[⋅] = linking

↝/↝ = trace semantics

m/m = prefix of a trace

J⋅K ∶ RSP def
= ∀π ≈ π ∈ Safety . ∀P.

if (∀A, t.A [P]↝t⇒ t ∈ π)

then (∀A, t.A [JPK]↝t⇒

t ∈ π)

J⋅K ∶ RSC def
=

∀P,A,m.

if A [JPK]↝m

then ∃A,

m ≈m.A [P]↝m

10/35

In Depth Example: RSC ESOP’19, TOPLAS’21

J⋅K = compiler
π/π = set of traces
P = partial program
A/A = attacker

t/t = trace of events
[⋅] = linking

↝/↝ = trace semantics

m/m = prefix of a trace

J⋅K ∶ RSP def
= ∀π ≈ π ∈ Safety . ∀P.

if (∀A, t.A [P]↝t⇒ t ∈ π)

then (∀A, t.A [JPK]↝t⇒ t ∈ π)

J⋅K ∶ RSC def
=

∀P,A,m.

if A [JPK]↝m

then ∃A,

m ≈m.A [P]↝m

10/35

In Depth Example: RSC ESOP’19, TOPLAS’21

J⋅K = compiler
π/π = set of traces
P = partial program
A/A = attacker

t/t = trace of events
[⋅] = linking

↝/↝ = trace semantics

m/m = prefix of a trace

J⋅K ∶ RSP def
= ∀π ≈ π ∈ Safety . ∀P.

if (∀A, t.A [P]↝t⇒ t ∈ π)

then (∀A, t.A [JPK]↝t⇒ t ∈ π)

J⋅K ∶ RSC def
=

∀P,A,m.

if A [JPK]↝m

then ∃A,

m ≈m.A [P]↝m

10/35

In Depth Example: RSC ESOP’19, TOPLAS’21

J⋅K = compiler
π/π = set of traces
P = partial program
A/A = attacker

t/t = trace of events
[⋅] = linking

↝/↝ = trace semantics
m/m = prefix of a trace

J⋅K ∶ RSP def
= ∀π ≈ π ∈ Safety . ∀P.

if (∀A, t.A [P]↝t⇒ t ∈ π)

then (∀A, t.A [JPK]↝t⇒ t ∈ π)

J⋅K ∶ RSC def
= ∀P,A,m.

if A [JPK]↝m

then ∃A,

m ≈m.A [P]↝m

10/35

In Depth Example: RSC ESOP’19, TOPLAS’21

J⋅K = compiler
π/π = set of traces
P = partial program
A/A = attacker

t/t = trace of events
[⋅] = linking

↝/↝ = trace semantics
m/m = prefix of a trace

J⋅K ∶ RSP def
= ∀π ≈ π ∈ Safety . ∀P.

if (∀A, t.A [P]↝t⇒ t ∈ π)

then (∀A, t.A [JPK]↝t⇒ t ∈ π)

J⋅K ∶ RSC def
= ∀P,A,m.

if A [JPK]↝m

then ∃A,

m ≈m.A [P]↝m

10/35

In Depth Example: RSC ESOP’19, TOPLAS’21

J⋅K = compiler
π/π = set of traces
P = partial program
A/A = attacker

t/t = trace of events
[⋅] = linking

↝/↝ = trace semantics
m/m = prefix of a trace

J⋅K ∶ RSP def
= ∀π ≈ π ∈ Safety . ∀P.

if (∀A, t.A [P]↝t⇒ t ∈ π)

then (∀A, t.A [JPK]↝t⇒ t ∈ π)

J⋅K ∶ RSC def
= ∀P,A,m.

if A [JPK]↝m

then ∃A,

m ≈m.A [P]↝m

10/35

In Depth Example: RSC ESOP’19, TOPLAS’21

J⋅K = compiler
π/π = set of traces
P = partial program
A/A = attacker

t/t = trace of events
[⋅] = linking

↝/↝ = trace semantics
m/m = prefix of a trace

J⋅K ∶ RSP def
= ∀π ≈ π ∈ Safety . ∀P.

if (∀A, t.A [P]↝t⇒ t ∈ π)

then (∀A, t.A [JPK]↝t⇒ t ∈ π)

J⋅K ∶ RSC def
= ∀P,A,m.

if A [JPK]↝m

then ∃A,m ≈m.

A [P]↝m

10/35

In Depth Example: RSC ESOP’19, TOPLAS’21

J⋅K = compiler
π/π = set of traces
P = partial program
A/A = attacker

t/t = trace of events
[⋅] = linking

↝/↝ = trace semantics
m/m = prefix of a trace

J⋅K ∶ RSP def
= ∀π ≈ π ∈ Safety . ∀P.

if (∀A, t.A [P]↝t⇒ t ∈ π)

then (∀A, t.A [JPK]↝t⇒ t ∈ π)

J⋅K ∶ RSC def
= ∀P,A,m.

if A [JPK]↝m

then ∃A,m ≈m.A [P]↝m

10/35

Secure Compilation Threat Model

• robust, active attacker (∀A)
robust safety works, e.g., Swasey et al. OOPSLA’17, Sammler et al. POPL’20

• in-language expressible attacker

• trace-based security behaviour (m/m)

What can we do with these
foundations?

11/35

Secure Compilation Threat Model

• robust, active attacker (∀A)
robust safety works, e.g., Swasey et al. OOPSLA’17, Sammler et al. POPL’20

• in-language expressible attacker

• trace-based security behaviour (m/m)

What can we do with these
foundations?

11/35

Secure Compilation Threat Model

• robust, active attacker (∀A)
robust safety works, e.g., Swasey et al. OOPSLA’17, Sammler et al. POPL’20

• in-language expressible attacker

• trace-based security behaviour (m/m)

What can we do with these
foundations?

11/35

Secure Compilation Threat Model

• robust, active attacker (∀A)
robust safety works, e.g., Swasey et al. OOPSLA’17, Sammler et al. POPL’20

• in-language expressible attacker

• trace-based security behaviour (m/m)

What can we do with these
foundations?

11/35

Talk Outline

Robust Memory Safety POPL’23

Robust Cryptographic Constant Time (wip)

Micro-architectural Attacks (Spectre) CCS’21

Security Architectures
(e.g., Cheri/ARM Morello, Sancus/Intel SGX, . . .) Toplas’15, CSF’21, . . .

Mechanise Cryptographic Proofs CSF’24 + wip

Conclusion

12/35

Robust Memory Safety POPL’23

Memory Safety (Untyped, Intra-Object)

• add colours+shades to pointers & memory
• check colour+shade when using pointers

Memarian et al. POPL’19, Azevedo de Amorim et al. POST’18

F F F F F F

F

alloc(4)

A A A AA A A A

PP

alloc(1+1)

A AA A

QQ

read(P)

ok

PP

read(P)

NO

write(P)

PP

NO

Monitor encoding of MS

with state M

and actions for transitions

13/35

Memory Safety (Untyped, Intra-Object)

• add colours+shades to pointers & memory

• check colour+shade when using pointers
Memarian et al. POPL’19, Azevedo de Amorim et al. POST’18

F F F F F F

F

alloc(4)

A A A AA A A A

PP

alloc(1+1)

A AA A

QQ

read(P)

ok

PP

read(P)

NO

write(P)

PP

NO

Monitor encoding of MS

with state M

and actions for transitions

13/35

Memory Safety (Untyped, Intra-Object)

• add colours+shades to pointers & memory
• check colour+shade when using pointers

Memarian et al. POPL’19, Azevedo de Amorim et al. POST’18

F F F F F FF

alloc(4)

A A A AA A A A

PP

alloc(1+1)

A AA A

QQ

read(P)

ok

PP

read(P)

NO

write(P)

PP

NO

Monitor encoding of MS

with state M

and actions for transitions

13/35

Memory Safety (Untyped, Intra-Object)

• add colours+shades to pointers & memory
• check colour+shade when using pointers

Memarian et al. POPL’19, Azevedo de Amorim et al. POST’18

F F F F F FF

alloc(4)

A A A AA A A A

PP

alloc(1+1)

A AA A

QQ

read(P)

ok

PP

read(P)

NO

write(P)

PP

NO

Monitor encoding of MS

with state M

and actions for transitions

13/35

Memory Safety (Untyped, Intra-Object)

• add colours+shades to pointers & memory
• check colour+shade when using pointers

Memarian et al. POPL’19, Azevedo de Amorim et al. POST’18

F F F F F FF

alloc(4)

A A A AA A A A

PP

alloc(1+1)

A AA A

QQ

read(P)

ok

PP

read(P)

NO

write(P)

PP

NO

Monitor encoding of MS

with state M

and actions for transitions

13/35

Memory Safety (Untyped, Intra-Object)

• add colours+shades to pointers & memory
• check colour+shade when using pointers

Memarian et al. POPL’19, Azevedo de Amorim et al. POST’18

F F F F F F

F

alloc(4)

A A A AA A A A

PP

alloc(1+1)

A AA A

QQ

read(P)

ok

PP

read(P)

NO

write(P)

PP

NO

Monitor encoding of MS

with state M

and actions for transitions

13/35

Memory Safety (Untyped, Intra-Object)

• add colours+shades to pointers & memory
• check colour+shade when using pointers

Memarian et al. POPL’19, Azevedo de Amorim et al. POST’18

F F F F F F

F

alloc(4)

A A A AA A A A

PP

alloc(1+1)

A AA A

QQ

read(P)

ok

PP

read(P)

NO

write(P)

PP

NO

Monitor encoding of MS

with state M

and actions for transitions

13/35

Memory Safety (Untyped, Intra-Object)

• add colours+shades to pointers & memory
• check colour+shade when using pointers

Memarian et al. POPL’19, Azevedo de Amorim et al. POST’18

F F F F F F

F

alloc(4)

A A A AA A A A

PP

alloc(1+1)

A AA A

QQ

read(P)

ok

PP

read(P)

NO

write(P)

PP

NO

Monitor encoding of MS

with state M

and actions for transitions

13/35

Memory Safety (Untyped, Intra-Object)

• add colours+shades to pointers & memory
• check colour+shade when using pointers

Memarian et al. POPL’19, Azevedo de Amorim et al. POST’18

F F F F F F

F

alloc(4)

A A A AA A A A

PP

alloc(1+1)

A AA A

QQ

read(P)

ok

PP

read(P)

NO

write(P)

PP

NO

Monitor encoding of MS

with state M

and actions for transitions

13/35

Memory Safety (Untyped, Intra-Object)

• add colours+shades to pointers & memory
• check colour+shade when using pointers

Memarian et al. POPL’19, Azevedo de Amorim et al. POST’18

F F F F F F

F

alloc(4)

A A A AA A A A

PP

alloc(1+1)

A AA A

QQ

read(P)

ok

PP

read(P)

NO

write(P)

PP

NO

Monitor encoding of MS

with state M

and actions for transitions

13/35

Memory Safety (Untyped, Intra-Object)

• add colours+shades to pointers & memory
• check colour+shade when using pointers

Memarian et al. POPL’19, Azevedo de Amorim et al. POST’18

F F F F F F

F

alloc(4)

A A A AA A A A

PP

alloc(1+1)

A AA A

QQ

read(P)

ok

PP

read(P)

NO

write(P)

PP

NO

Monitor encoding of MS

with state M

and actions for transitions

13/35

Memory Safety (Untyped, Intra-Object)

• add colours+shades to pointers & memory
• check colour+shade when using pointers

Memarian et al. POPL’19, Azevedo de Amorim et al. POST’18

F F F F F F

F

alloc(4)

A A A AA A A A

PP

alloc(1+1)

A AA A

QQ

read(P)

ok

PP

read(P)

NO

write(P)

PP

NO

Monitor encoding of MS

with state M

and actions for transitions

13/35

Memory Safety (Untyped, Intra-Object)

• add colours+shades to pointers & memory
• check colour+shade when using pointers

Memarian et al. POPL’19, Azevedo de Amorim et al. POST’18

F F F F F F

F

alloc(4)

A A A AA A A A

PP

alloc(1+1)

A AA A

QQ

read(P)

ok

PP

read(P)

NO

write(P)

PP

NO

Monitor encoding of MS

with state M

and actions for transitions

13/35

Memory Safety (Untyped, Intra-Object)

• add colours+shades to pointers & memory
• check colour+shade when using pointers

Memarian et al. POPL’19, Azevedo de Amorim et al. POST’18

F F F F F F

F

alloc(4)

A A A AA A A A

PP

alloc(1+1)

A AA A

QQ

read(P)

ok

PP

read(P)

NO

write(P)

PP

NO

Monitor encoding of MS

with state M

and actions for transitions

13/35

Memory Safety (Untyped, Intra-Object)

• add colours+shades to pointers & memory
• check colour+shade when using pointers

Memarian et al. POPL’19, Azevedo de Amorim et al. POST’18

F F F F F F

F

alloc(4)

A A A AA A A A

PP

alloc(1+1)

A AA A

QQ

read(P)

ok

PP

read(P)

NO

write(P)

PP

NO

Monitor encoding of MS

with state M

and actions for transitions

13/35

Memory Safety (Untyped, Intra-Object)

• add colours+shades to pointers & memory
• check colour+shade when using pointers

Memarian et al. POPL’19, Azevedo de Amorim et al. POST’18

F F F F F F

F

alloc(4)

A A A AA A A A

PP

alloc(1+1)

A AA A

QQ

read(P)

ok

PP

read(P)

NO

write(P)

PP

NO

Monitor encoding of MS

with state M

and actions for transitions

13/35

Memory Safety (Untyped, Intra-Object)

• add colours+shades to pointers & memory
• check colour+shade when using pointers

Memarian et al. POPL’19, Azevedo de Amorim et al. POST’18

F F F F F F

F

alloc(4)

A A A AA A A A

PP

alloc(1+1)

A AA A

QQ

read(P)

ok

PP

read(P)

NO

write(P)

PP

NO

Monitor encoding of MS

with state M

and actions for transitions 13/35

Memory-Safe WebAssembly (MSWAsm)

• WAsm:
• inter-sandboxes MS

• intra-sandbox vulnerability

• MSWAsm: segment memory indexed by
Cheri-like pointers Watson et al. S&P’15

• handles:
⟨base, length,offset, isCorrupted, id⟩

• segment instructions:
• segment_alloc, segment_free
• segment_read, segment_write

• handle_add, handle_slice

14/35

Memory-Safe WebAssembly (MSWAsm)

• WAsm:
• inter-sandboxes MS

• intra-sandbox vulnerability

• MSWAsm: segment memory indexed by
Cheri-like pointers Watson et al. S&P’15

• handles:
⟨base, length,offset, isCorrupted, id⟩

• segment instructions:
• segment_alloc, segment_free
• segment_read, segment_write

• handle_add, handle_slice

14/35

Memory-Safe WebAssembly (MSWAsm)

• WAsm:
• inter-sandboxes MS

• intra-sandbox vulnerability

• MSWAsm: segment memory indexed by
Cheri-like pointers Watson et al. S&P’15

• handles:
⟨base, length,offset, isCorrupted, id⟩

• segment instructions:
• segment_alloc, segment_free
• segment_read, segment_write

• handle_add, handle_slice

14/35

Memory-Safe WebAssembly (MSWAsm)

• WAsm:
• inter-sandboxes MS

• intra-sandbox vulnerability

• MSWAsm: segment memory indexed by
Cheri-like pointers Watson et al. S&P’15

• handles:
⟨base, length,offset, isCorrupted, id⟩

• segment instructions:
• segment_alloc, segment_free
• segment_read, segment_write

• handle_add, handle_slice

14/35

Memory-Safe WebAssembly (MSWAsm)

• WAsm:
• inter-sandboxes MS

• intra-sandbox vulnerability

• MSWAsm: segment memory indexed by
Cheri-like pointers Watson et al. S&P’15

• handles:
⟨base, length,offset, isCorrupted, id⟩

• segment instructions:
• segment_alloc, segment_free

• segment_read, segment_write

• handle_add, handle_slice

14/35

Memory-Safe WebAssembly (MSWAsm)

• WAsm:
• inter-sandboxes MS

• intra-sandbox vulnerability

• MSWAsm: segment memory indexed by
Cheri-like pointers Watson et al. S&P’15

• handles:
⟨base, length,offset, isCorrupted, id⟩

• segment instructions:
• segment_alloc, segment_free
• segment_read, segment_write

• handle_add, handle_slice

14/35

Memory-Safe WebAssembly (MSWAsm)

• WAsm:
• inter-sandboxes MS

• intra-sandbox vulnerability

• MSWAsm: segment memory indexed by
Cheri-like pointers Watson et al. S&P’15

• handles:
⟨base, length,offset, isCorrupted, id⟩

• segment instructions:
• segment_alloc, segment_free
• segment_read, segment_write

• handle_add, handle_slice

14/35

Compiling from C to MSWAsm

• pointer becomes handle

• dereference becomes segment_read

• write becomes segment_write

• pointer arithmetic becomes handle_add

• field access becomes handle_slice

15/35

Compiling from C to MSWAsm

• pointer becomes handle

• dereference becomes segment_read

• write becomes segment_write

• pointer arithmetic becomes handle_add

• field access becomes handle_slice

15/35

Compiling from C to MSWAsm

• pointer becomes handle

• dereference becomes segment_read

• write becomes segment_write

• pointer arithmetic becomes handle_add

• field access becomes handle_slice

15/35

Compiling from C to MSWAsm

• pointer becomes handle

• dereference becomes segment_read

• write becomes segment_write

• pointer arithmetic becomes handle_add

• field access becomes handle_slice

15/35

Compiling from C to MSWAsm

• pointer becomes handle

• dereference becomes segment_read

• write becomes segment_write

• pointer arithmetic becomes handle_add

• field access becomes handle_slice

15/35

Compiler Properties

Ω = source state

α/α = trace action

Ω = compiled state

δ = partial bijection
a/a = allocator

M = monitor state
α = monitor action

Ω

Ω′

α

Ω

Ω′

α

∗

=δ

=δ ′

∼δ ′

a

a′

a

a′

α

α

=δ

=δ ′

=δ ′

M

M ′

α

= δ

= δ
′

= δ
′

=
δ

=
δ
′

=
δ
′

a

a′

a

a′

α

α

PRO: proved MS preservation, MS

enforcement

CON: not really RSC (no ∀A)
Challenge: how to ensure A actions

do not affect MS?

16/35

Compiler Properties

Ω = source state

α/α = trace action
Ω = compiled state

δ = partial bijection
a/a = allocator

M = monitor state
α = monitor action

Ω

Ω′

α

Ω

Ω′

α

∗

=δ

=δ ′

∼δ ′

a

a′

a

a′

α

α

=δ

=δ ′

=δ ′

M

M ′

α

= δ

= δ
′

= δ
′

=
δ

=
δ
′

=
δ
′

a

a′

a

a′

α

α

PRO: proved MS preservation, MS

enforcement

CON: not really RSC (no ∀A)
Challenge: how to ensure A actions

do not affect MS?

16/35

Compiler Properties

Ω = source state

α/α = trace action
Ω = compiled state

δ = partial bijection

a/a = allocator

M = monitor state
α = monitor action

Ω

Ω′

α

Ω

Ω′

α

∗

=δ

=δ ′

∼δ ′

a

a′

a

a′

α

α

=δ

=δ ′

=δ ′

M

M ′

α

= δ

= δ
′

= δ
′

=
δ

=
δ
′

=
δ
′

a

a′

a

a′

α

α

PRO: proved MS preservation, MS

enforcement

CON: not really RSC (no ∀A)
Challenge: how to ensure A actions

do not affect MS?

16/35

Compiler Properties

Ω = source state

α/α = trace action
Ω = compiled state

δ = partial bijection

a/a = allocator

M = monitor state
α = monitor action

Ω

Ω′

α

Ω

Ω′

α

∗

=δ

=δ ′

∼δ ′

a

a′

a

a′

α

α

=δ

=δ ′

=δ ′

M

M ′

α

= δ

= δ
′

= δ
′

=
δ

=
δ
′

=
δ
′

a

a′

a

a′

α

α

PRO: proved MS preservation, MS

enforcement

CON: not really RSC (no ∀A)
Challenge: how to ensure A actions

do not affect MS?

16/35

Compiler Properties

Ω = source state

α/α = trace action
Ω = compiled state

δ = partial bijection
a/a = allocator

M = monitor state
α = monitor action

Ω

Ω′

α

Ω

Ω′

α

∗

=δ

=δ ′

∼δ ′

a

a′

a

a′

α

α

=δ

=δ ′

=δ ′

M

M ′

α

= δ

= δ
′

= δ
′

=
δ

=
δ
′

=
δ
′

a

a′

a

a′

α

α

PRO: proved MS preservation, MS

enforcement

CON: not really RSC (no ∀A)
Challenge: how to ensure A actions

do not affect MS?

16/35

Compiler Properties

Ω = source state

α/α = trace action
Ω = compiled state

δ = partial bijection
a/a = allocator

M = monitor state
α = monitor action

Ω

Ω′

α

Ω

Ω′

α

∗

=δ

=δ ′

∼δ ′

a

a′

a

a′

α

α

=δ

=δ ′

=δ ′

M

M ′

α

= δ

= δ
′

= δ
′

=
δ

=
δ
′

=
δ
′

a

a′

a

a′

α

α

PRO: proved MS preservation, MS

enforcement

CON: not really RSC (no ∀A)
Challenge: how to ensure A actions

do not affect MS?

16/35

Compiler Properties

Ω = source state

α/α = trace action
Ω = compiled state

δ = partial bijection
a/a = allocator

M = monitor state
α = monitor action

Ω

Ω′

α

Ω

Ω′

α

∗

=δ

=δ ′

∼δ ′

a

a′

a

a′

α

α

=δ

=δ ′

=δ ′

M

M ′

α

= δ

= δ
′

= δ
′

=
δ

=
δ
′

=
δ
′

a

a′

a

a′

α

α

PRO: proved MS preservation, MS

enforcement

CON: not really RSC (no ∀A)
Challenge: how to ensure A actions

do not affect MS?

16/35

Compiler Properties

Ω = source state

α/α = trace action
Ω = compiled state

δ = partial bijection
a/a = allocator

M = monitor state
α = monitor action

Ω

Ω′

α

Ω

Ω′

α

∗

=δ

=δ ′

∼δ ′

a

a′

a

a′

α

α

=δ

=δ ′

=δ ′

M

M ′

α

= δ

= δ
′

= δ
′

=
δ

=
δ
′

=
δ
′

a

a′

a

a′

α

α

PRO: proved MS preservation, MS

enforcement

CON: not really RSC (no ∀A)
Challenge: how to ensure A actions

do not affect MS?

16/35

Compiler Properties

Ω = source state

α/α = trace action
Ω = compiled state

δ = partial bijection
a/a = allocator

M = monitor state
α = monitor action

Ω

Ω′

α

Ω

Ω′

α

∗

=δ

=δ ′

∼δ ′

a

a′

a

a′

α

α

=δ

=δ ′

=δ ′

M

M ′

α

= δ

= δ
′

= δ
′

=
δ

=
δ
′

=
δ
′

a

a′

a

a′

α

α

PRO: proved MS preservation, MS

enforcement

CON: not really RSC (no ∀A)
Challenge: how to ensure A actions

do not affect MS?

16/35

Compiler Properties

Ω = source state

α/α = trace action
Ω = compiled state

δ = partial bijection
a/a = allocator

M = monitor state
α = monitor action

Ω

Ω′

α

Ω

Ω′

α

∗

=δ

=δ ′

∼δ ′

a

a′

a

a′

α

α

=δ

=δ ′

=δ ′

M

M ′

α

= δ

= δ
′

= δ
′

=
δ

=
δ
′

=
δ
′

a

a′

a

a′

α

α

PRO: proved MS preservation, MS

enforcement

CON: not really RSC (no ∀A)
Challenge: how to ensure A actions

do not affect MS?

16/35

Compiler Properties

Ω = source state

α/α = trace action
Ω = compiled state

δ = partial bijection
a/a = allocator

M = monitor state
α = monitor action

Ω

Ω′

α

Ω

Ω′

α

∗

=δ

=δ ′

∼δ ′

a

a′

a

a′

α

α

=δ

=δ ′

=δ ′

M

M ′

α

= δ

= δ
′

= δ
′

=
δ

=
δ
′

=
δ
′

a

a′

a

a′

α

α

PRO: proved MS preservation, MS

enforcement
CON: not really RSC (no ∀A)

Challenge: how to ensure A actions
do not affect MS?

16/35

Compiler Properties

Ω = source state

α/α = trace action
Ω = compiled state

δ = partial bijection
a/a = allocator

M = monitor state
α = monitor action

Ω

Ω′

α

Ω

Ω′

α

∗

=δ

=δ ′

∼δ ′

a

a′

a

a′

α

α

=δ

=δ ′

=δ ′

M

M ′

α

= δ

= δ
′

= δ
′

=
δ

=
δ
′

=
δ
′

a

a′

a

a′

α

α

PRO: proved MS preservation, MS

enforcement
CON: not really RSC (no ∀A)

Challenge: how to ensure A actions
do not affect MS?

16/35

Robust Cryptographic Constant
Time (wip)

(Robust) Cryptographic Constant Time

• larger trace model than MS:

• memory accesses (as for MS)
• and timing-relevant operations

• (in)formally RCT: . . .
no secret-dependent operations

Bernstein ’15, Barbosa et al. S&P’21

17/35

(Robust) Cryptographic Constant Time

• larger trace model than MS:
• memory accesses (as for MS)
• and timing-relevant operations

• (in)formally RCT: . . .
no secret-dependent operations

Bernstein ’15, Barbosa et al. S&P’21

17/35

(Robust) Cryptographic Constant Time

• larger trace model than MS:
• memory accesses (as for MS)
• and timing-relevant operations

• (in)formally RCT: . . .

no secret-dependent operations
Bernstein ’15, Barbosa et al. S&P’21

17/35

(Robust) Cryptographic Constant Time

• larger trace model than MS:
• memory accesses (as for MS)
• and timing-relevant operations

• (in)formally RCT: . . .
no secret-dependent operations

Bernstein ’15, Barbosa et al. S&P’21

17/35

Compiler Preserving RCT

• Goal: protect a crypto library from any application
using it

• crypto developers already zero out memory before
calling apps (e.g., Libsodium)

• Challenge: crypto devs must make their code CT

• Solution: devise CT code e.g., Bacelar Almeida et al. CCS’17

• Challenge: crypto devs do not know where their
code is used

• Solution: use a compiler that preserves RCT

18/35

Compiler Preserving RCT

• Goal: protect a crypto library from any application
using it

• crypto developers already zero out memory before
calling apps (e.g., Libsodium)

• Challenge: crypto devs must make their code CT

• Solution: devise CT code e.g., Bacelar Almeida et al. CCS’17

• Challenge: crypto devs do not know where their
code is used

• Solution: use a compiler that preserves RCT

18/35

Compiler Preserving RCT

• Goal: protect a crypto library from any application
using it

• crypto developers already zero out memory before
calling apps (e.g., Libsodium)

• Challenge: crypto devs must make their code CT

• Solution: devise CT code e.g., Bacelar Almeida et al. CCS’17

• Challenge: crypto devs do not know where their
code is used

• Solution: use a compiler that preserves RCT

18/35

Compiler Preserving RCT

• Goal: protect a crypto library from any application
using it

• crypto developers already zero out memory before
calling apps (e.g., Libsodium)

• Challenge: crypto devs must make their code CT

• Solution: devise CT code e.g., Bacelar Almeida et al. CCS’17

• Challenge: crypto devs do not know where their
code is used

• Solution: use a compiler that preserves RCT

18/35

Compiler Preserving RCT

• Goal: protect a crypto library from any application
using it

• crypto developers already zero out memory before
calling apps (e.g., Libsodium)

• Challenge: crypto devs must make their code CT

• Solution: devise CT code e.g., Bacelar Almeida et al. CCS’17

• Challenge: crypto devs do not know where their
code is used

• Solution: use a compiler that preserves RCT

18/35

Compiler Preserving RCT

• Goal: protect a crypto library from any application
using it

• crypto developers already zero out memory before
calling apps (e.g., Libsodium)

• Challenge: crypto devs must make their code CT

• Solution: devise CT code e.g., Bacelar Almeida et al. CCS’17

• Challenge: crypto devs do not know where their
code is used

• Solution: use a compiler that preserves RCT

18/35

Micro-architectural Attacks
(Spectre) CCS’21

Speculative Semantics & SNI Guarnieri et al. S&P’21

void f (int x) ↦ if(x <A.size) {y = B[A[x]]}

run 1: A.size = 16, A[128] = 3

run 2: A[128] = 7 different H values

call f 128

if (128 < 16) { y = B[A[128]] } skipskipskip

y = B[A[128]] y = B[3]

rd A[128]

rd A[128]

y = _
rd B[3]

rd B[7]

trace 1:

trace 2:

different traces
⇒ SNI violation

A program is SNI (⊢ P ∶ SNI) if, given
two runs from low-equivalent states:
• assuming the non-speculative

traces are low-equivalent
• then the speculative traces are

also low-equivalent

19/35

Speculative Semantics & SNI Guarnieri et al. S&P’21

void f (int x) ↦ if(x <A.size) {y = B[A[x]]}

run 1: A.size = 16, A[128] = 3

run 2: A[128] = 7 different H values

call f 128 if (128 < 16) { y = B[A[128]] }

skipskipskip

y = B[A[128]] y = B[3]

rd A[128]

rd A[128]

y = _
rd B[3]

rd B[7]

trace 1:

trace 2:

different traces
⇒ SNI violation

A program is SNI (⊢ P ∶ SNI) if, given
two runs from low-equivalent states:
• assuming the non-speculative

traces are low-equivalent
• then the speculative traces are

also low-equivalent

19/35

Speculative Semantics & SNI Guarnieri et al. S&P’21

void f (int x) ↦ if(x <A.size) {y = B[A[x]]}

run 1: A.size = 16, A[128] = 3

run 2: A[128] = 7 different H values

call f 128 if (128 < 16) { y = B[A[128]] } skip

skip

skip

y = B[A[128]] y = B[3]

rd A[128]

rd A[128]

y = _
rd B[3]

rd B[7]

trace 1:

trace 2:

different traces
⇒ SNI violation

A program is SNI (⊢ P ∶ SNI) if, given
two runs from low-equivalent states:
• assuming the non-speculative

traces are low-equivalent
• then the speculative traces are

also low-equivalent

19/35

Speculative Semantics & SNI Guarnieri et al. S&P’21

void f (int x) ↦ if(x <A.size) {y = B[A[x]]}

run 1: A.size = 16, A[128] = 3

run 2: A[128] = 7 different H values

call f 128 if (128 < 16) { y = B[A[128]] }

skipskip

skip

y = B[A[128]]

y = B[3]

rd A[128]

rd A[128]

y = _
rd B[3]

rd B[7]

trace 1:

trace 2:

different traces
⇒ SNI violation

A program is SNI (⊢ P ∶ SNI) if, given
two runs from low-equivalent states:
• assuming the non-speculative

traces are low-equivalent
• then the speculative traces are

also low-equivalent

19/35

Speculative Semantics & SNI Guarnieri et al. S&P’21

void f (int x) ↦ if(x <A.size) {y = B[A[x]]}

run 1: A.size = 16, A[128] = 3

run 2: A[128] = 7 different H values

call f 128 if (128 < 16) { y = B[A[128]] }

skipskip

skip

y = B[A[128]] y = B[3]

rd A[128]

rd A[128] y = _
rd B[3]

rd B[7]

trace 1:

trace 2:

different traces
⇒ SNI violation

A program is SNI (⊢ P ∶ SNI) if, given
two runs from low-equivalent states:
• assuming the non-speculative

traces are low-equivalent
• then the speculative traces are

also low-equivalent

19/35

Speculative Semantics & SNI Guarnieri et al. S&P’21

void f (int x) ↦ if(x <A.size) {y = B[A[x]]}

run 1: A.size = 16, A[128] = 3

run 2: A[128] = 7 different H values

call f 128 if (128 < 16) { y = B[A[128]] }

skipskip

skip

y = B[A[128]] y = B[3]

rd A[128]

rd A[128]

y = _
rd B[3]

rd B[7]

trace 1:

trace 2:

different traces
⇒ SNI violation

A program is SNI (⊢ P ∶ SNI) if, given
two runs from low-equivalent states:
• assuming the non-speculative

traces are low-equivalent
• then the speculative traces are

also low-equivalent

19/35

Speculative Semantics & SNI Guarnieri et al. S&P’21

void f (int x) ↦ if(x <A.size) {y = B[A[x]]}

run 1: A.size = 16, A[128] = 3

run 2: A[128] = 7 different H values

call f 128 if (128 < 16) { y = B[A[128]] }

skipskip

skip

y = B[A[128]] y = B[3]

rd A[128]

rd A[128]

y = _
rd B[3]

rd B[7]

trace 1:

trace 2:

different traces
⇒ SNI violation

A program is SNI (⊢ P ∶ SNI) if, given
two runs from low-equivalent states:
• assuming the non-speculative

traces are low-equivalent
• then the speculative traces are

also low-equivalent

19/35

Speculative Semantics & SNI Guarnieri et al. S&P’21

void f (int x) ↦ if(x <A.size) {y = B[A[x]]}

run 1: A.size = 16, A[128] = 3

run 2: A[128] = 7 different H values

call f 128 if (128 < 16) { y = B[A[128]] }

skip

skip

skip

y = B[A[128]] y = B[3]

rd A[128]

rd A[128] y = _

rd B[3]

rd B[7]

trace 1:

trace 2:
different traces
⇒ SNI violation

A program is SNI (⊢ P ∶ SNI) if, given
two runs from low-equivalent states:
• assuming the non-speculative

traces are low-equivalent
• then the speculative traces are

also low-equivalent

19/35

Speculative Semantics & SNI Guarnieri et al. S&P’21

void f (int x) ↦ if(x <A.size) {y = B[A[x]]}

run 1: A.size = 16, A[128] = 3
run 2: A[128] = 7 different H values

call f 128 if (128 < 16) { y = B[A[128]] }

skipskipskip

y = B[A[128]] y = B[3]

rd A[128]

rd A[128] y = _

rd B[3]

rd B[7]

trace 1:

trace 2:
different traces
⇒ SNI violation

A program is SNI (⊢ P ∶ SNI) if, given
two runs from low-equivalent states:
• assuming the non-speculative

traces are low-equivalent
• then the speculative traces are

also low-equivalent

19/35

Speculative Semantics & SNI Guarnieri et al. S&P’21

void f (int x) ↦ if(x <A.size) {y = B[A[x]]}

run 1: A.size = 16, A[128] = 3
run 2: A[128] = 7 different H values

call f 128 if (128 < 16) { y = B[A[128]] }

skipskipskip

y = B[A[128]] y = B[3]

rd A[128]

rd A[128]

y = _

rd B[3]

rd B[7]

trace 1:

trace 2:
different traces
⇒ SNI violation

A program is SNI (⊢ P ∶ SNI) if, given
two runs from low-equivalent states:
• assuming the non-speculative

traces are low-equivalent
• then the speculative traces are

also low-equivalent

19/35

Speculative Semantics & SNI Guarnieri et al. S&P’21

void f (int x) ↦ if(x <A.size) {y = B[A[x]]}

run 1: A.size = 16, A[128] = 3
run 2: A[128] = 7 different H values

call f 128 if (128 < 16) { y = B[A[128]] }

skipskipskip

y = B[A[128]] y = B[3]

rd A[128]

rd A[128]

y = _

rd B[3]

rd B[7]

trace 1:

trace 2:
different traces
⇒ SNI violation

A program is SNI (⊢ P ∶ SNI) if, given
two runs from low-equivalent states:
• assuming the non-speculative

traces are low-equivalent
• then the speculative traces are

also low-equivalent

19/35

Speculative Semantics & SNI Guarnieri et al. S&P’21

void f (int x) ↦ if(x <A.size) {y = B[A[x]]}

run 1: A.size = 16, A[128] = 3
run 2: A[128] = 7 different H values

call f 128 if (128 < 16) { y = B[A[128]] }

skipskipskip

y = B[A[128]] y = B[3]

rd A[128]

rd A[128]

y = _

rd B[3]

rd B[7]

trace 1:
trace 2:

different traces
⇒ SNI violation

A program is SNI (⊢ P ∶ SNI) if, given
two runs from low-equivalent states:
• assuming the non-speculative

traces are low-equivalent
• then the speculative traces are

also low-equivalent

19/35

Speculative Semantics & SNI Guarnieri et al. S&P’21

void f (int x) ↦ if(x <A.size) {y = B[A[x]]}

run 1: A.size = 16, A[128] = 3
run 2: A[128] = 7 different H values

call f 128 if (128 < 16) { y = B[A[128]] }

skipskipskip

y = B[A[128]] y = B[3]

rd A[128]

rd A[128]

y = _

rd B[3]

rd B[7]

trace 1:
trace 2:

different traces
⇒ SNI violation

A program is SNI (⊢ P ∶ SNI) if, given
two runs from low-equivalent states:
• assuming the non-speculative

traces are low-equivalent
• then the speculative traces are

also low-equivalent

19/35

Speculative Semantics & SNI Guarnieri et al. S&P’21

void f (int x) ↦ if(x <A.size) {y = B[A[x]]}

run 1: A.size = 16, A[128] = 3
run 2: A[128] = 7 different H values

call f 128 if (128 < 16) { y = B[A[128]] }

skipskipskip

y = B[A[128]] y = B[3]

rd A[128]

rd A[128]

y = _

rd B[3]

rd B[7]

trace 1:
trace 2:

different traces
⇒ SNI violation

A program is SNI (⊢ P ∶ SNI) if, given
two runs from low-equivalent states:
• assuming the non-speculative

traces are low-equivalent
• then the speculative traces are

also low-equivalent

19/35

Problems Problems Problems . . .

Problem: Proving compiler preserves SNI is hard

Solution: overapproximate SNI with a
novel property: speculative safety (SS)

20/35

Problems Problems Problems . . .

Problem: Proving compiler preserves SNI is hard

Solution: overapproximate SNI with a
novel property: speculative safety (SS)

20/35

Speculative Safety (SS): Taint Tracking

void f (int x) ↦ if(x <A.size) {y = B[A[x]]}

only 1 run needed: A.size=16, A[128]=3
integrity lattice: S ⊂ U S ⊓U = S U does not flow to S

call f 128
pc : S

if (128 < 16) { y = B[A[128]] }
pc : S

skip
pc : S

y = B[A[128]]
128 : S

pc : U
y = B[3]

A[128] : U

pc : U

rd A[128] ∶ S

y = _
pc : U

rd B[3] ∶U

A program is SS (⊢ P ∶ SS) if its traces
do not contain U actions

21/35

Speculative Safety (SS): Taint Tracking

void f (int x) ↦ if(x <A.size) {y = B[A[x]]}

only 1 run needed: A.size=16, A[128]=3
integrity lattice: S ⊂ U S ⊓U = S U does not flow to S

call f 128
pc : S

if (128 < 16) { y = B[A[128]] }
pc : S

skip
pc : S

y = B[A[128]]
128 : S

pc : U
y = B[3]

A[128] : U

pc : U

rd A[128] ∶ S

y = _
pc : U

rd B[3] ∶U

A program is SS (⊢ P ∶ SS) if its traces
do not contain U actions

21/35

Speculative Safety (SS): Taint Tracking

void f (int x) ↦ if(x <A.size) {y = B[A[x]]}

only 1 run needed: A.size=16, A[128]=3
integrity lattice: S ⊂ U S ⊓U = S U does not flow to S

call f 128
pc : S

if (128 < 16) { y = B[A[128]] }
pc : S

skip
pc : S

y = B[A[128]]
128 : S

pc : U
y = B[3]

A[128] : U

pc : U

rd A[128] ∶ S

y = _
pc : U

rd B[3] ∶U

A program is SS (⊢ P ∶ SS) if its traces
do not contain U actions

21/35

Speculative Safety (SS): Taint Tracking

void f (int x) ↦ if(x <A.size) {y = B[A[x]]}

only 1 run needed: A.size=16, A[128]=3
integrity lattice: S ⊂ U S ⊓U = S U does not flow to S

call f 128
pc : S

if (128 < 16) { y = B[A[128]] }
pc : S

skip
pc : S

y = B[A[128]]
128 : S

pc : U

y = B[3]
A[128] : U

pc : U

rd A[128] ∶ S

y = _
pc : U

rd B[3] ∶U

A program is SS (⊢ P ∶ SS) if its traces
do not contain U actions

21/35

Speculative Safety (SS): Taint Tracking

void f (int x) ↦ if(x <A.size) {y = B[A[x]]}

only 1 run needed: A.size=16, A[128]=3
integrity lattice: S ⊂ U S ⊓U = S U does not flow to S

call f 128
pc : S

if (128 < 16) { y = B[A[128]] }
pc : S

skip
pc : S

y = B[A[128]]
128 : S

pc : U
y = B[3]

A[128] : U

pc : U

rd A[128] ∶ S

y = _
pc : U

rd B[3] ∶U

A program is SS (⊢ P ∶ SS) if its traces
do not contain U actions

21/35

Speculative Safety (SS): Taint Tracking

void f (int x) ↦ if(x <A.size) {y = B[A[x]]}

only 1 run needed: A.size=16, A[128]=3
integrity lattice: S ⊂ U S ⊓U = S U does not flow to S

call f 128
pc : S

if (128 < 16) { y = B[A[128]] }
pc : S

skip
pc : S

y = B[A[128]]
128 : S

pc : U
y = B[3]

A[128] : U

pc : U

rd A[128] ∶ S

y = _
pc : U

rd B[3] ∶U

A program is SS (⊢ P ∶ SS) if its traces
do not contain U actions

21/35

Speculative Safety (SS): Taint Tracking

void f (int x) ↦ if(x <A.size) {y = B[A[x]]}

only 1 run needed: A.size=16, A[128]=3
integrity lattice: S ⊂ U S ⊓U = S U does not flow to S

call f 128
pc : S

if (128 < 16) { y = B[A[128]] }
pc : S

skip
pc : S

y = B[A[128]]
128 : S

pc : U
y = B[3]

A[128] : U

pc : U

rd A[128] ∶ S

y = _
pc : U

rd B[3] ∶U

A program is SS (⊢ P ∶ SS) if its traces
do not contain U actions

21/35

Speculative Safety (SS): Taint Tracking

void f (int x) ↦ if(x <A.size) {y = B[A[x]]}

only 1 run needed: A.size=16, A[128]=3
integrity lattice: S ⊂ U S ⊓U = S U does not flow to S

call f 128
pc : S

if (128 < 16) { y = B[A[128]] }
pc : S

skip
pc : S

y = B[A[128]]
128 : S

pc : U
y = B[3]

A[128] : U

pc : U

rd A[128] ∶ S

y = _
pc : U

rd B[3] ∶U

A program is SS (⊢ P ∶ SS) if its traces
do not contain U actions

21/35

Secure Compilation Framework for Spectre

⊢ P ∶ SS

⊢ JPK ∶ SS

∀P ∈ source

⊢ JPK ∶ SNI

⊢ J⋅K ∶ RSP

overapproximation

⊢ J⋅K ∶ RSC

criteria
equality

• dashed premises are already discharged
• to show security: simply prove RSC

22/35

Secure Compilation Framework for Spectre

⊢ P ∶ SS

⊢ JPK ∶ SS

∀P ∈ source

⊢ JPK ∶ SNI

⊢ J⋅K ∶ RSP

overapproximation

⊢ J⋅K ∶ RSC

criteria
equality

• dashed premises are already discharged
• to show security: simply prove RSC

22/35

Secure Compilation Framework for Spectre

⊢ P ∶ SS

⊢ JPK ∶ SS

∀P ∈ source

⊢ JPK ∶ SNI

⊢ J⋅K ∶ RSP

overapproximation

⊢ J⋅K ∶ RSC

criteria
equality

• dashed premises are already discharged

• to show security: simply prove RSC

22/35

Secure Compilation Framework for Spectre

⊢ P ∶ SS

⊢ JPK ∶ SS

∀P ∈ source

⊢ JPK ∶ SNI

⊢ J⋅K ∶ RSP

overapproximation

⊢ J⋅K ∶ RSC

criteria
equality

• dashed premises are already discharged
• to show security: simply prove RSC

22/35

RSC for lfence

void f(int x) ↦ if(x < A.size){y = B[A[x]]} // A.size=16, A[128]=3
J⋅K = void f(int x) ↦ if(x <A.size){lfence;y = B[A[x]]}

call f 128
pc : S

if (128 < 16) { lfence; y = B[A[128]] }
pc : S

skip
pc : S

lfence; y = B[A[128]]
pc : U

23/35

RSC for lfence

void f(int x) ↦ if(x < A.size){y = B[A[x]]} // A.size=16, A[128]=3
J⋅K = void f(int x) ↦ if(x <A.size){lfence;y = B[A[x]]}

call f 128
pc : S

if (128 < 16) { lfence; y = B[A[128]] }
pc : S

skip
pc : S

lfence; y = B[A[128]]
pc : U

23/35

RSC for lfence

void f(int x) ↦ if(x < A.size){y = B[A[x]]} // A.size=16, A[128]=3
J⋅K = void f(int x) ↦ if(x <A.size){lfence;y = B[A[x]]}

call f 128
pc : S

if (128 < 16) { lfence; y = B[A[128]] }
pc : S

skip
pc : S

lfence; y = B[A[128]]
pc : U

23/35

RSC for lfence

void f(int x) ↦ if(x < A.size){y = B[A[x]]} // A.size=16, A[128]=3
J⋅K = void f(int x) ↦ if(x <A.size){lfence;y = B[A[x]]}

call f 128
pc : S

if (128 < 16) { lfence; y = B[A[128]] }
pc : S

skip
pc : S

lfence; y = B[A[128]]
pc : U

23/35

RSC for lfence

void f(int x) ↦ if(x < A.size){y = B[A[x]]} // A.size=16, A[128]=3
J⋅K = void f(int x) ↦ if(x <A.size){lfence;y = B[A[x]]}

call f 128
pc : S

if (128 < 16) { lfence; y = B[A[128]] }
pc : S

skip
pc : S

lfence; y = B[A[128]]
pc : U

23/35

Proofs Insight

ifz

JifzKs

α?σ α!σ
ασ
1

ασ
2

α?σ α!σ
ασ
1

ασ
2

P / JPKs executes⟨⟨A⟩⟩ / A

executes
⟨⟨A⟩⟩ / A

executes

w=0

αs
σ

rlbeither A
or JPKs

executes

24/35

Proofs Insight

ifz

JifzKs

α?σ α!σ
ασ
1

ασ
2

α?σ α!σ
ασ
1

ασ
2

P / JPKs executes⟨⟨A⟩⟩ / A

executes
⟨⟨A⟩⟩ / A

executes

w=0

αs
σ

rlbeither A
or JPKs

executes

24/35

Proofs Insight

ifz

JifzKs

α?σ α!σ
ασ
1

ασ
2

α?σ α!σ
ασ
1

ασ
2

P / JPKs executes⟨⟨A⟩⟩ / A

executes
⟨⟨A⟩⟩ / A

executes

w=0

αs
σ

rlbeither A
or JPKs

executes

24/35

Proofs Insight

ifz

JifzKs

α?σ α!σ
ασ
1

ασ
2

α?σ α!σ
ασ
1

ασ
2

P / JPKs executes⟨⟨A⟩⟩ / A

executes
⟨⟨A⟩⟩ / A

executes

w=0

αs
σ

rlbeither A
or JPKs

executes

24/35

Proofs Insight

ifz

JifzKs

α?σ α!σ
ασ
1

ασ
2

α?σ α!σ
ασ
1

ασ
2

P / JPKs executes⟨⟨A⟩⟩ / A

executes
⟨⟨A⟩⟩ / A

executes

w=0

αs
σ

rlb

either A
or JPKs

executes

24/35

Proofs Insight

ifz

JifzKs

α?σ α!σ
ασ
1

ασ
2

α?σ α!σ
ασ
1

ασ
2

P / JPKs executes⟨⟨A⟩⟩ / A

executes
⟨⟨A⟩⟩ / A

executes

w=0

αs
σ

rlbeither A
or JPKs

executes

24/35

What Then? CCS’22, wip

• SNIv1, SNIv2, SNIv4, SNIv5
Kocher et al. S&P’19

• Challenge: can the lfence compiler “mess”
with SNIv2?

• Challenge: can we compose lfence(SNIv1)
and retpoline(SNIv5)?

25/35

What Then? CCS’22, wip

• SNIv1, SNIv2, SNIv4, SNIv5
Kocher et al. S&P’19

• Challenge: can the lfence compiler “mess”
with SNIv2?

• Challenge: can we compose lfence(SNIv1)
and retpoline(SNIv5)?

25/35

What Then? CCS’22, wip

• SNIv1, SNIv2, SNIv4, SNIv5
Kocher et al. S&P’19

• Challenge: can the lfence compiler “mess”
with SNIv2?

• Challenge: can we compose lfence(SNIv1)
and retpoline(SNIv5)?

25/35

Security Architectures
(e.g., Cheri/ARM Morello, Sancus/Intel SGX, . . .) Toplas’15, CSF’21, . . .

Mechanise Cryptographic Proofs
CSF’24 + wip

Robust Hyperproperty Preservation

AJPK &

t

↝

AP &

t

↝

⇐⇒

J⋅K ⊢ RHP def
= ∀P,A.∃A.∀t.

A [JPK]↝ t ⇐⇒ A [P]↝ t

26/35

Robust Hyperproperty Preservation

AJPK &

t

↝

AP &

t

↝

⇐⇒

J⋅K ⊢ RHP def
= ∀P,A.∃A.∀t.

A [JPK]↝ t ⇐⇒ A [P]↝ t

26/35

Universal Composability: UC

• gold standard for proving security of crypto
protocols under concurrent composition

• overcome main drawback in protocol
vulnerabilities: composition

• many flavours: UC , SaUCy, iUC, . . .
Canetti ’01, Liao et al. PLDI’19, Camenisch et al. Asiacrypt’19

This talk: generic flavour, geared towards the
newer theories

27/35

Universal Composability: UC

• gold standard for proving security of crypto
protocols under concurrent composition

• overcome main drawback in protocol
vulnerabilities: composition

• many flavours: UC , SaUCy, iUC, . . .
Canetti ’01, Liao et al. PLDI’19, Camenisch et al. Asiacrypt’19

This talk: generic flavour, geared towards the
newer theories

27/35

Universal Composability: UC

• gold standard for proving security of crypto
protocols under concurrent composition

• overcome main drawback in protocol
vulnerabilities: composition

• many flavours: UC , SaUCy, iUC, . . .
Canetti ’01, Liao et al. PLDI’19, Camenisch et al. Asiacrypt’19

This talk: generic flavour, geared towards the
newer theories

27/35

Universal Composability: UC

• gold standard for proving security of crypto
protocols under concurrent composition

• overcome main drawback in protocol
vulnerabilities: composition

• many flavours: UC , SaUCy, iUC, . . .
Canetti ’01, Liao et al. PLDI’19, Camenisch et al. Asiacrypt’19

This talk: generic flavour, geared towards the
newer theories

27/35

UC Base Notions: ITMs Canetti and Fischlin Crypto’01

• protocols Π (using concrete crypto)

• functionalities F (using abstract notions)

• attackers A & S (corrupting parties etc.)

• environments Z (objective witness)

28/35

UC Base Notions: ITMs Canetti and Fischlin Crypto’01

• protocols Π (using concrete crypto)

• functionalities F (using abstract notions)

• attackers A & S (corrupting parties etc.)

• environments Z (objective witness)

28/35

UC Base Notions: ITMs Canetti and Fischlin Crypto’01

• protocols Π (using concrete crypto)

• functionalities F (using abstract notions)

• attackers A & S (corrupting parties etc.)

• environments Z (objective witness)

28/35

UC Base Notions: ITMs Canetti and Fischlin Crypto’01

• protocols Π (using concrete crypto)

• functionalities F (using abstract notions)

• attackers A & S (corrupting parties etc.)

• environments Z (objective witness)

28/35

UC (Semi-formally)

Π A

Z

0/1

F S

Z

0/1

≈

↔ represent communication channels

Π ⊢UC F
def
= ∀poly A,∃S,∀Z.

Exec[Z,A,Π] ≈ Exec[Z,S,F]

29/35

UC (Semi-formally)

Π A

Z

0/1

F S

Z

0/1

≈

↔ represent communication channels

Π ⊢UC F
def
= ∀poly A,∃S,∀Z.

Exec[Z,A,Π] ≈ Exec[Z,S,F]

29/35

A Closer Look

∀poly A,∃S,∀Z. ∀P,A.∃A.∀t.

Π A

Z

0/1

F S

Z

0/1

≈

AJPK &

t

↝

AP &

t

↝

⇐⇒

Isabelle’d both perfect and computational UC

30/35

A Closer Look

∀poly A,∃S,∀Z. ∀P,A.∃A.∀t.

Π A

Z

0/1

F S

Z

0/1

≈

AJPK &

t

↝

AP &

t

↝

⇐⇒

Isabelle’d both perfect and computational UC
30/35

Analogy

UC SC

protocol Π JPK compiled program
concrete attacker A A target context
ideal functionality F P source program
simulator S A source context
environment, output Z, 0/1 t, ↝ trace, semantics
communication ↔ [] linking
probabilistic equiv. ≈ ⇐⇒ trace equality

human translation Π → F J⋅K: P→ P compiler
general composition result . . .

31/35

Analogy

UC SC

protocol Π JPK compiled program
concrete attacker A A target context
ideal functionality F P source program
simulator S A source context
environment, output Z, 0/1 t, ↝ trace, semantics
communication ↔ [] linking
probabilistic equiv. ≈ ⇐⇒ trace equality

human translation Π → F J⋅K: P→ P compiler
general composition result . . .

31/35

Analogy Results

• transfer UC results from ITMs to any S/T

• mechanise UC results as RHP results
known in computer-aided crypto Haagh et al. CSF’18

• Mechanised UC for 1-Bit Commitment in
Deepsec submission

• Mechanised UC for 1/2 Wireguard in
Cryptoverif CSF’24

32/35

Analogy Results

• transfer UC results from ITMs to any S/T

• mechanise UC results as RHP results

known in computer-aided crypto Haagh et al. CSF’18

• Mechanised UC for 1-Bit Commitment in
Deepsec submission

• Mechanised UC for 1/2 Wireguard in
Cryptoverif CSF’24

32/35

Analogy Results

• transfer UC results from ITMs to any S/T

• mechanise UC results as RHP results
known in computer-aided crypto Haagh et al. CSF’18

• Mechanised UC for 1-Bit Commitment in
Deepsec submission

• Mechanised UC for 1/2 Wireguard in
Cryptoverif CSF’24

32/35

Analogy Results

• transfer UC results from ITMs to any S/T

• mechanise UC results as RHP results
known in computer-aided crypto Haagh et al. CSF’18

• Mechanised UC for 1-Bit Commitment in
Deepsec submission

• Mechanised UC for 1/2 Wireguard in
Cryptoverif CSF’24

32/35

Conclusion

Conclusion

• secure compilation threat model

• formal foundations: RSC, RHP

• robust compilation
use-cases (MS, CT, SNI)

• connection with UC

33/35

Conclusion

• secure compilation threat model

• formal foundations: RSC, RHP

• robust compilation
use-cases (MS, CT, SNI)

• connection with UC

33/35

Conclusion

• secure compilation threat model

• formal foundations: RSC, RHP

• robust compilation
use-cases (MS, CT, SNI)

• connection with UC

33/35

Conclusion

• secure compilation threat model

• formal foundations: RSC, RHP

• robust compilation
use-cases (MS, CT, SNI)

• connection with UC

33/35

Future

• More foundations questions?

• SC for emerging security archs?

• SC for more properties?

• SC for different languages?

• Other UC -like connections?

• More mechanised UC protocols?

Come to PRISC’25, co-located with
POPL’25.

34/35

Future

• More foundations questions?

• SC for emerging security archs?

• SC for more properties?

• SC for different languages?

• Other UC -like connections?

• More mechanised UC protocols?

Come to PRISC’25, co-located with
POPL’25.

34/35

Future

• More foundations questions?

• SC for emerging security archs?

• SC for more properties?

• SC for different languages?

• Other UC -like connections?

• More mechanised UC protocols?

Come to PRISC’25, co-located with
POPL’25.

34/35

Future

• More foundations questions?

• SC for emerging security archs?

• SC for more properties?

• SC for different languages?

• Other UC -like connections?

• More mechanised UC protocols?

Come to PRISC’25, co-located with
POPL’25.

34/35

Future

• More foundations questions?

• SC for emerging security archs?

• SC for more properties?

• SC for different languages?

• Other UC -like connections?

• More mechanised UC protocols?

Come to PRISC’25, co-located with
POPL’25.

34/35

Future

• More foundations questions?

• SC for emerging security archs?

• SC for more properties?

• SC for different languages?

• Other UC -like connections?

• More mechanised UC protocols?

Come to PRISC’25, co-located with
POPL’25.

34/35

Future

• More foundations questions?

• SC for emerging security archs?

• SC for more properties?

• SC for different languages?

• Other UC -like connections?

• More mechanised UC protocols?

Come to PRISC’25, co-located with
POPL’25.

34/35

Questions?

35/35

	Who Am I ?
	Foundations of Secure Compilation
	Robust Memory Safety POPL'23
	Robust Cryptographic Constant Time (wip)
	Micro-architectural Attacks (Spectre) CCS'21
	Security Architectures (e.g., Cheri/ARM Morello, Sancus/Intel SGX, …) Toplas'15, CSF'21, …
	Mechanise Cryptographic Proofs CSF'24 + wip
	Conclusion
	

