
Universal Composability is
Robust Compilation

Marco Patrignani1 Robert Künneman2 Riad S. Wahby3 Ethan Cecchetti4

January 2024 Toplas, journal first

1 2 3 4



DISCLAIMER
pl != crypto

1/17



A Magic Trick

Spoiler: there are 0 + ϵ hands raised

2/17



A Magic Trick

Spoiler: there are 0 + ϵ hands raised

2/17



A Magic Trick

Spoiler: there are 0 + ϵ hands raised

2/17



A Magic Trick

Spoiler: there are 0 + ϵ hands raised

2/17



A Magic Trick

Spoiler: there are 0 + ϵ hands raised

2/17



A Magic Trick

Spoiler: there are 0 + ϵ hands raised

2/17



Motivation and the Journey

UC RC

3/17



Motivation and the Journey

UC RC

3/17



Fields: UC

UC

3/17



Universal Composability: UC

• gold standard for proving security of
protocols under concurrent composition

• overcomes security of protocol composition
• many flavours: UC1, SaUCy 2, iUC 3, . . .

This work: axiomatic formalisation, geared
towards the newer theories SaUCy and iUC

1Canetti. 2001. “Universally composable security”
2Liao et al. 2019. “ILC: A Calculus for Composable, Computational Cryptography”
3Camenisch et al. 2019 “iUC: Flexible Universal Composability Made Simple”

4/17



Universal Composability: UC

• gold standard for proving security of
protocols under concurrent composition

• overcomes security of protocol composition

• many flavours: UC1, SaUCy 2, iUC 3, . . .

This work: axiomatic formalisation, geared
towards the newer theories SaUCy and iUC

1Canetti. 2001. “Universally composable security”
2Liao et al. 2019. “ILC: A Calculus for Composable, Computational Cryptography”
3Camenisch et al. 2019 “iUC: Flexible Universal Composability Made Simple”

4/17



Universal Composability: UC

• gold standard for proving security of
protocols under concurrent composition

• overcomes security of protocol composition
• many flavours: UC1, SaUCy 2, iUC 3, . . .

This work: axiomatic formalisation, geared
towards the newer theories SaUCy and iUC

1Canetti. 2001. “Universally composable security”
2Liao et al. 2019. “ILC: A Calculus for Composable, Computational Cryptography”
3Camenisch et al. 2019 “iUC: Flexible Universal Composability Made Simple”

4/17



Universal Composability: UC

• gold standard for proving security of
protocols under concurrent composition

• overcomes security of protocol composition
• many flavours: UC1, SaUCy 2, iUC 3, . . .

This work: axiomatic formalisation, geared
towards the newer theories SaUCy and iUC

1Canetti. 2001. “Universally composable security”
2Liao et al. 2019. “ILC: A Calculus for Composable, Computational Cryptography”
3Camenisch et al. 2019 “iUC: Flexible Universal Composability Made Simple”

4/17



UC Base Notions: ITMs 4

• protocols Π (using concrete crypto)

• functionalities F (using abstract notions)

• attackers A & S (corrupting parties etc.)

• environments Z (objective witness)

4From: Canetti, Fischlin. 2001. “Universally Composable Commitments”

5/17



UC Base Notions: ITMs 4

• protocols Π (using concrete crypto)

• functionalities F (using abstract notions)

• attackers A & S (corrupting parties etc.)

• environments Z (objective witness)

4From: Canetti, Fischlin. 2001. “Universally Composable Commitments”

5/17



UC Base Notions: ITMs 4

• protocols Π (using concrete crypto)

• functionalities F (using abstract notions)

• attackers A & S (corrupting parties etc.)

• environments Z (objective witness)

4From: Canetti, Fischlin. 2001. “Universally Composable Commitments”

5/17



UC Base Notions: ITMs 4

• protocols Π (using concrete crypto)

• functionalities F (using abstract notions)

• attackers A & S (corrupting parties etc.)

• environments Z (objective witness)
4From: Canetti, Fischlin. 2001. “Universally Composable Commitments”

5/17



Perfect (!!) UC

(computational UC in Künneman et al. CSF’24)

Π A

Z

0/1

F S

Z

0/1

≈

↔ represent communication channels

Π ⊢UC F def= ∀poly A,∃S,∀Z.
Exec[Z,A,Π] ≈ Exec[Z,S,F]

6/17



Perfect (!!) UC

(computational UC in Künneman et al. CSF’24)

Π A

Z

0/1

F S

Z

0/1

≈

↔ represent communication channels

Π ⊢UC F def= ∀poly A,∃S,∀Z.
Exec[Z,A,Π] ≈ Exec[Z,S,F]

6/17



Perfect (!!) UC (computational UC in Künneman et al. CSF’24)

Π A

Z

0/1

F S

Z

0/1

≈

↔ represent communication channels

Π ⊢UC F def= ∀poly A,∃S,∀Z.
Exec[Z,A,Π] ≈ Exec[Z,S,F]

6/17



UC Beneifts: Compositionality

• if Π1 ⊢UC F1
• and Πbig

def= Πpart [Π1]
• and Fbig

def= Πpart [F1]

• then Πbig ⊢UC Fbig =
Πpart [Π1]⊢UC Fbig =
Πpart [Π1]⊢UCΠpart [F1]

7/17



UC Beneifts: Compositionality

• if Π1 ⊢UC F1
• and Πbig

def= Πpart [Π1]
• and Fbig

def= Πpart [F1] recall they are all ITMs

• then Πbig ⊢UC Fbig =
Πpart [Π1]⊢UC Fbig =
Πpart [Π1]⊢UCΠpart [F1]

7/17



UC Beneifts: Compositionality

• if Π1 ⊢UC F1
• and Πbig

def= Πpart [Π1]
• and Fbig

def= Πpart [F1]
• then Πbig ⊢UC Fbig

=
Πpart [Π1]⊢UC Fbig =
Πpart [Π1]⊢UCΠpart [F1]

7/17



UC Beneifts: Compositionality

• if Π1 ⊢UC F1
• and Πbig

def= Πpart [Π1]
• and Fbig

def= Πpart [F1]
• then Πbig ⊢UC Fbig =
Πpart [Π1]⊢UC Fbig

=
Πpart [Π1]⊢UCΠpart [F1]

7/17



UC Beneifts: Compositionality

• if Π1 ⊢UC F1
• and Πbig

def= Πpart [Π1]
• and Fbig

def= Πpart [F1]
• then Πbig ⊢UC Fbig =
Πpart [Π1]⊢UC Fbig =
Πpart [Π1]⊢UCΠpart [F1]

7/17



Fields

UC RC

8/17



Fields: RC

RC

8/17



Robust Compilation 5

Robust Relational Hyperproperty
Preservation

Robust K-Relational Hyperproperty
Preservation

Robust 2-Relational Hyperproperty
Preservation

Robust Relational Property
Preservation

Robust K-Relational Property
Preservation

Robust 2-Relational Property
Preservation

Robust Relational relaXed safety
Preservation

Robust Finite-Relational relaXed
safety Preservation

Robust K-Relational relaXed
safety Preservation

Robust 2-Relational relaXed
safety Preservation

Robust Relational Safety
Preservation

Robust Finite-Relational
Safety Preservation

Robust K-Relational Safety
Preservation

Robust 2-Relational Safety
Preservation

Robust Hyperproperty
Preservation

Robust Subset-Closed Hyperproperty
Preservation

Robust K-Subset-Closed Hyperproperty
Preservation

Robust 2-Subset-Closed Hyperproperty
Preservation

Robust Trace Property Preservation

Robust Hypersafety Preservation

Robust K-Hypersafety Preservation

Robust 2-Hypersafety Preservation

Robust Safety Property PreservationRobust Dense Property Preservation

Robust Trace Equivalence
Preservation

Robust Termination-Insensitive
Noninterference Preservation

+ determinacy

Re
la

tio
na

l
H

yp
er

pr
op

er
tie

s
H

yp
er

pr
op

er
tie

s
Tr

ac
e

Pr
op

er
tie

s

5Abate et al. 2019. “Journey Beyond Full Abstraction . . . ”
9/17



Robust Compilation 5

Robust Relational Hyperproperty
Preservation

Robust K-Relational Hyperproperty
Preservation

Robust 2-Relational Hyperproperty
Preservation

Robust Relational Property
Preservation

Robust K-Relational Property
Preservation

Robust 2-Relational Property
Preservation

Robust Relational relaXed safety
Preservation

Robust Finite-Relational relaXed
safety Preservation

Robust K-Relational relaXed
safety Preservation

Robust 2-Relational relaXed
safety Preservation

Robust Relational Safety
Preservation

Robust Finite-Relational
Safety Preservation

Robust K-Relational Safety
Preservation

Robust 2-Relational Safety
Preservation

Robust Hyperproperty
Preservation

Robust Subset-Closed Hyperproperty
Preservation

Robust K-Subset-Closed Hyperproperty
Preservation

Robust 2-Subset-Closed Hyperproperty
Preservation

Robust Trace Property Preservation

Robust Hypersafety Preservation

Robust K-Hypersafety Preservation

Robust 2-Hypersafety Preservation

Robust Safety Property PreservationRobust Dense Property Preservation

Robust Trace Equivalence
Preservation

Robust Termination-Insensitive
Noninterference Preservation

+ determinacy

Re
la

tio
na

l
H

yp
er

pr
op

er
tie

s
H

yp
er

pr
op

er
tie

s
Tr

ac
e

Pr
op

er
tie

s

5Abate et al. 2019. “Journey Beyond Full Abstraction . . . ”
9/17



Robust Hyperproperty Preservation: RHC

AJPK &
t

↝

AP &
t

↝

⇐⇒

J⋅K ⊢ RHC def= ∀P ,A.∃A.∀t .
A & JPK↝t ⇐⇒ A &P↝t

For any language S and T

10/17



Robust Hyperproperty Preservation: RHC

AJPK &
t

↝

AP &
t

↝

⇐⇒

J⋅K ⊢ RHC def= ∀P ,A.∃A.∀t .
A & JPK↝t ⇐⇒ A &P↝t

For any language S and T
10/17



A Closer Look

∀poly A,∃S,∀Z. ∀P ,A.∃A.∀t .

Π A

Z

0/1

F S

Z

0/1

≈
AJPK &

t

↝

AP &
t

↝

⇐⇒

11/17



Our (Isabelle’d) Connection

UC RC

protocol Π JPK compiled program
concrete attacker A A target context
ideal functionality F P source program
simulator S A source context
environment, output Z, 0/1 t , ↝ trace, semantics
communication ↔ & linking
probabilistic equiv. ≈ ⇐⇒ trace equality

human translation Π → F J⋅K: P → P compiler

12/17



Our (Isabelle’d) Connection

UC RC

protocol Π JPK compiled program
concrete attacker A A target context
ideal functionality F P source program
simulator S A source context
environment, output Z, 0/1 t , ↝ trace, semantics
communication ↔ & linking
probabilistic equiv. ≈ ⇐⇒ trace equality

human translation Π → F J⋅K: P → P compiler

12/17



Why Should You Care?

Prove RHC via UC

(e.g., Viaduct . . . Acay et al PLDI’21)

Admittedly, less explored,

(is there more?)

13/17



Why Should You Care?

Prove RHC via UC

(e.g., Viaduct . . . Acay et al PLDI’21)

Admittedly, less explored,

(is there more?)

13/17



Why Should You Care?

Mechanise UC proofs with program
analysis tools

(Deepsec, Cryptoverif, Squirrel, etc)

as in computer-aided crypto

14/17



Why Should You Care?

Mechanise UC proofs with program
analysis tools

(Deepsec, Cryptoverif, Squirrel, etc)

as in computer-aided crypto

14/17



Why Should You Care?

Mechanise UC proofs with program
analysis tools

(Deepsec, Cryptoverif, Squirrel, etc)

as in computer-aided crypto

14/17



How? The 1-bit Commitment Example

• Write protocol and functionality as
Deepsec processes

• Start building the missing ideal processes
(90%) using:

• backtranslation (from secure compilation)
• and dummy attacker theorem (from this work)

• Fill the missing lines (4!)
• Wrap real and ideal processes with an

environment proxy to regulate scheduling
• Add the missing lines for adaptive

corruption (binding or hiding, not both)

15/17



How? The 1-bit Commitment Example

• Write protocol and functionality as
Deepsec processes

• Start building the missing ideal processes
(90%) using:

• backtranslation (from secure compilation)
• and dummy attacker theorem (from this work)

• Fill the missing lines (4!)
• Wrap real and ideal processes with an

environment proxy to regulate scheduling
• Add the missing lines for adaptive

corruption (binding or hiding, not both)

15/17



How? The 1-bit Commitment Example

• Write protocol and functionality as
Deepsec processes

• Start building the missing ideal processes
(90%) using:

• backtranslation (from secure compilation)
• and dummy attacker theorem (from this work)

• Fill the missing lines (4!)
• Wrap real and ideal processes with an

environment proxy to regulate scheduling
• Add the missing lines for adaptive

corruption (binding or hiding, not both)

15/17



How? The 1-bit Commitment Example

• Write protocol and functionality as
Deepsec processes

• Start building the missing ideal processes
(90%) using:

• backtranslation (from secure compilation)
• and dummy attacker theorem (from this work)

• Fill the missing lines (4!)

• Wrap real and ideal processes with an
environment proxy to regulate scheduling

• Add the missing lines for adaptive
corruption (binding or hiding, not both)

15/17



How? The 1-bit Commitment Example

• Write protocol and functionality as
Deepsec processes

• Start building the missing ideal processes
(90%) using:

• backtranslation (from secure compilation)
• and dummy attacker theorem (from this work)

• Fill the missing lines (4!)
• Wrap real and ideal processes with an

environment proxy to regulate scheduling

• Add the missing lines for adaptive
corruption (binding or hiding, not both)

15/17



How? The 1-bit Commitment Example

• Write protocol and functionality as
Deepsec processes

• Start building the missing ideal processes
(90%) using:

• backtranslation (from secure compilation)
• and dummy attacker theorem (from this work)

• Fill the missing lines (4!)
• Wrap real and ideal processes with an

environment proxy to regulate scheduling
• Add the missing lines for adaptive

corruption (binding or hiding, not both)
15/17



What Will You Find in the (64 pp) Paper?

1. Axiomatised UC semantics

2. Isabelle’d the connection
3. Formalised conditions to use the

connection with any language
4. Formalised composition axioms
5. Mechanised UC proof for 1-bit commitment

for static & adaptive corruption

6. A lot of insights

A security proof between ITMs is a UC
proof,

a security proof between arbitrary
languages is a RC one.

16/17



What Will You Find in the (64 pp) Paper?

1. Axiomatised UC semantics
2. Isabelle’d the connection

3. Formalised conditions to use the
connection with any language

4. Formalised composition axioms
5. Mechanised UC proof for 1-bit commitment

for static & adaptive corruption

6. A lot of insights

A security proof between ITMs is a UC
proof,

a security proof between arbitrary
languages is a RC one.

16/17



What Will You Find in the (64 pp) Paper?

1. Axiomatised UC semantics
2. Isabelle’d the connection
3. Formalised conditions to use the

connection with any language

4. Formalised composition axioms
5. Mechanised UC proof for 1-bit commitment

for static & adaptive corruption

6. A lot of insights

A security proof between ITMs is a UC
proof,

a security proof between arbitrary
languages is a RC one.

16/17



What Will You Find in the (64 pp) Paper?

1. Axiomatised UC semantics
2. Isabelle’d the connection
3. Formalised conditions to use the

connection with any language
4. Formalised composition axioms

5. Mechanised UC proof for 1-bit commitment
for static & adaptive corruption

6. A lot of insights

A security proof between ITMs is a UC
proof,

a security proof between arbitrary
languages is a RC one.

16/17



What Will You Find in the (64 pp) Paper?

1. Axiomatised UC semantics
2. Isabelle’d the connection
3. Formalised conditions to use the

connection with any language
4. Formalised composition axioms
5. Mechanised UC proof for 1-bit commitment

for static & adaptive corruption

6. A lot of insights

A security proof between ITMs is a UC
proof,

a security proof between arbitrary
languages is a RC one.

16/17



What Will You Find in the (64 pp) Paper?

1. Axiomatised UC semantics
2. Isabelle’d the connection
3. Formalised conditions to use the

connection with any language
4. Formalised composition axioms
5. Mechanised UC proof for 1-bit commitment

for static & adaptive corruption

6. A lot of insights

A security proof between ITMs is a UC
proof,

a security proof between arbitrary
languages is a RC one.

16/17



What Will You Find in the (64 pp) Paper?

1. Axiomatised UC semantics
2. Isabelle’d the connection
3. Formalised conditions to use the

connection with any language
4. Formalised composition axioms
5. Mechanised UC proof for 1-bit commitment

for static & adaptive corruption

6. A lot of insights

A security proof between ITMs is a UC
proof,

a security proof between arbitrary
languages is a RC one.

16/17



Questions?

17/17



17/17



The Full Abstraction (false) Conjecture

Π A

Z

0/1

F S

Z

0/1

≈ A ⇓JP1 K &

A ⇓JP2 K &

⇐⇒ A ⇓P1 &

A ⇓P2 &

⇐⇒⇐⇒

FAC is relational, RHC is propositional, like UC

17/17



What is the Compiler?

• seemingly-degenerate (translate one
concrete input to one concrete output)

• the connection works with any compiler!
• if only there were a protocol definition

language . . . (future work)

17/17



What is the Compiler?

• seemingly-degenerate (translate one
concrete input to one concrete output)

• the connection works with any compiler!

• if only there were a protocol definition
language . . . (future work)

17/17



What is the Compiler?

• seemingly-degenerate (translate one
concrete input to one concrete output)

• the connection works with any compiler!
• if only there were a protocol definition

language . . . (future work)

17/17



Composition Operators

• Linking
• Program FFI
• Attacker FFI
• Complete FFI

• Just program-level linking in any PL

• Must follow 3 (obvious) axioms

17/17



Composition Operators

• Linking
• Program FFI
• Attacker FFI
• Complete FFI

• Just program-level linking in any PL

• Must follow 3 (obvious) axioms

17/17



Composition Operators

• Linking
• Program FFI
• Attacker FFI
• Complete FFI

• Just program-level linking in any PL

• Must follow 3 (obvious) axioms

17/17



The Dummy Attacker

• In UC, replace A with a dummy proxy

• 4 (obvious) Axioms provide the same
theorem in RC

thus, no need to do induction, just reason
about the source + simulator and target

programs (with tools)

17/17



The Dummy Attacker

• In UC, replace A with a dummy proxy
• 4 (obvious) Axioms provide the same

theorem in RC

thus, no need to do induction, just reason
about the source + simulator and target

programs (with tools)

17/17



The Dummy Attacker

• In UC, replace A with a dummy proxy
• 4 (obvious) Axioms provide the same

theorem in RC

thus, no need to do induction, just reason
about the source + simulator and target

programs (with tools)

17/17


