On the Semantic Expressiveness
of Recursive Types - Recap

Marco Patrignani!:2 Eric M. Martin! Dominique Devriese3

-l"' 3 §I | 'Q
A C

17" March 2021

Stanford

University “ o

VRIJE
C I S pA UNIVERSITEIT

EEEEEEEEEEEEEEEEEE
INFORMATION SECURITY BRUSSEL

What and Why?

What is the relative semantic expressiveness of
iso- and equi-recursive types?

1/19

What and Why?

What is the relative semantic expressiveness of
iso- and equi-recursive types?

- open question

1/19

What and Why?

What is the relative semantic expressiveness of
iso- and equi-recursive types?

- open question

- clarifies the design of emerging languages

1/19

What and Why?

What is the relative semantic expressiveness of
iso- and equi-recursive types?

- open question
- clarifies the design of emerging languages

* better understanding of how to answer
language expressiveness questions

1/19

« Rely on Fully-Abstract Compilation to

 phrase relative semantic expressiveness
- compare language expressiveness

2/19

« Rely on Fully-Abstract Compilation to

 phrase relative semantic expressiveness
- compare language expressiveness

» Prove FAC between 2 and)\ (and
between them and ™)

2/19

« Rely on Fully-Abstract Compilation to
 phrase relative semantic expressiveness
- compare language expressiveness

- Prove FAC between A\ and)}, (and
between them and)
using approximate Backtranslations and
step-indexed logical approximations
(or, “directional” step-indexed logical
relations)

2/19

Our Contributions, Visually

3/19

Our Contributions, Visually

p f
AL Ng

1%
Ao s

[[~]]i:'f erases fold /unfold, ((-)), . is approximate
E I

3/19

Our Contributions, Visually

[[~]]i:'f erases fold /unfold, ((-)) is approximate
E

)\in

[],. compiles fix into Z-comb, ((-))Mln is approximate

3/19

Our Contributions, Visually

[[~]]i:'f erases fold /unfold, ((-)) is approximate
E

)\in

[],. compiles fix into Z-comb, ((-))A'Mn is approximate

(1, = [] = e)

3/19

Our Contributions, Visually

[[~]]i:'f erases fold /unfold, ((-)) is approximate
E

)\in

[],. compiles fix into Z-comb, ((-))Mln is approximate

(1, = [] = e)

3/19

Our Contributions, Visually

[[~]]i£ erases fold /unfold, ((-))i%lén is approximate

"

[],. compiles fix into Z-comb, ((-))A‘ » IS approximate

(1, = [] = e)

3/19

Comparing Language Expressiveness

4/19

Comparing Language Expressiveness

- Turing-expressiveness is not ok: not
higher-order (see Mitchell'93)

4/19

Comparing Language Expressiveness

- Turing-expressiveness is not ok: not
higher-order (see Mitchell'93)

« Instead: reason with elements of the
language, bound to its semantics

4/19

Comparing Language Expressiveness

- Turing-expressiveness is not ok: not
higher-order (see Mitchell'93)

- Instead: reason with elements of the
language, bound to its semantics
- Observe the interaction between terms (t)
and contexts (C) over an interface (C [¢])

4/19

Comparing Language Expressiveness

Turing-expressiveness is not ok: not
higher-order (see Mitchell'93)

Instead: reason with elements of the
language, bound to its semantics

Observe the interaction between terms (¢)
and contexts (C) over an interface (C [¢])

Hp: take the same ¢ in A[" and),

4/19

Comparing Language Expressiveness

Turing-expressiveness is not ok: not
higher-order (see Mitchell'93)

Instead: reason with elements of the
language, bound to its semantics

Observe the interaction between terms (¢)
and contexts (C) over an interface (C [¢])

Hp: take the same ¢ in A[" and),
Q: does C|[t]| behave differently from C'[¢]?

4/19

Comparing Language Expressiveness

Turing-expressiveness is not ok: not
higher-order (see Mitchell'93)

Instead: reason with elements of the
language, bound to its semantics

Observe the interaction between terms (¢)
and contexts (C) over an interface (C [¢])

Hp: take the same ¢ in A[" and),
Q: does C|[t]| behave differently from C'[¢]?

Comparing Language Expressiveness

- Turing-expressiveness is not ok: not
higher-order (see Mitchell'93)

« Instead: reason with elements of the
language, bound to its semantics
- Observe the interaction between terms (t)

and contexts (C) over an interface (C [¢])

| * Hp: take the same ¢ in A[" and M,

+ Q: does C|[t] behave differently from C'[¢]?

4/19

Observing Behaviour through Contexts

*+ use prog. eq: lets us compare language

abstractions (i.e., hiding)
e.g., pack (N,0)as 7 and pack (N,1)as 7

compiled into (0,0) and (0, 1)

5/19

Observing Behaviour through Contexts

*+ use prog. eq: lets us compare language

abstractions (i.e., hiding)
e.g., pack (N,0)as 7 and pack (N,1)as 7

compiled into (0,0) and (0, 1)
+ take two programs t; and t-

5/19

Observing Behaviour through Contexts

*+ use prog. eq: lets us compare language

abstractions (i.e., hiding)
e.g., pack (N,0)as 7 and pack (N,1)as 7

compiled into (0, 0) and (0, 1)

+ take two programs t; and t-

* Q:do C[t;]and C[t,] behave the same if
and only if C'[t;] and C [t2] also behave
the same?

5/19

Observing Behaviour through Contexts

*+ use prog. eq: lets us compare language

abstractions (i.e., hiding)
e.g., pack (N,0)as 7 and pack (N,1)as 7

compiled into (0, 0) and (0, 1)

+ take two programs t; and t-

* Q:do C[t;]and C[t,] behave the same if
and only if C'[t;] and C [t2] also behave
the same?

+ behaviour: fvs |
alternatives exist (e.g., traces) but this is
operational-semantics-based 59

« Compiler must be “canonical”

[:t ¢

6/19

« Compiler must be “canonical”

[]:t—1

« []: identity and erase fold [unfold

6/19

« Compiler must be “canonical”

[]:t—1

« []: identity and erase fold [unfold
Al & N semantics are identical (amosy

6/19

Fully Abstract Compilation (FAC)

- does [-] attain FAC?

7/19

Fully Abstract Compilation (FAC)

- does [-] attain FAC?
* [H] : FAC d:efvtl,tz
tl Zctx t2 — [[tl]] Zetx [[tZ]]

7/19

Fully Abstract Compilation (FAC)

- does [-] attain FAC?
M [H] : FAC d:efvtl,tz
t1 2etx tz = [[tl]] ~ctx [[tZ]] or:
(VC.Clt1]l = Clt2]l)

0
(VC.C[[t] <= C[t=]]1)

7/19

Preservation via Step-ldx Log. Approx.

t1 ~etx U2

uonensasaid ‘ba "x1d

[61] ~eex [t2]

8/19

Preservation via Step-ldx Log. Approx.

t1 ~etx U2

uonensasaid ‘ba "x1d

Clled b, 2 CfltD] b

[61] ~eex [t2]

8/19

Preservation via Step-ldx Log. Approx.

t1 ~etx U2

t12 [t1]
7> C (1)

Clled b, 2 CfltD] b

[61] ~eex [t2]

uonensasaid ‘ba "x1d

8/19

Preservation via Step-ldx Log. Approx.

t1 ~etx U2

t12 [t1]
(Chazac |0
Clled b, 2 CfltD] b

[61] ~eex [t2]

uonensasaid ‘ba "x1d

8/19

Preservation via Step-ldx Log. Approx.

t2 and < _[t]
«C»n 2_ and 5_ C tl thX t2

t12 [t1]
(Chazac |0
Clled b, 2 CfltD] b

[61] ~eex [t2]

uonensasaid ‘ba "x1d

8/19

Preservation via Step-ldx Log. Approx.

t2 and < _[t]
«C»n 2_ and 5_ C tl thX t2

(ONalta] L
t12 [t1]
(CPuzaC)

Clled b, 2 CfltD] b

[61] ~eex [t2]

uonensasaid ‘ba "x1d

8/19

Preservation via Step-ldx Log. Approx.

t2 and < _[t]
«C»n 2_ and 5_ C tl thX t2

(CNalte] U (2:>) (CNaltz] U
t12 [t1]
(Chazac |0

Clled b, 2 CfltD] b

[61] ~eex [t2]

uonensasaid ‘ba "x1d

8/19

Preservation via Step-ldx Log. Approx.

t2 and < _[t]
«C»n 2_ and 5_ C tl thX t2

(CNalte] U (2:>) (CNaltz] U
t12 [t1] ta S [t2]
(Chuzoc) QG (oy.< C©

Clled b, 2 CfltD] b

[61] ~eex [t2]

uonensasaid ‘ba "x1d

8/19

Overapproximation

Define a cross-language logical approximation
V[1..€[1,.) v is the direction

* t$u[t] - by def. --- t and [t] are in the obs.:

O(W)s= {(t[[t]])

if leo(W)>nandt="v
then 3k. [t] =" v

9/19

Overapproximation

Define a cross-language logical approximation
V[1..€[1,.) v is the direction

* t$u[t] - by def. --- t and [t] are in the obs.:

O(W)s= {(t7 D) then 3k. [t] =" v

if lev(W)>nandt—" v}

2, [t] :
same, flipped implication

9/19

The Approximate Backtranslation

* Need to craft C, we only have

10/19

The Approximate Backtranslation

* Need to craft C, we only have
* []: t = t is defined on t’s syntax

10/19

The Approximate Backtranslation

* Need to craft C, we only have
* []: t = t is defined on t’s syntax

"I C=C
approximate C’s coinductive derivation

10/19

The Approximate Backtranslation

Need to craft C, we only have C

[]: t - ¢ is defined on t’s syntax
{(Wn:C>C

approximate C’s coinductive derivation

sufficient because FAC cares about
co-termination

10/19

Approximate Backtranslation Type

« Backtranslation does not know for which n
it runs

11/19

Approximate Backtranslation Type

- Backtranslation does not know for which n
it runs
embed n in the type of backtranslated ctx.
NO: (‘W :7—> 7 YES: (- :7 — BtT,.,

11/19

Approximate Backtranslation Type

- Backtranslation does not know for which n
it runs
embed n in the type of backtranslated ctx.
NO: (‘W :7—> 7 YES: (- :7 — BtT,.,

def

BtT,, * Unit
Unit v Unit if 7= Unit
(BtT,,, »BtT__)uUnit ifr=7-7

BtT,,, .= |
ek (BtT,,uBtT_ _)uUnit ifr=7wr

v Uni if 7=pa. 7’
n+1;7/ [po.t’[a] Unit if pa.T

11/19

Backtranslation Example and Relation

« Un/];t>>n>0 = ? BtT, ;.pi = Unit v Unit

12/19

Backtranslation Example and Relation

((unit)) pso = inl unit BT, ., ., = Unit u Unit

12/19

Backtranslation Example and Relation

((unit)) pso = inl unit BT, ., ., = Unit u Unit

Cannot relate using normal LR:

Y [Unit]_, £ {(unit, unit)}

12/19

Backtranslation Example and Relation

« Un/];t>>n>0 = iIll unit BLTn-l:Um,/, = Unit u Unit

Cannot relate using normal LR:
Y [Unit]_, £ {(unit, unit)}
Need a special value relation:
Y [EmulT, .| o = {(V, v) | either v = inr unit
or 7 = Unit and 3v". v =inl v' and
(vi,v)eV [[Unit]]v}

12/19

Backtranslation Definition

* {(-)) is made of

13/19

Backtranslation Definition

* {(-)) is made of
- context ‘emulation’ (to generate the

context)
which needs upgrading and downgrading
(for well-typedness)

13/19

Backtranslation Definition

* {(-)) is made of

- context ‘emulation’ (to generate the
context)
which needs upgrading and downgrading
(for well-typedness)

- inject/extract: to fix typing of context
interface

13/19

Technicality #1: Emulate

 translate to ‘the same’ term
(switch to TR, p 146)

14/19

Technicality #1: Emulate

 translate to ‘the same’ term
(switch to TR, p 146)

+ to typecheck constructors, we need to inl
them

14/19

Technicality #1: Emulate

 translate to ‘the same’ term
(switch to TR, p 146)

+ to typecheck constructors, we need to inl
them

- typing error! need to lose a step!

14/19

Technicality #1.41: Upgrade/Downgrade

« needed to ensure well-typedness only

15/19

Technicality #1.41: Upgrade/Downgrade

« needed to ensure well-typedness only
- recursively traverse a term and add or lose

a level (i.e,, an inl)
(switch to TR, only in blue though, p 96)

15/19

Technicality #1.41: Upgrade/Downgrade

if (n<mand p=precise)or (v =5 and p=imprecise)
I'~tv,t: EmulT
then I'+ downgrade

m+d;p;T

t v, t: EmulT

m;d;T m;p;7T
if (n<mand p=precise)or (v =5 and p = imprecise)
F'rtvyt:EmulT,,

then I'+ upgrade t v, t: EmulT

m;d;7 m+d;p;T

16/19

Technicality #1: Emulate

if (m>nandp=precise)or (v =5 and p=imprecise)
I't:7

then toEmul,,, ([") +emulate (I'+1:7) v, t: EmulT

m m:p,7

Key:

ifrzo
and ftv(7) =ftv(o) =g
then BtT, =BtT, foralln

17/19

Technicality #2: Inject/Extract

.
—

- Since t : 7 implies [t] : [7]
« And C'[: 7]

18/19

Technicality #2: Inject/Extract

.
—

- Since t : 7 implies [t] : [7]
« And C'[: 7]

* {(ONul:7]

18/19

Technicality #2: Inject/Extract

T
—_—

* Since t: 7 implies [t] : [7]
« And C [: 7']
= ((Cn [: BtTn;T]

« Mismatch! 7 # BtTnzH

18/19

Technicality #2: Inject/Extract

.
—

Since t: 7 implies [t] : [7]
And C'[: 7]

«C»Il [: BtTIlZT:I

Mismatch! = # BtT 1 €8,

po. Unit v o # BtT, e Unitua] = (Unit v Unit) v Unit

18/19

Technicality #2: Inject/Extract

.
—

Since t: 7 implies [t] : [7]
And C'[: 7]

«C»Il [: BtTIlZT:I

Mismatch! = # BtT 1 €8,

po.Unituwa # BtT

1 [Unitva] = (Unit w Unit) w Unit

* {[1Ma = [inject,,, |

18/19

Technicality #2: Inject/Extract

.
—

Since t: 7 implies [t] : [7]
And C'[: 7]

«C»Il [: BtTIlZT:I

Mismatch! = # BtT 1 €8,

po. Unit v o # BtT, e Unitua] = (Unit w Unit) w Unit

* {[1Ma = [inject,,, |

inject,., : 7 - BtT

n;[7]

18/19

Technicality #2: Inject/Extract

.
—

Since t : 7 implies [t] : [7]

o« .
= >
23
P Q

=
wn
3
Q)
‘—b
(@]
3
#+ F
vy
H
=
z
®
ga

([T =[1K

inject, , : 7 - BtT

Technicality #2: Inject/Extract

.
—

Since t : 7 implies [t] : [7]

inject,,., : 7 > §tTn:H

Technicality #2: Inject/Extract

.
—

Since t : 7 implies [t] : [7]

o« .
= >
23
P Q

=,
92]
3
Q
‘—'-
(@)
\l
oy
H
-
z
@
Go

pa. Unit v o RBtT 1= (Unit w Unit) w Unit

1;%a.Unitua

inject,,., : 7 > §tTn:H

18/19

Technicality #2: Inject/Extract

If (m>nandp=precise)or (v =g and p=imprecise)
then if T-tv,t:7

then I'+ inject t v, t: EmulT

m;T

if T'+tv,t: EmulT

m;p;isToEq(7)
m;p;isToEq(7)

then I' - extract tvpt:T

m;7T

19/19

