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Foundations of Secure
Compilation



Programming Languages: Pros and Cons

Good PLs ( , , , , . . . ) provide:

• helpful abstractions to write secure code

but

• when compiled (J⋅K) and linked with
adversarial target code

• these abstractions are NOT enforced
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Secure Compilation: Example

ChaCha20 Poly1305 . . .

JChaCha20K JPoly1305K J. . .K

F∗ HACL*. Zinzindohouè et al., CCS’17
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Secure Compilation: Example

ChaCha20 Poly1305 . . .

JChaCha20K JPoly1305K J. . .K

F∗ HACL*. Zinzindohouè et al., CCS’17

Asm

Enable source-level security reasoning
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Quest for Foundations

What does it mean
for a compiler to

be secure?

Analogous questions are answered for type
systems, correct compilation, . . .
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Once Upon a Time in Process Algebra

Challenge: define that their implementation of
secure channels via cryptography was secure

Fully Abstract Compilation (FAC)

6/35



Once Upon a Time in Process Algebra

Challenge: define that their implementation of
secure channels via cryptography was secure

Fully Abstract Compilation (FAC)

6/35



Fully Abstract Compilation Influence ACM CSUR’19

• ⋅ FAC: useful for language
expressiveness
but complex and with an unclear
security implication

• ⋅ Challenge: easier/more
efficient/more precise
alternatives

preserve classes of
(hyper)properties Clarkson & Schneider JCS ’10
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Robust Compilation (RC) Criteria CSF’19, ESOP’20, Toplas’21
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Robust Relational Property
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Robust 2-Relational Property
Preservation

Robust Relational relaXed safety
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safety Preservation
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safety Preservation

Robust Relational Safety
Preservation

Robust Finite-Relational
Safety Preservation

Robust K-Relational Safety
Preservation

Robust 2-Relational Safety
Preservation

Robust Hyperproperty
Preservation

Robust Subset-Closed Hyperproperty
Preservation

Robust K-Subset-Closed Hyperproperty
Preservation

Robust 2-Subset-Closed Hyperproperty
Preservation
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Robust Criteria: Intuition

Each point has two equivalent criteria:
• Property − ful ∶

+ clearly tells what class it preserves

- harder to prove
• Property − free ∶

+ easier to prove
- unclear what security classes are preserved
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In Depth Example: RSC ESOP’19, TOPLAS’21

J⋅K = compiler

π/π = set of traces
P = partial program
A/A = attacker

t/t = trace of events
[⋅] = linking

↝/↝ = trace semantics
m/m = prefix of a trace

J⋅K ∶ RSP def
=

∀π ≈ π ∈ Safety .

∀P.

if (∀A, t.

A [P]↝t

⇒ t ∈ π)

then (∀A, t.

A [JPK]↝t⇒

t ∈ π)

J⋅K ∶ RSC def
=

∀P,A,m.

if A [JPK]↝m

then ∃A,

m ≈m.A [P]↝m
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Secure Compilation Threat Model

• robust, active attacker (∀A)
robust safety works, e.g., Swasey et al. OOPSLA’17, Sammler et al. POPL’20

• in-language expressible attacker

• trace-based security behaviour (m/m)

What can we do with these
foundations?
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Talk Outline

Robust Memory Safety POPL’23

Robust Cryptographic Constant Time (wip)

Micro-architectural Attacks (Spectre) CCS’21

Security Architectures
(e.g., Cheri/ARM Morello, Sancus/Intel SGX, . . . ) Toplas’15, CSF’21, . . .

Mechanise Cryptographic Proofs CSF’24 + wip

Conclusion

12/35



Robust Memory Safety POPL’23



Memory Safety (Untyped, Intra-Object)

• add colours+shades to pointers & memory
• check colour+shade when using pointers

Memarian et al. POPL’19, Azevedo de Amorim et al. POST’18

F F F F F F

F

alloc(4)

A A A AA A A A

PP

alloc(1+1)

A AA A

QQ

read(P)

ok

PP

read(P)

NO

write(P)

PP

NO

Monitor encoding of MS

with state M

and actions for transitions
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Memory-Safe WebAssembly (MSWAsm)

• WAsm:
• inter-sandboxes MS

• intra-sandbox vulnerability

• MSWAsm: segment memory indexed by
Cheri-like pointers Watson et al. S&P’15

• handles:
⟨base, length,offset, isCorrupted, id⟩

• segment instructions:
• segment_alloc, segment_free
• segment_read, segment_write

• handle_add, handle_slice
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Compiling from C to MSWAsm

• pointer becomes handle

• dereference becomes segment_read

• write becomes segment_write

• pointer arithmetic becomes handle_add

• field access becomes handle_slice
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Compiler Properties

Ω = source state

α/α = trace action

Ω = compiled state

δ = partial bijection
a/a = allocator

M = monitor state
α = monitor action
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PRO: proved MS preservation, MS

enforcement

CON: not really RSC (no ∀A)
Challenge: how to ensure A actions

do not affect MS?
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Robust Cryptographic Constant
Time (wip)



(Robust) Cryptographic Constant Time

• larger trace model than MS:

• memory accesses (as for MS)
• and timing-relevant operations

• (in)formally RCT: . . .
no secret-dependent operations

Bernstein ’15, Barbosa et al. S&P’21
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Compiler Preserving RCT

• Goal: protect a crypto library from any application
using it

• crypto developers already zero out memory before
calling apps (e.g., Libsodium)

• Challenge: crypto devs must make their code CT

• Solution: devise CT code e.g., Bacelar Almeida et al. CCS’17

• Challenge: crypto devs do not know where their
code is used

• Solution: use a compiler that preserves RCT
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Micro-architectural Attacks
(Spectre) CCS’21



Speculative Semantics & SNI Guarnieri et al. S&P’21

void f (int x) ↦ if(x <A.size) {y = B[A[x]]}

run 1: A.size = 16, A[128] = 3

run 2: A[128] = 7 different H values

call f 128

if (128 < 16) { y = B[ A[ 128 ] ] } skipskipskip

y = B[ A[ 128 ] ] y = B[ 3 ]

rd A[128]

rd A[128]

y = _
rd B[3]

rd B[7]

trace 1:

trace 2:

different traces
⇒ SNI violation

A program is SNI (⊢ P ∶ SNI) if, given
two runs from low-equivalent states:
• assuming the non-speculative

traces are low-equivalent
• then the speculative traces are

also low-equivalent
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Problems Problems Problems . . .

Problem: Proving compiler preserves SNI is hard

Solution: overapproximate SNI with a
novel property: speculative safety (SS)
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Speculative Safety (SS ): Taint Tracking

void f (int x) ↦ if(x <A.size) {y = B[A[x]]}

only 1 run needed: A.size=16, A[128]=3
integrity lattice: S ⊂ U S ⊓U = S U does not flow to S

call f 128
pc : S

if (128 < 16) { y = B[ A[ 128 ] ] }
pc : S

skip
pc : S

y = B[ A[ 128 ] ]
128 : S

pc : U
y = B[ 3 ]

A[128] : U

pc : U

rd A[128] ∶ S

y = _
pc : U

rd B[3] ∶U

A program is SS (⊢ P ∶ SS) if its traces
do not contain U actions
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Secure Compilation Framework for Spectre

⊢ P ∶ SS

⊢ JPK ∶ SS

∀P ∈ source

⊢ JPK ∶ SNI

⊢ J⋅K ∶ RSP

overapproximation

⊢ J⋅K ∶ RSC

criteria
equality

• dashed premises are already discharged
• to show security: simply prove RSC
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RSC for lfence

void f(int x) ↦ if(x < A.size){y = B[A[x]]} // A.size=16, A[128]=3
J⋅K = void f(int x) ↦ if(x <A.size){lfence;y = B[A[x]]}

call f 128
pc : S

if (128 < 16) { lfence; y = B[ A[ 128 ] ] }
pc : S

skip
pc : S

lfence; y = B[ A[ 128 ] ]
pc : U
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Proofs Insight

ifz

JifzKs

α?σ α!σ
ασ
1

ασ
2

α?σ α!σ
ασ
1

ασ
2

P / JPKs executes⟨⟨A⟩⟩ / A

executes
⟨⟨A⟩⟩ / A

executes

w=0

αs
σ

rlbeither A
or JPKs

executes
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What Then? CCS’22, wip

• SNIv1, SNIv2, SNIv4, SNIv5
Kocher et al. S&P’19

• Challenge: can the lfence compiler “mess”
with SNIv2?

• Challenge: can we compose lfence(SNIv1)
and retpoline(SNIv5)?
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Security Architectures
(e.g., Cheri/ARM Morello, Sancus/Intel SGX, . . . ) Toplas’15, CSF’21, . . .



Mechanise Cryptographic Proofs
CSF’24 + wip



Robust Hyperproperty Preservation

AJPK &

t

↝

AP &

t

↝

⇐⇒

J⋅K ⊢ RHP def
= ∀P,A.∃A.∀t.

A [JPK]↝ t ⇐⇒ A [P]↝ t
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Universal Composability: UC

• gold standard for proving security of crypto
protocols under concurrent composition

• overcome main drawback in protocol
vulnerabilities: composition

• many flavours: UC , SaUCy, iUC, . . .
Canetti ’01, Liao et al. PLDI’19, Camenisch et al. Asiacrypt’19

This talk: generic flavour, geared towards the
newer theories
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UC Base Notions: ITMs Canetti and Fischlin Crypto’01

• protocols Π (using concrete crypto)

• functionalities F (using abstract notions)

• attackers A & S (corrupting parties etc.)

• environments Z (objective witness)
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UC (Semi-formally)

Π A

Z

0/1

F S

Z

0/1

≈

↔ represent communication channels

Π ⊢UC F
def
= ∀poly A,∃S,∀Z.

Exec[Z,A,Π] ≈ Exec[Z,S,F]
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A Closer Look

∀poly A,∃S,∀Z. ∀P,A.∃A.∀t.

Π A

Z

0/1

F S

Z

0/1

≈

AJPK &

t

↝

AP &

t

↝

⇐⇒

Isabelle’d both perfect and computational UC
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Analogy

UC SC

protocol Π JPK compiled program
concrete attacker A A target context
ideal functionality F P source program
simulator S A source context
environment, output Z, 0/1 t, ↝ trace, semantics
communication ↔ [] linking
probabilistic equiv. ≈ ⇐⇒ trace equality

human translation Π → F J⋅K: P→ P compiler
general composition result . . .
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Analogy Results

• transfer UC results from ITMs to any S/T

• mechanise UC results as RHP results
known in computer-aided crypto Haagh et al. CSF’18

• Mechanised UC for 1-Bit Commitment in
Deepsec submission

• Mechanised UC for 1/2 Wireguard in
Cryptoverif CSF’24
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