CSC Report - Foundations of
Secure Compilation

‘% &/ Marco Patrignani':
~

23" June 2021

CISPA

EEEEEEEEEEEEEEEEEEE
\\\\\\\\\\\\\\\\\\\

[Stanford

» University

Talk Outline

My Stanford Experience
Foundations of Secure Compilation

Future Outlook

My Stanford Experience

Leipzig

Antwet| Diisseldorf N
Bigee Ve o G Dresden- 504itz
'}-\ Brusosels o erman y Chemnitz L g,—‘ac
Lille Cologne Gera e
Q
B um 4

Fran _a MAX PLANCK INSTITUTE Prague

o A
Wiesbade « — FOR SOFTWARE SYSTEMS

T Ouenti Luxembour Nt
Saint-Quentin gy w g i o!n4_ 6 Nurergberg (\ Czech Rer

Amiens
o

Reic|)1153 Saarbri
o xaene CISPA-Stanford Center
Stu
o Strasbolrg FOR CYBERSECURITY
ey SRPRES Y || Linz
{ MurAlch /' 35
léans Frelgurg h\™ . |
N N Q&:nstanz [4 ;
. o d
T urich
D'Jgn Besangon Inne
Bou(r)ges e 1tensteir G'S'
Chalon—scl)Jr—Saﬁne
p Ma
rance 7 M
Geg}e,v e 3
Slovenia -
Clermont-Ferrand Lyon {\J thiost {;
o o rieste
- Venice M O __Mabrl(
Y Bresc o O PR :
illarde Grencg)ble F Padua S -
Valence le] Croatia
o o Paroma o
Asti Pula
Genoa Bdlogna
o o)
Ravenna Zadar.
Q

ST P | R AVignon

Gelataio * ™. 4
£

e

"y Stan[ord
‘5»,% Shopping Cente[
Clomg, 8y

" ey

Stanford T":.gs.mm@

1 Lucﬂe Packard Children’ s
_Hospital Stanford‘

&
«fk Arrillaga Outdoor
Education and...

ﬁg é@:{{

S1anf rd Gnlf
Drlvmg Range | Lake Laguni(é

terrific experience

e mentoring (John & lunches)

terrific experience

e mentoring (John & lunches)

e teaching (courses & lunches)

terrific experience

e mentoring (John & lunches)

e teaching (courses & lunches)
e research (+ talks)

terrific experience

e mentoring (John & lunches)

e teaching (courses & lunches)
e research (+ talks)
e new perspective

terrific experience

e mentoring (John & lunches)

e teaching (courses & lunches)
e research (+ talks)
e new perspective
e skiing (who'd have thought?)

Foundations of Secure
Compilation

1. Motivation behind SC
2. history of SC

3. our contributions to the foundations of SC

4. current and future applications

1/18

SpECial Than kS tO: (wrt the contents of this talk)

Stefan Ciobaca Dave Clarke Dominique Devriese

Carmine Abate Amal Ahmed Roberto Blanco

Frank Piessens

Robert Kiinnemann

-~

~
i

Eric Tanter Jeremy Thibault Riad Wahby 218

please interrupt & ask questions

PYAL:

Programming Languages: Pros and Problems

Good PLs (B, EEEEEN DI BK, ...) provide:

+ helpful abstractions to write secure code

3/18

Programming Languages: Pros and Problems

Good PLs (B, EEEEEN DI BK, ...) provide:
+ helpful abstractions to write secure code
but

-« when compiled ([-]) and linked with
adversarial target code

3/18

Programming Languages: Pros and Problems

Good PLs (B, EEEEEN DI BK, ...) provide:
+ helpful abstractions to write secure code
but

-« when compiled ([-]) and linked with
adversarial target code

+ these abstractions are NOT enforced

3/18

Secure Compilation: Example

F *
HACL*: ...CCS"17

4/18

Secure Compilation: Example

F HACL*: ...CCS"17

160x C/C++ code (unsafe)

4/18

Secure Compilation: Example

Preserve the security of g3

F *
HACL*: ...CCS"17

4/18

Secure Compilation: Example

Preserve the security of g3

F *
HACL*: ...CCS"17

Asm

when interoperating with

4/18

Secure Compilation: Example

Correct compilation

F *
HACL*: ...CCS"17

4/18

Secure Compilation: Example

Secure compllatlon

F HACL*: ...CCS"17

S

4/18

Secure Compilation: Example

Enable source-level security reasoning

F *
HACL*: ...CCS"17

Asm

4/18

Quest for Foundations

What does It mean
for a compiler to
be secure?

Quest for Foundations

What does It mean
for a compiler to
be secure?

Known for type systems, CC but not for SC

Once Upon a Time in Process Algebra

Secure Implementation of Channel Abstractions

Martin Abadi Cédric Fournet Georges Gonthier
maGpa.dec.com Cedric.Fournet@inria.fr Georges .Gonthier@inria.fr
Digital Equipment Corporation INRIA Rocquencourt INRIA Rocquencourt,
Systems Research Center

Abstract spaces are on the same machine, and that a central-

ized operating system provides security for them. In

Communication in distributed systems often relies on reality, these address spaces could be spread across a
useful abstractions such as channels, remote procedure

network, and security could depend on several local op-
calls, and remote method invocations. The implemen-

erating systems and on cryptographic protocols across

tations of these abstractions sometimes provide security
propertios in particular throug cruption. In this

machines.

Theorem 1 The compositional translation is fully-

From the join-calculus to abstract, up to observational equivalence: for all join-
.. calculus processes P and @),
the sjoin-calculus

Pr~Q ifand only if Env[[P]] = Env[[Q]]

Once Upon a Time in Process Algebra

they needed a definition that their
implementation of secure channels via
cryptography was secure

6/18

abstract, up to observational equi
calculus processes P and @),

P=~@Q if and only Env [[P]] = Env [[Q]]

6/18

Fully Abstract Compilation Influence

Fully Abstract Compilation to JavaScript Secure Implementations for Typed Session Abstraction:

€rsjg, “Then Pierre-Evariste Dagand Pierre-Yves Strub’ Benj Ricardo Corin'** Pierre-Malo Deniélou'* Cédric Fournet'?
P’ESerV -t MSR-INRIA' Karthikeyan Bhargavan'? James Leifer!

Obse,.‘, . " rmhacuk plemeyves@atu | \GR.INRIA Joint Centre % Microsoft Research ¥ University of 1
Anm, at
4l Ay Hong)

e .
m w:pun.,ilm’“ Bluge qmvmeﬂce Fully-Abstract Compilation by
b g

Back-Tr

Dominique Devriese Marco Pusignani Frank Piesse

Authentication primitives and their compilati.. B S s

Martin Abadi” Cédric Fournet Georges G ON P ion by Layout izati .
Bell Labs Research Microsoft Research INRIA Roc E fatiod
Lucent Technologies MARTIN ABADI, Microsoft Reacarch, Silicon Va'' 3“6 goomo N
Santa Cruz; Colloge de France \A o
i et
GORDON D. PLOTKIN. artme! [

University of Edin* Begﬂ“d o‘(‘,ﬂ‘“p \3 s my\vu{!-ﬂ
- . antees . pons B oy o pens
Secure Compilation ity GO o e -
3 3 030 e a0
of Object-Oriented Components ¢ m‘m\nﬂ“‘“ s M et
0]

.
. ARIEY is T
0 Protected Module Architectures o e P e @

Marco Patrignani, Dave Clarke, and Frank Piessen

) 2 ~nd NDave Clarl
iMinds-DistriNet, Dept. Computer S An Eqmvaience.pm,, e

; m g W e B rvi
{first.last}@ 1 ou! et Via Mu'ﬁ"Lal]g'(Iag:gsgpgn?a’nshﬁ“n

MO e Ama) 4,
I e O g

e Nch“e)
and BaAt 929

protec an
gecure compiiatic” 10 o @ REOY st apunas? My Marco p,,. d FUUyA

b
oo el Fully Abstract Compilation via Universal Embedding * str, act C
et NG Domjp Ompn;y.

How
does Fully Abstract Compilation entail
security?

How
does Fully Abstract Compilation entail
security?

FAC ensures that a target — level
attacker has the same power of a
source — level one
as captured by the semantics

7/18

Fully Abstract Compilation: Definition

P1 =ctx P2

[[Pl]] =ctz [[Pz]]

8/18

Fully Abstract Compilation: Definition

P1 =ctx P2

[[Pl]] =ctz [[Pz]]

8/18

Fully Abstract Compilation: Definition

P1 =ctx P2

[[Pl]] =ctz [[Pz]]

8/18

Fully Abstract Compilation: Definition

P 1 =ctx P2

VALA[[P]l= A[[P]]{

8/18

Are there Alternatives to FAC?

« FAC is not precise about security

9/18

Are there Alternatives to FAC?

« FAC is not precise about security
- this affects efficiency and proof complexity

9/18

Are there Alternatives to FAC?

« FAC is not precise about security
- this affects efficiency and proof complexity

- in certain cases we want easier/more
efficient alternatives

9/18

Are there Alternatives to FAC?

« FAC is not precise about security
- this affects efficiency and proof complexity

- in certain cases we want easier/more
efficient alternatives

preserve classes of security
(hyper)properties

9/18

Robust Compilation Criteria cu csorsoscnropaen

Robust Relational Hyperproperty
Preservation \ Robust Relational Property

: / Preservation o~ i
Robust K-Relational Hyperproperty |/ Robust Relational rglaXed safety
q Preservation
Preservation :
| / _ Robust Finite-Relational relaXed N
Robust 2-Relational Hyperproperty /Robust K -Relational Property safety Preservation Preservation
Preservation [Preservation
| ‘ N
Robust 2-Relational Property Robust K-Relational relaXed Robust Finite-Relational

Preservation safety Preservation Safety Preservation

Robust Relational Safety

Relational
Hyperproperties

|
Robust 2-Relational relaXed

Robust Hyperproperty /
Preservation ¢ /
safety Preservation

|
Robust Subset-Closed Hyperproper/é /

Preservation Robust Trace Equivalence
| \ 4 Preservation
Robust K-Subset-Closed Hyperpropert/y O ey P 7%

Preservation ‘ Robust 2-Relational Safety

| % \ . / z Preservation
Robust 2-Subset-Closed Hyperproperty Robust K-Hypersafety Preservation
Preservation \

Robust 2-Hypersafety Preservation —___
Robust Termination-Insensitive
Noninterference Preservation

+determinacy, .- X
o Robust K'-Relational Safety

Preservation

Hyperproperties

Robust Trace Property Preservation
| \

Trace
Properties

Robust Dense Property Preservation Robust Safety Property Preservation

10/18

Relational
Hyperproperties

Hyperproperties

Trace
Properties

Robust Compilation Criteria cu csorsoscnropaen

Robust Relational Hyperproperty
Preservation \ Robust Relational Property

| . ~ .
. / P t
Relis: Ze- R e ey / reservation Robust Relational rglaXed safety
/ Prese(vatlon

Preservation ‘ /
| /

Robust Finite-Relational relaXed RetineeR RElEHENEN Sty

/ : .
Robust 2-Relational Hyperproperty /Robust K -Relational Property safety Preservation Preservation
Preservation Preservation
I \ . ‘ .
[Robust 2-Relational Property Robust K —Relatlonal'relaXed Robust Finite-Relational
Preservation safety Preservation Safety Preservation

|
Robust 2-Relational relaXed
safety Preservation

Robust Hyperproperty [
Preservation ¢

|
Robust Subset-Closed Hyperproper/é /

Preservation Robust Trace Equivalence
| \ 4 Preservation
Robust K-Subset-Closed Hyperpropert/y O ey P 7%

Preservation ‘ Robust 2-Relational Safety

| . z Preservation
Robust 2-Subset-Closed Hyperproperty Robust K-Hypersafety Preservation
Preservation \

Robust 2-Hypersafety Preservation —___
Robust Termination-Insensitive
Noninterference Preservation

+determinacy, .- X
o Robust K'-Relational Safety

Preservation

Robust Trace Property Preservation
| \

Robust Dense Property Preservation Robust Safety Property Preservation

Tradeoffs for code efficiency, security guarantees, proof complexity

10/18

Relational
Hyperproperties

Hyperproperties

Trace
Properties

Robust Compilation Criteria cu csorsoscnropaen

Robust Relational Hyperproperty
Preservation \ Robust Relational Property

| . ~ .
. / P t
Relis: Ze- R e ey / reservation Robust Relational rglaXed safety
/ Prese(vatlon

Preservation ‘ /
| /

Robust Finite-Relational relaXed RetineeR RElEHENEN Sty

/ : .
Robust 2-Relational Hyperproperty /Robust K -Relational Property safety Preservation Preservation
Preservation Preservation
I \ . ‘ .
[Robust 2-Relational Property Robust K —Relatlonal'relaXed Robust Finite-Relational
Preservation safety Preservation Safety Preservation

|
Robust 2-Relational relaXed
safety Preservation

Robust Hyperproperty [
Preservation ¢

|
Robust Subset-Closed Hyperproper/é /

Preservation Robust Trace Equivalence
| \ 4 Preservation
Robust K-Subset-Closed Hyperpropert/y O ey P 7%

Preservation ‘ Robust 2-Relational Safety

| . z Preservation
Robust 2-Subset-Closed Hyperproperty Robust K-Hypersafety Preservation
Preservation \

Robust 2-Hypersafety Preservation —___
Robust Termination-Insensitive
Noninterference Preservation

+determinacy, .- X
o Robust K'-Relational Safety

Preservation

Robust Trace Property Preservation
| \

Robust Dense Property Preservation Robust Safety Property Preservation

Tradeoffs for code efficiency, security guarantees, proof complexity

10/18

Robust Criteria: Intuition

Each point has two equivalent criteria:

* Property - ful :
+ clearly tells what class it preserves

11/18

Robust Criteria: Intuition

Each point has two equivalent criteria:

* Property - ful :
+ clearly tells what class it preserves
- harder to prove

11/18

Robust Criteria: Intuition

Each point has two equivalent criteria:

* Property - ful :
+ clearly tells what class it preserves
- harder to prove

* Property - free:
+ easler to prove

11/18

Robust Criteria: Intuition

Each point has two equivalent criteria:

* Property - ful :
+ clearly tells what class it preserves
- harder to prove
* Property - free:
+ easler to prove
- unclear what security classes are preserved

11/18

Robust Criteria: Intuition

Each point has two equivalent criteria:

* Property - ful :
+ clearly tells what class it preserves
- harder to prove

* Property - free:
+ easler to prove

- unclear what security classes are preserved
akin to some crypto statements (UC)

11/18

In Depth Example: RSC

[-] = compiler [[]] : RSP d:ef

12/18

In Depth Example: RSC

[-] = compiler [[]] . RSP dZEf Vﬂ_ N T € Safety

|7 = set of traces

12/18

In Depth Example: RSC

[-] = compiler [[]] . RSP dZEf Vﬂ_ N T € Safety VP

|7 = set of traces
P = partial program

12/18

In Depth Example: RSC

[-] = compiler [[]] . RSP dZEf Vﬂ_ N T € Safety VP
|7 = set of traces

P = partial program |f (VA, t .

Al A = attacker
t/t = trace of events

12/18

In Depth Example: RSC

[-] = compiler [[]] . RSP dZEf Vﬂ_ N T € Safety VP
|7 = set of traces

P = partial program if (VA t A |:P:| ~t
Al A = attacker » e
t/t = trace of events
[-] = linking
»[~ = trace semantics

12/18

In Depth Example: RSC

[-] = compiler [[]] . RSP dZEf Vﬂ_ N T € Safety VP
|7 = set of traces

P = partial program |f (VA t A |:P:|’\7t = te ﬁ)
Al A = attacker » e
t/t = trace of events
[-] = linking
»[~ = trace semantics

12/18

In Depth Example: RSC

[-] = compiler [[]] . RSP dZEf VW N T € Safety VP
|7 = set of traces

P = partial program if (VA7 t. A |:P:|’\?t =1€ W)

Al A = attacker
t/t = trace of events

(1 - tinking then (VA t.

~ [~ = trace semantics

12/18

In Depth Example: RSC

[-] = compiler [[]] . RSP dZEf VW N T € Safety VP
|7 = set of traces

P = partial program if (VA7 t. A |:P:|’\?t =1€ W)

Al A = attacker
t/t = trace of events

(1 - tinking then (VA,t. A[[P]]~t =

~ [~ = trace semantics

12/18

In Depth Example: RSC

[-] = compiler [[]] . RSP dZEf VW N T € Safety VP
|7 = set of traces

P = partial program if (VA7 t. A |:P:|’\?t =1€ W)

Al A = attacker
t/t = trace of events

(1 - tinking then (VA,t. A[[P]|~t =t en)

~ [~ = trace semantics

12/18

In Depth Example: RSC

[-] = compiler [[]] . RSP dZEf VW N T € Safety VP
|7 = set of traces

P = partial program if (VA7 t. A |:P:|’\?t =1€ W)

Al A = attacker
t/t = trace of events

(1 - tinking then (VA,t. A[[P]|~t =t en)

~ [~ = trace semantics

[]:RSC=

12/18

In Depth Example: RSC

[-] = compiler [[]] . RSP dZEf VW N T € Safety VP
|7 = set of traces

P = partial program if (VA7 t. A |:P:|’\?t =1€ W)

Al A = attacker
t/t = trace of events
[= inking then (VA t. A[[P]]~t =t en)
~[~» = trace semantics
m/m = prefix of a trace

[]:RSCZ VP, A m.

12/18

In Depth Example: RSC

[-] = compiler [[]] . RSP dZEf VW N T € Safety VP
|7 = set of traces

P = partial program if (VA7 t. A |:P:|’\?t =1€ W)

Al A = attacker
t/t = trace of events
[= inking then (VA t. A[[P]]~t =t en)
~[~» = trace semantics
m/m = prefix of a trace

[]:RSCZ VP, A m.
if A[[P]]~ m

12/18

In Depth Example: RSC

[-] = compiler [[]] . RSP dZEf VW N T € Safety VP
|7 = set of traces

P = partial program if (VA7 t. A |:P:|’\?t =1€ W)

Al A = attacker
t/t = trace of events
[= inking then (VA t. A[[P]]~t =t en)
~[~» = trace semantics
m/m = prefix of a trace

[]:RSCZ VP, A m.
if A[[P]]~ m
then 3A, m.

12/18

In Depth Example: RSC

[-] = compiler [[]] . RSP dZEf VW N T € Safety VP
|7 = set of traces

P = partial program if (VA7 t. A |:P:|’\?t =1€ W)

Al A = attacker
t/t = trace of events
[= inking then (VA t. A[[P]]~t =t en)
~[~» = trace semantics
m/m = prefix of a trace

[]:RSCZ VP, A m.
if A[[P]]~ m
then IA, m. A[P]~ m

12/18

In Depth Example: RSC

[-] = compiler [[]] . RSP dZEf VW N T € Safety VP
|7 = set of traces

P = partial program if (VA7 t. A |:P:|’\?t =1€ W)

Al A = attacker
t/t = trace of events

(1 - tinking then (VA,t. A[[P]|~t =t en)

~ [~ = trace semantics
m/m = prefix of a trace

[]:RSCZ VP, A, m.
if A[[P]]~ m
then 3A, m. A[P]~ mand m~m

12/18

Understanding RSC

RSP/RSC:

- adaptable to reason about complex
features: concurrency, undefined behaviour

13/18

Understanding RSC

RSP/RSC:

- adaptable to reason about complex
features: concurrency, undefined behaviour

RSP:

- provable if source is robustly-safe

13/18

Understanding RSC

RSP/RSC:

- adaptable to reason about complex
features: concurrency, undefined behaviour

RSP:
- provable if source is robustly-safe
RSC:

- easiest backtranslation proof

13/18

RSC - FAC

Both:

14/18

RSC - FAC

Both:
« robust (VA)

14/18

RSC - FAC

Both:

« robust (VA)
- rely on program semantics

14/18

RSC - FAC

Both:

« robust (VA)
- rely on program semantics

FAC:

14/18

RSC - FAC

Both:

« robust (VA)
- rely on program semantics

FAC:

- yields a language result N

14/18

RSC - FAC

Both:

« robust (VA)
- rely on program semantics

FAC:
- yields a language result N
RSC/RSP:

- extends the semantics (~) to focus on

security
14/18

Is There More?

15/18

Is There More?

Some still unknown foundations include:

15/18

Is There More?

Some still unknown foundations include:

« optimisation

15/18

Is There More?

Some still unknown foundations include:

« optimisation
- composition (multipass & linking)

15/18

Robust(ly Safe) Compilation at Work

Instantiate RSC to specific properties

- absence of speculation leaks cesn

16/18

Robust(ly Safe) Compilation at Work

Instantiate RSC to specific properties

- absence of speculation leaks cesn

- memory safety preservation (spatial,
temporal)

16/18

Robust(ly Safe) Compilation at Work

Instantiate RSC to specific properties

- absence of speculation leaks cesn

- memory safety preservation (spatial,
temporal)

- constant-time preservation

16/18

Robust(ly Safe) Compilation at Work

Instantiate RSC to specific properties

- absence of speculation leaks cesn

- memory safety preservation (spatial,
temporal)

- constant-time preservation

® ...

16/18

Future Outlook

More Secure Compilation

17/18

More Secure Compilation

- secure compilation for Spectre V2+
(w. Imdea, Cispa)

17/18

More Secure Compilation

- secure compilation for Spectre V2+
(w. Imdea, Cispa)

- secure compilation to webassembly
(w. UCSD, Harvard, Cispa)

17/18

More Secure Compilation

- secure compilation for Spectre V2+
(w. Imdea, Cispa)

- secure compilation to webassembly
(w. UCSD, Harvard, Cispa)

« secure compilation & universal
composability
(w. Stanford, Cispa)

17/18

More Secure Compilation

- secure compilation for Spectre V2+
(w. Imdea, Cispa)

- secure compilation to webassembly
(w. UCSD, Harvard, Cispa)

« secure compilation & universal
composability
(w. Stanford, Cispa)

- secure compilation for linear languages
(w. Novi / FB)

17/18

More Secure Compilation

- secure compilation for Spectre V2+
(w. Imdea, Cispa)

- secure compilation to webassembly
(w. UCSD, Harvard, Cispa)

« secure compilation & universal
composability
(w. Stanford, Cispa)

- secure compilation for linear languages
(w. Novi / FB)

+ ...(some PL too, w. Stanford, KU Leuven)
17/18

18/18

	My Stanford Experience
	Foundations of Secure Compilation
	Future Outlook

