
On the Semantic Expressiveness
of Recursive Types – Recap

Marco Patrignani1,2 Eric M. Martin1 Dominique Devriese3

17th March 2021

1 2 3



What and Why?

What is the relative semantic expressiveness of
iso- and equi-recursive types?

• open question

• clarifies the design of emerging languages

• better understanding of how to answer
language expressiveness questions

1/19



What and Why?

What is the relative semantic expressiveness of
iso- and equi-recursive types?

• open question

• clarifies the design of emerging languages

• better understanding of how to answer
language expressiveness questions

1/19



What and Why?

What is the relative semantic expressiveness of
iso- and equi-recursive types?

• open question

• clarifies the design of emerging languages

• better understanding of how to answer
language expressiveness questions

1/19



What and Why?

What is the relative semantic expressiveness of
iso- and equi-recursive types?

• open question

• clarifies the design of emerging languages

• better understanding of how to answer
language expressiveness questions

1/19



How?

• Rely on Fully-Abstract Compilation to
• phrase relative semantic expressiveness
• compare language expressiveness

• Prove FAC between λµI and λ
µ
E (and

between them and λfx)
using approximate Backtranslations and
step-indexed logical approximations
(or, “directional” step-indexed logical
relations)

2/19



How?

• Rely on Fully-Abstract Compilation to
• phrase relative semantic expressiveness
• compare language expressiveness

• Prove FAC between λµI and λ
µ
E (and

between them and λfx)

using approximate Backtranslations and
step-indexed logical approximations
(or, “directional” step-indexed logical
relations)

2/19



How?

• Rely on Fully-Abstract Compilation to
• phrase relative semantic expressiveness
• compare language expressiveness

• Prove FAC between λµI and λ
µ
E (and

between them and λfx)
using approximate Backtranslations and
step-indexed logical approximations
(or, “directional” step-indexed logical
relations)

2/19



Our Contributions, Visually

λfx

λµI λµE

J⋅Kλ
µ
I

λµ
E

⟨⟨⋅⟩⟩
λµ
E

λµ
I
n

J⋅K
λ
fx

λ
µ
I

⟨⟨
⋅⟩
⟩

λ
µ
I

λ
fx
n

J
⋅K λ fx
λ µ
E

⟨⟨⋅⟩⟩ λ µ
Eλ fx n

rec-typ
ed inte

rface

simply
-typed

interfa
ce

simply
-typed

interfa
ce

J⋅Kλ
µ
I

λµE
erases fold/unfold, ⟨⟨⋅⟩⟩λ

µ
E

λµ
I
n is approximate

J⋅Kλ
fx

λµ
I

compiles fix into Z-comb, ⟨⟨⋅⟩⟩λ
µ
I

λfx n
is approximate

J⋅Kλ
fx

λµE
=

r
J⋅Kλ

fx

λµ
I

zλµ
I

λµE

, ⟨⟨⋅⟩⟩λ
µ
E

λfxn
= ⟨⟨⟨⟨⋅⟩⟩λ

µ
E

λµ
I
n⟩⟩

λµ
I

λfx
n

3/19



Our Contributions, Visually

λfx

λµI λµE

J⋅Kλ
µ
I

λµ
E

⟨⟨⋅⟩⟩
λµ
E

λµ
I
n

J⋅K
λ
fx

λ
µ
I

⟨⟨
⋅⟩
⟩

λ
µ
I

λ
fx
n

J
⋅K λ fx
λ µ
E

⟨⟨⋅⟩⟩ λ µ
Eλ fx n

rec-typ
ed inte

rface

simply
-typed

interfa
ce

simply
-typed

interfa
ce

J⋅Kλ
µ
I

λµE
erases fold/unfold, ⟨⟨⋅⟩⟩λ

µ
E

λµ
I
n is approximate

J⋅Kλ
fx

λµ
I

compiles fix into Z-comb, ⟨⟨⋅⟩⟩λ
µ
I

λfx n
is approximate

J⋅Kλ
fx

λµE
=

r
J⋅Kλ

fx

λµ
I

zλµ
I

λµE

, ⟨⟨⋅⟩⟩λ
µ
E

λfxn
= ⟨⟨⟨⟨⋅⟩⟩λ

µ
E

λµ
I
n⟩⟩

λµ
I

λfx
n

3/19



Our Contributions, Visually

λfx

λµI λµE

J⋅Kλ
µ
I

λµ
E

⟨⟨⋅⟩⟩
λµ
E

λµ
I
n

J⋅K
λ
fx

λ
µ
I

⟨⟨
⋅⟩
⟩

λ
µ
I

λ
fx
n

J
⋅K λ fx
λ µ
E

⟨⟨⋅⟩⟩ λ µ
Eλ fx n

rec-typ
ed inte

rface

simply
-typed

interfa
ce

simply
-typed

interfa
ce

J⋅Kλ
µ
I

λµE
erases fold/unfold, ⟨⟨⋅⟩⟩λ

µ
E

λµ
I
n is approximate

J⋅Kλ
fx

λµ
I

compiles fix into Z-comb, ⟨⟨⋅⟩⟩λ
µ
I

λfx n
is approximate

J⋅Kλ
fx

λµE
=

r
J⋅Kλ

fx

λµ
I

zλµ
I

λµE

, ⟨⟨⋅⟩⟩λ
µ
E

λfxn
= ⟨⟨⟨⟨⋅⟩⟩λ

µ
E

λµ
I
n⟩⟩

λµ
I

λfx
n

3/19



Our Contributions, Visually

λfx

λµI λµE

J⋅Kλ
µ
I

λµ
E

⟨⟨⋅⟩⟩
λµ
E

λµ
I
n

J⋅K
λ
fx

λ
µ
I

⟨⟨
⋅⟩
⟩

λ
µ
I

λ
fx
n

J
⋅K λ fx
λ µ
E

⟨⟨⋅⟩⟩ λ µ
Eλ fx n

rec-typ
ed inte

rface

simply
-typed

interfa
ce

simply
-typed

interfa
ce

J⋅Kλ
µ
I

λµE
erases fold/unfold, ⟨⟨⋅⟩⟩λ

µ
E

λµ
I
n is approximate

J⋅Kλ
fx

λµ
I

compiles fix into Z-comb, ⟨⟨⋅⟩⟩λ
µ
I

λfx n
is approximate

J⋅Kλ
fx

λµE
=

r
J⋅Kλ

fx

λµ
I

zλµ
I

λµE

, ⟨⟨⋅⟩⟩λ
µ
E

λfxn
= ⟨⟨⟨⟨⋅⟩⟩λ

µ
E

λµ
I
n⟩⟩

λµ
I

λfx
n

3/19



Our Contributions, Visually

λfx

λµI λµE

J⋅Kλ
µ
I

λµ
E

⟨⟨⋅⟩⟩
λµ
E

λµ
I
n

J⋅K
λ
fx

λ
µ
I

⟨⟨
⋅⟩
⟩

λ
µ
I

λ
fx
n

J
⋅K λ fx
λ µ
E

⟨⟨⋅⟩⟩ λ µ
Eλ fx n

rec-typ
ed inte

rface

simply
-typed

interfa
ce

simply
-typed

interfa
ce

J⋅Kλ
µ
I

λµE
erases fold/unfold, ⟨⟨⋅⟩⟩λ

µ
E

λµ
I
n is approximate

J⋅Kλ
fx

λµ
I

compiles fix into Z-comb, ⟨⟨⋅⟩⟩λ
µ
I

λfx n
is approximate

J⋅Kλ
fx

λµE
=

r
J⋅Kλ

fx

λµ
I

zλµ
I

λµE

, ⟨⟨⋅⟩⟩λ
µ
E

λfxn
= ⟨⟨⟨⟨⋅⟩⟩λ

µ
E

λµ
I
n⟩⟩

λµ
I

λfx
n

3/19



Our Contributions, Visually

λfx

λµI λµE

J⋅Kλ
µ
I

λµ
E

⟨⟨⋅⟩⟩
λµ
E

λµ
I
n

J⋅K
λ
fx

λ
µ
I

⟨⟨
⋅⟩
⟩

λ
µ
I

λ
fx
n

J
⋅K λ fx
λ µ
E

⟨⟨⋅⟩⟩ λ µ
Eλ fx n

rec-typ
ed inte

rface

simply
-typed

interfa
ce

simply
-typed

interfa
ce

J⋅Kλ
µ
I

λµE
erases fold/unfold, ⟨⟨⋅⟩⟩λ

µ
E

λµ
I
n is approximate

J⋅Kλ
fx

λµ
I

compiles fix into Z-comb, ⟨⟨⋅⟩⟩λ
µ
I

λfx n
is approximate

J⋅Kλ
fx

λµE
=

r
J⋅Kλ

fx

λµ
I

zλµ
I

λµE

, ⟨⟨⋅⟩⟩λ
µ
E

λfxn
= ⟨⟨⟨⟨⋅⟩⟩λ

µ
E

λµ
I
n⟩⟩

λµ
I

λfx
n

3/19



Comparing Language Expressiveness

N in, N out stateful VS pure

• Turing-expressiveness is not ok: not
higher-order (see Mitchell’93)

• Instead: reason with elements of the
language, bound to its semantics

• Observe the interaction between terms (t)
and contexts (C ) over an interface (C [t])

• Hp: take the same t in λµI and λ
µ
E

• Q: does C [t] behave differently from C [t]?

4/19



Comparing Language Expressiveness

N in, N out

stateful VS pure

• Turing-expressiveness is not ok: not
higher-order (see Mitchell’93)

• Instead: reason with elements of the
language, bound to its semantics

• Observe the interaction between terms (t)
and contexts (C ) over an interface (C [t])

• Hp: take the same t in λµI and λ
µ
E

• Q: does C [t] behave differently from C [t]?

4/19



Comparing Language Expressiveness

N in, N out stateful VS pure

• Turing-expressiveness is not ok: not
higher-order (see Mitchell’93)

• Instead: reason with elements of the
language, bound to its semantics

• Observe the interaction between terms (t)
and contexts (C ) over an interface (C [t])

• Hp: take the same t in λµI and λ
µ
E

• Q: does C [t] behave differently from C [t]?

4/19



Comparing Language Expressiveness

N in, N out stateful VS pure

• Turing-expressiveness is not ok: not
higher-order (see Mitchell’93)

• Instead: reason with elements of the
language, bound to its semantics

• Observe the interaction between terms (t)
and contexts (C ) over an interface (C [t])

• Hp: take the same t in λµI and λ
µ
E

• Q: does C [t] behave differently from C [t]?

4/19



Comparing Language Expressiveness

N in, N out

stateful VS pure

• Turing-expressiveness is not ok: not
higher-order (see Mitchell’93)

• Instead: reason with elements of the
language, bound to its semantics

• Observe the interaction between terms (t)
and contexts (C ) over an interface (C [t])

• Hp: take the same t in λµI and λ
µ
E

• Q: does C [t] behave differently from C [t]?

4/19



Comparing Language Expressiveness

N in, N out stateful VS pure

• Turing-expressiveness is not ok: not
higher-order (see Mitchell’93)

• Instead: reason with elements of the
language, bound to its semantics

• Observe the interaction between terms (t)
and contexts (C ) over an interface (C [t])

• Hp: take the same t in λµI and λ
µ
E

• Q: does C [t] behave differently from C [t]?
4/19



Comparing Language Expressiveness

N in, N out stateful VS pure

• Turing-expressiveness is not ok: not
higher-order (see Mitchell’93)

• Instead: reason with elements of the
language, bound to its semantics

• Observe the interaction between terms (t)
and contexts (C ) over an interface (C [t])

• Hp: take the same t in λµI and λ
µ
E

• Q: does C [t] behave differently from C [t]?

4/19



Comparing Language Expressiveness

N in, N out stateful VS pure

• Turing-expressiveness is not ok: not
higher-order (see Mitchell’93)

• Instead: reason with elements of the
language, bound to its semantics

• Observe the interaction between terms (t)
and contexts (C ) over an interface (C [t])

• Hp: take the same t in λµI and λ
µ
E

• Q: does C [t] behave differently from C [t]?
4/19



Observing Behaviour through Contexts

• use prog. eq: lets us compare language
abstractions (i.e., hiding)
e.g., pack ⟨N,0⟩as τ and pack ⟨N,1⟩as τ

compiled into ⟨0 ,0 ⟩ and ⟨0 ,1 ⟩

• take two programs t1 and t2
• Q: do C [t1] and C [t2] behave the same if
and only if C [t1] and C [t2] also behave
the same?

• behaviour: ⇑ vs ⇓
alternatives exist (e.g., traces) but this is
operational-semantics-based

5/19



Observing Behaviour through Contexts

• use prog. eq: lets us compare language
abstractions (i.e., hiding)
e.g., pack ⟨N,0⟩as τ and pack ⟨N,1⟩as τ

compiled into ⟨0 ,0 ⟩ and ⟨0 ,1 ⟩
• take two programs t1 and t2

• Q: do C [t1] and C [t2] behave the same if
and only if C [t1] and C [t2] also behave
the same?

• behaviour: ⇑ vs ⇓
alternatives exist (e.g., traces) but this is
operational-semantics-based

5/19



Observing Behaviour through Contexts

• use prog. eq: lets us compare language
abstractions (i.e., hiding)
e.g., pack ⟨N,0⟩as τ and pack ⟨N,1⟩as τ

compiled into ⟨0 ,0 ⟩ and ⟨0 ,1 ⟩
• take two programs t1 and t2
• Q: do C [t1] and C [t2] behave the same if
and only if C [t1] and C [t2] also behave
the same?

• behaviour: ⇑ vs ⇓
alternatives exist (e.g., traces) but this is
operational-semantics-based

5/19



Observing Behaviour through Contexts

• use prog. eq: lets us compare language
abstractions (i.e., hiding)
e.g., pack ⟨N,0⟩as τ and pack ⟨N,1⟩as τ

compiled into ⟨0 ,0 ⟩ and ⟨0 ,1 ⟩
• take two programs t1 and t2
• Q: do C [t1] and C [t2] behave the same if
and only if C [t1] and C [t2] also behave
the same?

• behaviour: ⇑ vs ⇓
alternatives exist (e.g., traces) but this is
operational-semantics-based 5/19



The same t in λµI & λµE

• Compiler must be “canonical”

J⋅K ∶ t→ t

• J⋅K: identity and erase fold/unfold

λµI & λµE semantics are identical (almost)

6/19



The same t in λµI & λµE

• Compiler must be “canonical”

J⋅K ∶ t→ t

• J⋅K: identity and erase fold/unfold

λµI & λµE semantics are identical (almost)

6/19



The same t in λµI & λµE

• Compiler must be “canonical”

J⋅K ∶ t→ t

• J⋅K: identity and erase fold/unfold

λµI & λµE semantics are identical (almost)

6/19



Fully Abstract Compilation (FAC)

• does J⋅K attain FAC?

• ⊢ J⋅K ∶ FAC def= ∀t1, t2
t1 ≃ctx t2 ⇐⇒ Jt1K ≃ctx Jt2K or:

(∀C.C [t1]⇓ ⇐⇒ C [t2]⇓)
⇕

(∀C .C [Jt1K] ⇓ ⇐⇒ C [Jt2K] ⇓)

7/19



Fully Abstract Compilation (FAC)

• does J⋅K attain FAC?
• ⊢ J⋅K ∶ FAC def= ∀t1, t2

t1 ≃ctx t2 ⇐⇒ Jt1K ≃ctx Jt2K

or:

(∀C.C [t1]⇓ ⇐⇒ C [t2]⇓)
⇕

(∀C .C [Jt1K] ⇓ ⇐⇒ C [Jt2K] ⇓)

7/19



Fully Abstract Compilation (FAC)

• does J⋅K attain FAC?
• ⊢ J⋅K ∶ FAC def= ∀t1, t2

t1 ≃ctx t2 ⇐⇒ Jt1K ≃ctx Jt2K or:

(∀C.C [t1]⇓ ⇐⇒ C [t2]⇓)
⇕

(∀C .C [Jt1K] ⇓ ⇐⇒ C [Jt2K] ⇓)

7/19



Preservation via Step-Idx Log. Approx.

t1 ≃ctx t2

Jt1K
?≃ctx Jt2K

ctx.eq.preservation

8/19



Preservation via Step-Idx Log. Approx.

t1 ≃ctx t2

C [Jt1K] ⇓n ?⇒ C [Jt2K] ⇓_

Jt1K
?≃ctx Jt2K

ctx.eq.preservation

8/19



Preservation via Step-Idx Log. Approx.

t1 ≃ctx t2

(1)
t1 ≳_ Jt1K
?≳n C

C [Jt1K] ⇓n ?⇒ C [Jt2K] ⇓_

Jt1K
?≃ctx Jt2K

ctx.eq.preservation

8/19



Preservation via Step-Idx Log. Approx.

t1 ≃ctx t2

(1)
t1 ≳_ Jt1K
⟨⟨C ⟩⟩n ≳n C

C [Jt1K] ⇓n ?⇒ C [Jt2K] ⇓_

Jt1K
?≃ctx Jt2K

ctx.eq.preservation

8/19



Preservation via Step-Idx Log. Approx.

t1 ≃ctx t2

(1)
t1 ≳_ Jt1K
⟨⟨C ⟩⟩n ≳n C

C [Jt1K] ⇓n ?⇒ C [Jt2K] ⇓_

Jt1K
?≃ctx Jt2K

ctx.eq.preservation

t≳_ and ≲_ JtK
⟨⟨C ⟩⟩n ≳_ and ≲_C

8/19



Preservation via Step-Idx Log. Approx.

t1 ≃ctx t2

⟨⟨C ⟩⟩n[t1] ⇓_

(1)
t1 ≳_ Jt1K
⟨⟨C ⟩⟩n ≳n C

C [Jt1K] ⇓n ?⇒ C [Jt2K] ⇓_

Jt1K
?≃ctx Jt2K

ctx.eq.preservation

t≳_ and ≲_ JtK
⟨⟨C ⟩⟩n ≳_ and ≲_C

8/19



Preservation via Step-Idx Log. Approx.

t1 ≃ctx t2

⟨⟨C ⟩⟩n[t1] ⇓_ ⇒ ⟨⟨C ⟩⟩n[t2] ⇓_

(1)

(2)

t1 ≳_ Jt1K
⟨⟨C ⟩⟩n ≳n C

C [Jt1K] ⇓n ?⇒ C [Jt2K] ⇓_

Jt1K
?≃ctx Jt2K

ctx.eq.preservation

t≳_ and ≲_ JtK
⟨⟨C ⟩⟩n ≳_ and ≲_C

8/19



Preservation via Step-Idx Log. Approx.

t1 ≃ctx t2

⟨⟨C ⟩⟩n[t1] ⇓_ ⇒ ⟨⟨C ⟩⟩n[t2] ⇓_

(1)

(2)

(3)
t2 ≲_ Jt2K
⟨⟨C ⟩⟩n ≲_ C

t1 ≳_ Jt1K
⟨⟨C ⟩⟩n ≳n C

C [Jt1K] ⇓n ?⇒ C [Jt2K] ⇓_

Jt1K
?≃ctx Jt2K

ctx.eq.preservation

t≳_ and ≲_ JtK
⟨⟨C ⟩⟩n ≳_ and ≲_C

8/19



Overapproximation

Define a cross-language logical approximation
(V J⋅K

▽
,E J⋅K

▽
,⋯) ▽ is the direction

• t≲n JtK : by def. ⋯ t and JtK are in the obs.:

O(W )≲
def=

⎧⎪⎪⎨⎪⎪⎩
(t, JtK)

RRRRRRRRRRR

if lev (W ) > n and t↪n v

then ∃k. JtK ↪k v

⎫⎪⎪⎬⎪⎪⎭

• t≳n JtK :
same, flipped implication

9/19



Overapproximation

Define a cross-language logical approximation
(V J⋅K

▽
,E J⋅K

▽
,⋯) ▽ is the direction

• t≲n JtK : by def. ⋯ t and JtK are in the obs.:

O(W )≲
def=

⎧⎪⎪⎨⎪⎪⎩
(t, JtK)

RRRRRRRRRRR

if lev (W ) > n and t↪n v

then ∃k. JtK ↪k v

⎫⎪⎪⎬⎪⎪⎭

• t≳n JtK :
same, flipped implication

9/19



The Approximate Backtranslation

• Need to craft C, we only have C

• J⋅K: t → t is defined on t’s syntax

• ⟨⟨⋅⟩⟩n : C → C

approximate C ’s coinductive derivation
• sufficient because FAC cares about
co-termination

10/19



The Approximate Backtranslation

• Need to craft C, we only have C

• J⋅K: t → t is defined on t’s syntax

• ⟨⟨⋅⟩⟩n : C → C

approximate C ’s coinductive derivation
• sufficient because FAC cares about
co-termination

10/19



The Approximate Backtranslation

• Need to craft C, we only have C

• J⋅K: t → t is defined on t’s syntax

• ⟨⟨⋅⟩⟩n : C → C

approximate C ’s coinductive derivation

• sufficient because FAC cares about
co-termination

10/19



The Approximate Backtranslation

• Need to craft C, we only have C

• J⋅K: t → t is defined on t’s syntax

• ⟨⟨⋅⟩⟩n : C → C

approximate C ’s coinductive derivation
• sufficient because FAC cares about
co-termination

10/19



Approximate Backtranslation Type

• Backtranslation does not know for which n
it runs

embed n in the type of backtranslated ctx.
NO: ⟨⟨⋅⟩⟩n ∶ τ → τ YES: ⟨⟨⋅⟩⟩n ∶ τ → BtTn;τ

BtT0;τ
def= Unit

BtTn+1;τ
def=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Unit ⊎Unit if τ = Unit

(BtTn;τ → BtT
n;τ ′
) ⊎Unit if τ = τ → τ ′

(BtTn;τ ⊎BtT
n;τ ′
) ⊎Unit if τ = τ ⊎ τ ′

BtT
n+1;τ ′[µα.τ ′/α] ⊎Unit if τ = µα. τ ′

11/19



Approximate Backtranslation Type

• Backtranslation does not know for which n
it runs
embed n in the type of backtranslated ctx.
NO: ⟨⟨⋅⟩⟩n ∶ τ → τ YES: ⟨⟨⋅⟩⟩n ∶ τ → BtTn;τ

BtT0;τ
def= Unit

BtTn+1;τ
def=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Unit ⊎Unit if τ = Unit

(BtTn;τ → BtT
n;τ ′
) ⊎Unit if τ = τ → τ ′

(BtTn;τ ⊎BtT
n;τ ′
) ⊎Unit if τ = τ ⊎ τ ′

BtT
n+1;τ ′[µα.τ ′/α] ⊎Unit if τ = µα. τ ′

11/19



Approximate Backtranslation Type

• Backtranslation does not know for which n
it runs
embed n in the type of backtranslated ctx.
NO: ⟨⟨⋅⟩⟩n ∶ τ → τ YES: ⟨⟨⋅⟩⟩n ∶ τ → BtTn;τ

BtT0;τ
def= Unit

BtTn+1;τ
def=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Unit ⊎Unit if τ = Unit

(BtTn;τ → BtT
n;τ ′
) ⊎Unit if τ = τ → τ ′

(BtTn;τ ⊎BtT
n;τ ′
) ⊎Unit if τ = τ ⊎ τ ′

BtT
n+1;τ ′[µα.τ ′/α] ⊎Unit if τ = µα. τ ′

11/19



Backtranslation Example and Relation

⟨⟨unit⟩⟩n>0 = ? BtTn+1;Unit =Unit ⊎Unit

Cannot relate using normal LR:

V JUnitK
▽

def= {(unit,unit)}

Need a special value relation:

V
q
EmulTn+1;τ

y
▽

def= {(v, v) ∣ either v = inr unit

or τ = Unit and ∃v′. v = inl v′ and

(v′, v) ∈ V JUnitK
▽
}

12/19



Backtranslation Example and Relation

⟨⟨unit⟩⟩n>0 = inl unit BtTn+1;Unit =Unit ⊎Unit

Cannot relate using normal LR:

V JUnitK
▽

def= {(unit,unit)}

Need a special value relation:

V
q
EmulTn+1;τ

y
▽

def= {(v, v) ∣ either v = inr unit

or τ = Unit and ∃v′. v = inl v′ and

(v′, v) ∈ V JUnitK
▽
}

12/19



Backtranslation Example and Relation

⟨⟨unit⟩⟩n>0 = inl unit BtTn+1;Unit =Unit ⊎Unit

Cannot relate using normal LR:

V JUnitK
▽

def= {(unit,unit)}

Need a special value relation:

V
q
EmulTn+1;τ

y
▽

def= {(v, v) ∣ either v = inr unit

or τ = Unit and ∃v′. v = inl v′ and

(v′, v) ∈ V JUnitK
▽
}

12/19



Backtranslation Example and Relation

⟨⟨unit⟩⟩n>0 = inl unit BtTn+1;Unit =Unit ⊎Unit

Cannot relate using normal LR:

V JUnitK
▽

def= {(unit,unit)}

Need a special value relation:

V
q
EmulTn+1;τ

y
▽

def= {(v, v) ∣ either v = inr unit

or τ = Unit and ∃v′. v = inl v′ and

(v′, v) ∈ V JUnitK
▽
}

12/19



Backtranslation Definition

• ⟨⟨⋅⟩⟩ is made of

• context ‘emulation’ (to generate the
context)
which needs upgrading and downgrading
(for well-typedness)

• inject/extract: to fix typing of context
interface

13/19



Backtranslation Definition

• ⟨⟨⋅⟩⟩ is made of
• context ‘emulation’ (to generate the
context)
which needs upgrading and downgrading
(for well-typedness)

• inject/extract: to fix typing of context
interface

13/19



Backtranslation Definition

• ⟨⟨⋅⟩⟩ is made of
• context ‘emulation’ (to generate the
context)
which needs upgrading and downgrading
(for well-typedness)

• inject/extract: to fix typing of context
interface

13/19



Technicality #1: Emulate

• translate to ‘the same’ term
(switch to TR, p 146)

• to typecheck constructors, we need to inl

them
• typing error! need to lose a step!

14/19



Technicality #1: Emulate

• translate to ‘the same’ term
(switch to TR, p 146)

• to typecheck constructors, we need to inl

them

• typing error! need to lose a step!

14/19



Technicality #1: Emulate

• translate to ‘the same’ term
(switch to TR, p 146)

• to typecheck constructors, we need to inl

them
• typing error! need to lose a step!

14/19



Technicality #1.1: Upgrade/Downgrade

• needed to ensure well-typedness only

• recursively traverse a term and add or lose
a level (i.e., an inl )
(switch to TR, only in blue though, p 96)

15/19



Technicality #1.1: Upgrade/Downgrade

• needed to ensure well-typedness only
• recursively traverse a term and add or lose
a level (i.e., an inl )
(switch to TR, only in blue though, p 96)

15/19



Technicality #1.1: Upgrade/Downgrade

if (n <m and p = precise) or (▽ = ≲ and p = imprecise)
Γ ⊢ t ▽n t ∶ EmulTm+d;p;τ

then Γ ⊢ downgradem;d;τ t ▽n t ∶ EmulTm;p;τ

if (n <m and p = precise) or (▽ = ≲ and p = imprecise)
Γ ⊢ t ▽n t ∶ EmulTm;p;τ

then Γ ⊢ upgradem;d;τ t ▽n t ∶ EmulTm+d;p;τ

16/19



Technicality #1: Emulate

if (m > n and p = precise) or (▽ = ≲ and p = imprecise)
Γ ⊢ t ∶ τ

then toEmulm;p (Γ ) ⊢ emulatem (Γ ⊢ t ∶ τ) ▽n t ∶ EmulTm;p;τ

Key:

if τ ≗σ
and ftv (τ) = ftv (σ) = ∅
then BtTn;τ = BtTn;σ for all n

17/19



Technicality #2: Inject/Extract

• Since t ∶ τ implies JtK :
τ

«
Jτ K

• And C [∶ τ]

• ⟨⟨C ⟩⟩n [∶ ]
• Mismatch! τ ≠ BtT

n;Jτ K e.g.,
µα.Unit ⊎α ≠ BtT1;Jµα.Unit⊎αK = (Unit ⊎Unit) ⊎Unit

• ⟨⟨[⋅]⟩⟩n = [injectn;τ ⋅]
injectn;τ : τ → BtT

n;Jτ K

18/19



Technicality #2: Inject/Extract

• Since t ∶ τ implies JtK :
τ

«
Jτ K

• And C [∶ τ]
• ⟨⟨C ⟩⟩n [∶ ?]

• Mismatch! τ ≠ BtT
n;Jτ K e.g.,

µα.Unit ⊎α ≠ BtT1;Jµα.Unit⊎αK = (Unit ⊎Unit) ⊎Unit

• ⟨⟨[⋅]⟩⟩n = [injectn;τ ⋅]
injectn;τ : τ → BtT

n;Jτ K

18/19



Technicality #2: Inject/Extract

• Since t ∶ τ implies JtK :
τ

«
Jτ K

• And C [∶ τ]
• ⟨⟨C ⟩⟩n [∶ BtTn;τ]
• Mismatch! τ ≠ BtT

n;Jτ K

e.g.,
µα.Unit ⊎α ≠ BtT1;Jµα.Unit⊎αK = (Unit ⊎Unit) ⊎Unit

• ⟨⟨[⋅]⟩⟩n = [injectn;τ ⋅]
injectn;τ : τ → BtT

n;Jτ K

18/19



Technicality #2: Inject/Extract

• Since t ∶ τ implies JtK :
τ

«
Jτ K

• And C [∶ τ]
• ⟨⟨C ⟩⟩n [∶ BtTn;τ]
• Mismatch! τ ≠ BtT

n;Jτ K e.g.,
µα.Unit ⊎α ≠ BtT1;Jµα.Unit⊎αK = (Unit ⊎Unit) ⊎Unit

• ⟨⟨[⋅]⟩⟩n = [injectn;τ ⋅]
injectn;τ : τ → BtT

n;Jτ K

18/19



Technicality #2: Inject/Extract

• Since t ∶ τ implies JtK :
τ

«
Jτ K

• And C [∶ τ]
• ⟨⟨C ⟩⟩n [∶ BtTn;τ]
• Mismatch! τ ≠ BtT

n;Jτ K e.g.,
µα.Unit ⊎α ≠ BtT1;Jµα.Unit⊎αK = (Unit ⊎Unit) ⊎Unit

• ⟨⟨[⋅]⟩⟩n = [injectn;τ ⋅]

injectn;τ : τ → BtT
n;Jτ K

18/19



Technicality #2: Inject/Extract

• Since t ∶ τ implies JtK :
τ

«
Jτ K

• And C [∶ τ]
• ⟨⟨C ⟩⟩n [∶ BtTn;τ]
• Mismatch! τ ≠ BtT

n;Jτ K e.g.,
µα.Unit ⊎α ≠ BtT1;Jµα.Unit⊎αK = (Unit ⊎Unit) ⊎Unit

• ⟨⟨[⋅]⟩⟩n = [injectn;τ ⋅]
injectn;τ : τ → BtT

n;Jτ K

18/19



Technicality #2: Inject/Extract

• Since t ∶ τ implies JtK :
τ

«
Jτ K

• And C [∶ τ]
• ⟨⟨C ⟩⟩n [∶ BtTn;τ]
• Mismatch! τ ≠ BtT

n;Jτ K e.g.,
µα.Unit ⊎α ≠ BtT1;Jµα.Unit⊎αK = (Unit ⊎Unit) ⊎Unit

• ⟨⟨[⋅]⟩⟩n = [injectn;τ ⋅]
injectn;τ : τ → BtT

n;Jτ K

18/19



Technicality #2: Inject/Extract

• Since t ∶ τ implies JtK :
τ

«
Jτ K

• And C [∶ τ]
• ⟨⟨C ⟩⟩n [∶ BtTn;τ]
• Mismatch! τ ≠ BtT

n;Jτ K e.g.,
µα.Unit ⊎α ≠ BtT1;Jµα.Unit⊎αK = (Unit ⊎Unit) ⊎Unit

• ⟨⟨[⋅]⟩⟩n = [injectn;τ ⋅]
injectn;τ : τ → BtT

n;Jτ K

18/19



Technicality #2: Inject/Extract

• Since t ∶ τ implies JtK :
τ

«
Jτ K

• And C [∶ τ]
• ⟨⟨C ⟩⟩n [∶ BtTn;τ]
• Mismatch! τ ≠ BtT

n;Jτ K e.g.,
µα.Unit ⊎α ≠ BtT1;Jµα.Unit⊎αK = (Unit ⊎Unit) ⊎Unit

• ⟨⟨[⋅]⟩⟩n = [injectn;τ ⋅]
injectn;τ : τ → BtT

n;Jτ K

18/19



Technicality #2: Inject/Extract

If (m ≥ n and p = precise) or (▽ = ≲ and p = imprecise)
then if Γ ⊢ t ▽n t ∶ τ

then Γ ⊢ injectm;τ t ▽n t ∶ EmulTm;p;isToEq(τ)
if Γ ⊢ t ▽n t ∶ EmulTm;p;isToEq(τ)

then Γ ⊢ extractm;τ t ▽n t ∶ τ

19/19


