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terrific experience

e mentoring (John & lunches)

e teaching (courses & lunches)
e research (+ talks)
e new perspective
e skiing (who'd have thought?)




Foundations of Secure
Compilation




1. Motivation behind SC
2. history of SC

3. our contributions to the foundations of SC

4. current and future applications
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Programming Languages: Pros and Problems

Good PLs (B, EEEEEN DI BK, ...) provide:
+ helpful abstractions to write secure code
but

-« when compiled ([-]) and linked with
adversarial target code

+ these abstractions are NOT enforced
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Secure Compilation: Example

F *
HACL*: ...CCS"17
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Secure Compilation: Example

Secure compllatlon

F HACL*: ...CCS"17

S
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Secure Compilation: Example

Enable source-level security reasoning

F *
HACL*: ...CCS"17

Asm

4/18
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Quest for Foundations

What does It mean
for a compiler to
be secure?

Known for type systems, CC but not for SC



Once Upon a Time in Process Algebra

Secure Implementation of Channel Abstractions

Martin Abadi Cédric Fournet Georges Gonthier
maGpa.dec.com Cedric.Fournet@inria.fr Georges .Gonthier@inria.fr
Digital Equipment Corporation INRIA Rocquencourt INRIA Rocquencourt,
Systems Research Center

Abstract spaces are on the same machine, and that a central-

ized operating system provides security for them. In

Communication in distributed systems often relies on reality, these address spaces could be spread across a
useful abstractions such as channels, remote procedure

network, and security could depend on several local op-
calls, and remote method invocations. The implemen-

erating systems and on cryptographic protocols across

tations of these abstractions sometimes provide security
propertios in particular throug cruption. In this

machines.

Theorem 1 The compositional translation is fully-

From the join-calculus to abstract, up to observational equivalence: for all join-
.. calculus processes P and @),
the sjoin-calculus

Pr~Q ifand only if Env[[P]] = Env[[Q]]




Once Upon a Time in Process Algebra

they needed a definition that their
implementation of secure channels via
cryptography was secure
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abstract, up to observational equi
calculus processes P and @),

P=~@Q if and only Env [[P]] = Env [[Q] ]
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Fully Abstract Compilation Influence

Fully Abstract Compilation to JavaScript Secure Implementations for Typed Session Abstraction:
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How
does Fully Abstract Compilation entail
security?




How
does Fully Abstract Compilation entail
security?

FAC ensures that a target — level
attacker has the same power of a
source — level one
as captured by the semantics
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Fully Abstract Compilation: Definition

P1 =ctx P2

[[Pl]] =ctz [[Pz]]
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Fully Abstract Compilation: Definition

P 1 =ctx P2

VALA[[P]l= A[[P]]{

8/18



Are there Alternatives to FAC?

« FAC is not precise about security
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Are there Alternatives to FAC?

« FAC is not precise about security
- this affects efficiency and proof complexity

- in certain cases we want easier/more
efficient alternatives

preserve classes of security
(hyper)properties
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Robust Compilation Criteria  cu csorsoscnropaen

Robust Relational Hyperproperty
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Robust Criteria: Intuition

Each point has two equivalent criteria:

* Property - ful :
+ clearly tells what class it preserves
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Robust Criteria: Intuition

Each point has two equivalent criteria:

* Property - ful :
+ clearly tells what class it preserves
- harder to prove

* Property - free:
+ easler to prove

- unclear what security classes are preserved
akin to some crypto statements (UC)

11/18
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In Depth Example: RSC

[-] = compiler [[]] . RSP dZEf VW N T € Safety VP
|7 = set of traces

P = partial program if (VA7 t. A |:P:|’\?t =1€ W)

Al A = attacker
t/t = trace of events

(1 - tinking then (VA,t. A[[P]|~t =t en)

~ [~ = trace semantics
m/m = prefix of a trace

[]:RSCZ VP, A, m.
if A[[P]]~ m
then 3A, m. A[P]~ mand m~m
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Understanding RSC

RSP/RSC:

- adaptable to reason about complex
features: concurrency, undefined behaviour

RSP:
- provable if source is robustly-safe
RSC:

- easiest backtranslation proof
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RSC - FAC

Both:

« robust (VA)
- rely on program semantics

FAC:
- yields a language result N
RSC/RSP:

- extends the semantics (~) to focus on

security
14/18
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Is There More?

Some still unknown foundations include:

« optimisation
- composition (multipass & linking)

15/18
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Robust(ly Safe) Compilation at Work

Instantiate RSC to specific properties

- absence of speculation leaks cesn

- memory safety preservation (spatial,
temporal)

- constant-time preservation

® ...
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More Secure Compilation

- secure compilation for Spectre V2+
(w. Imdea, Cispa)

- secure compilation to webassembly
(w. UCSD, Harvard, Cispa)

« secure compilation & universal
composability
(w. Stanford, Cispa)

- secure compilation for linear languages
(w. Novi / FB)

+ ...(some PL too, w. Stanford, KU Leuven)
17/18
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