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What and Why?

What is the relative semantic expressiveness of
iso- and equi-recursive types?

• open question

• clarifies the design of emerging languages

• better understanding of how to answer
language expressiveness questions
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How?

• Rely on Fully-Abstract Compilation to
• phrase relative semantic expressiveness
• compare language expressiveness

• Prove FAC between λµI and λ
µ
E (and

between them and λfx)
using approximate Backtranslations and
step-indexed logical approximations
(or, “directional” step-indexed logical
relations)
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Comparing Language Expressiveness

N in, N out stateful VS pure

• Turing-expressiveness is not ok: not
higher-order (see Mitchell’93)

• Instead: reason with elements of the
language, bound to its semantics

• Observe the interaction between terms (t)
and contexts (C ) over an interface (C [t])

• Hp: take the same t in λµI and λ
µ
E

• Q: does C [t] behave differently from C [t]?
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Observing Behaviour through Contexts

• use prog. eq: lets us compare language
abstractions (i.e., hiding)
e.g., pack ⟨N,0⟩as τ and pack ⟨N,1⟩as τ

compiled into ⟨0 ,0 ⟩ and ⟨0 ,1 ⟩

• take two programs t1 and t2
• Q: do C [t1] and C [t2] behave the same if
and only if C [t1] and C [t2] also behave
the same?

• behaviour: ⇑ vs ⇓
alternatives exist (e.g., traces) but this is
operational-semantics-based
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The same t in λµI & λµE

• Compiler must be “canonical”

J⋅K ∶ t→ t

• J⋅K: identity and erase fold/unfold

λµI & λµE semantics are identical (almost)
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Fully Abstract Compilation (FAC)

• does J⋅K attain FAC?

• ⊢ J⋅K ∶ FAC def= ∀t1, t2
t1 ≃ctx t2 ⇐⇒ Jt1K ≃ctx Jt2K or:

(∀C.C [t1]⇓ ⇐⇒ C [t2]⇓)
⇕

(∀C .C [Jt1K] ⇓ ⇐⇒ C [Jt2K] ⇓)
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Preservation via Step-Idx Log. Approx.

t1 ≃ctx t2

Jt1K
?≃ctx Jt2K

ctx.eq.preservation
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Overapproximation

Define a cross-language logical approximation
(V J⋅K

▽
,E J⋅K

▽
,⋯) ▽ is the direction

• t≲n JtK : by def. ⋯ t and JtK are in the obs.:

O(W )≲
def=

⎧⎪⎪⎨⎪⎪⎩
(t, JtK)

RRRRRRRRRRR

if lev (W ) > n and t↪n v

then ∃k. JtK ↪k v

⎫⎪⎪⎬⎪⎪⎭

• t≳n JtK :
same, flipped implication
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The Approximate Backtranslation

• Need to craft C, we only have C

• J⋅K: t → t is defined on t’s syntax

• ⟨⟨⋅⟩⟩n : C → C

approximate C ’s coinductive derivation
• sufficient because FAC cares about
co-termination
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Approximate Backtranslation Type

• Backtranslation does not know for which n
it runs

embed n in the type of backtranslated ctx.
NO: ⟨⟨⋅⟩⟩n ∶ τ → τ YES: ⟨⟨⋅⟩⟩n ∶ τ → BtTn;τ

BtT0;τ
def= Unit

BtTn+1;τ
def=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Unit ⊎Unit if τ = Unit

(BtTn;τ → BtT
n;τ ′
) ⊎Unit if τ = τ → τ ′

(BtTn;τ ⊎BtT
n;τ ′
) ⊎Unit if τ = τ ⊎ τ ′

BtT
n+1;τ ′[µα.τ ′/α] ⊎Unit if τ = µα. τ ′
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BtT0;τ
def= Unit

BtTn+1;τ
def=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Unit ⊎Unit if τ = Unit

(BtTn;τ → BtT
n;τ ′
) ⊎Unit if τ = τ → τ ′

(BtTn;τ ⊎BtT
n;τ ′
) ⊎Unit if τ = τ ⊎ τ ′

BtT
n+1;τ ′[µα.τ ′/α] ⊎Unit if τ = µα. τ ′
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Backtranslation Example and Relation

⟨⟨unit⟩⟩n>0 = ? BtTn+1;Unit =Unit ⊎Unit

Cannot relate using normal LR:

V JUnitK
▽

def= {(unit,unit)}

Need a special value relation:

V
q
EmulTn+1;τ

y
▽

def= {(v, v) ∣ either v = inr unit

or τ = Unit and ∃v′. v = inl v′ and

(v′, v) ∈ V JUnitK
▽
}
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Backtranslation Definition

• ⟨⟨⋅⟩⟩ is made of

• context ‘emulation’ (to generate the
context)
which needs upgrading and downgrading
(for well-typedness)

• inject/extract: to fix typing of context
interface
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Technicality #1: Emulate

• translate to ‘the same’ term
(switch to TR, p 146)

• to typecheck constructors, we need to inl

them
• typing error! need to lose a step!
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Technicality #1.1: Upgrade/Downgrade

• needed to ensure well-typedness only

• recursively traverse a term and add or lose
a level (i.e., an inl )
(switch to TR, only in blue though, p 96)
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Technicality #1.1: Upgrade/Downgrade

if (n <m and p = precise) or (▽ = ≲ and p = imprecise)
Γ ⊢ t ▽n t ∶ EmulTm+d;p;τ

then Γ ⊢ downgradem;d;τ t ▽n t ∶ EmulTm;p;τ

if (n <m and p = precise) or (▽ = ≲ and p = imprecise)
Γ ⊢ t ▽n t ∶ EmulTm;p;τ

then Γ ⊢ upgradem;d;τ t ▽n t ∶ EmulTm+d;p;τ
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Technicality #1: Emulate

if (m > n and p = precise) or (▽ = ≲ and p = imprecise)
Γ ⊢ t ∶ τ

then toEmulm;p (Γ ) ⊢ emulatem (Γ ⊢ t ∶ τ) ▽n t ∶ EmulTm;p;τ

Key:

if τ ≗σ
and ftv (τ) = ftv (σ) = ∅
then BtTn;τ = BtTn;σ for all n
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Technicality #2: Inject/Extract

• Since t ∶ τ implies JtK :
τ

«
Jτ K

• And C [∶ τ]

• ⟨⟨C ⟩⟩n [∶ ]
• Mismatch! τ ≠ BtT

n;Jτ K e.g.,
µα.Unit ⊎α ≠ BtT1;Jµα.Unit⊎αK = (Unit ⊎Unit) ⊎Unit

• ⟨⟨[⋅]⟩⟩n = [injectn;τ ⋅]
injectn;τ : τ → BtT

n;Jτ K
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Technicality #2: Inject/Extract

If (m ≥ n and p = precise) or (▽ = ≲ and p = imprecise)
then if Γ ⊢ t ▽n t ∶ τ

then Γ ⊢ injectm;τ t ▽n t ∶ EmulTm;p;isToEq(τ)
if Γ ⊢ t ▽n t ∶ EmulTm;p;isToEq(τ)

then Γ ⊢ extractm;τ t ▽n t ∶ τ
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