
CSC Report – Foundations of
Secure Compilation

Marco Patrignani1,2

23rd June 2021

1 2

Talk Outline

My Stanford Experience

Foundations of Secure Compilation

Future Outlook

My Stanford Experience

terrific experience

• ● mentoring (John & lunches)
• ● teaching (courses & lunches)
• ● research (+ talks)
• ● new perspective
• ● skiing (who’d have thought?)

terrific experience
• ● mentoring (John & lunches)

• ● teaching (courses & lunches)
• ● research (+ talks)
• ● new perspective
• ● skiing (who’d have thought?)

terrific experience
• ● mentoring (John & lunches)
• ● teaching (courses & lunches)

• ● research (+ talks)
• ● new perspective
• ● skiing (who’d have thought?)

terrific experience
• ● mentoring (John & lunches)
• ● teaching (courses & lunches)
• ● research (+ talks)

• ● new perspective
• ● skiing (who’d have thought?)

terrific experience
• ● mentoring (John & lunches)
• ● teaching (courses & lunches)
• ● research (+ talks)
• ● new perspective

• ● skiing (who’d have thought?)

terrific experience
• ● mentoring (John & lunches)
• ● teaching (courses & lunches)
• ● research (+ talks)
• ● new perspective
• ● skiing (who’d have thought?)

Foundations of Secure
Compilation

Outline

1. Motivation behind SC

2. history of SC

3. our contributions to the foundations of SC

4. current and future applications

1/18

Special Thanks to: (wrt the contents of this talk)

Carmine Abate Amal Ahmed Roberto Blanco Stefan Ciobaca Dave Clarke Dominique Devriese

Akram El-Korashy Deepak Garg Marco Guarnieri Catalin Hritcu Robert Künnemann Frank Piessens

Eric Tanter Jeremy Thibault Stelios Tsampas Marco Vassena Riad Wahby

please interrupt & ask questions

2/18

Special Thanks to: (wrt the contents of this talk)

Carmine Abate Amal Ahmed Roberto Blanco Stefan Ciobaca Dave Clarke Dominique Devriese

Akram El-Korashy Deepak Garg Marco Guarnieri Catalin Hritcu Robert Künnemann Frank Piessens

Eric Tanter Jeremy Thibault Stelios Tsampas Marco Vassena Riad Wahby

please interrupt & ask questions

2/18

ProgrammingLanguages: Pros andProblems

Good PLs (, , , , . . .) provide:

• helpful abstractions to write secure code

but

• when compiled (J⋅K) and linked with
adversarial target code

• these abstractions are NOT enforced

3/18

ProgrammingLanguages: Pros andProblems

Good PLs (, , , , . . .) provide:

• helpful abstractions to write secure code

but

• when compiled (J⋅K) and linked with
adversarial target code

• these abstractions are NOT enforced

3/18

ProgrammingLanguages: Pros andProblems

Good PLs (, , , , . . .) provide:

• helpful abstractions to write secure code

but

• when compiled (J⋅K) and linked with
adversarial target code

• these abstractions are NOT enforced

3/18

Secure Compilation: Example

ChaCha20 Poly1305 . . .

JChaCha20K JPoly1305K J. . .K

F∗ HACL*: . . . CCS’17

Asm

4/18

Secure Compilation: Example

ChaCha20 Poly1305 . . .

JChaCha20K JPoly1305K J. . .K

F∗ HACL*: . . . CCS’17

Asm

160x C/C++ code (unsafe)
4/18

Secure Compilation: Example

ChaCha20 Poly1305 . . .

JChaCha20K JPoly1305K J. . .K

F∗ HACL*: . . . CCS’17

Asm

Preserve the security of

4/18

Secure Compilation: Example

ChaCha20 Poly1305 . . .

JChaCha20K JPoly1305K J. . .K

F∗ HACL*: . . . CCS’17

Asm

Preserve the security of

when interoperating with
4/18

Secure Compilation: Example

ChaCha20 Poly1305 . . .

JChaCha20K JPoly1305K J. . .K

F∗ HACL*: . . . CCS’17

Asm

Correct compilation

4/18

Secure Compilation: Example

ChaCha20 Poly1305 . . .

JChaCha20K JPoly1305K J. . .K

F∗ HACL*: . . . CCS’17

Asm

Secure compilation

4/18

Secure Compilation: Example

ChaCha20 Poly1305 . . .

JChaCha20K JPoly1305K J. . .K

F∗ HACL*: . . . CCS’17

Asm

Enable source-level security reasoning

4/18

Quest for Foundations

What does it mean
for a compiler to

be secure?

Known for type systems, CC but not for SC

5/18

Quest for Foundations

What does it mean
for a compiler to

be secure?
Known for type systems, CC but not for SC

5/18

Once Upon a Time in Process Algebra

Fully Abstract Compilation (FAC)

6/18

Once Upon a Time in Process Algebra

they needed a definition that their
implementation of secure channels via

cryptography was secure

Fully Abstract Compilation (FAC)

6/18

Once Upon a Time in Process Algebra

Fully Abstract Compilation (FAC)

6/18

Fully Abstract Compilation Influence

How
does Fully Abstract Compilation entail

security?

FAC ensures that a target − level

attacker has the same power of a
source − level one

as captured by the semantics

7/18

Fully Abstract Compilation Influence
How

does Fully Abstract Compilation entail
security?

FAC ensures that a target − level

attacker has the same power of a
source − level one

as captured by the semantics

7/18

Fully Abstract Compilation Influence
How

does Fully Abstract Compilation entail
security?

FAC ensures that a target − level

attacker has the same power of a
source − level one

as captured by the semantics

7/18

Fully Abstract Compilation: Definition

P1 P2

JP1K JP2K

⇕

≃ctx

≃ctx

8/18

Fully Abstract Compilation: Definition

P1 P2

JP1K JP2K

⇑

≃ctx

≃ctx

8/18

Fully Abstract Compilation: Definition

P1 P2

JP1K JP2K

⇓

≃ctx

≃ctx

8/18

Fully Abstract Compilation: Definition

P1 P2

A [JP1K] A [JP2K]

⇓

≃ctx

⇐⇒∀A. ⇓ ⇓

8/18

Are there Alternatives to FAC?

• FAC is not precise about security

• this affects efficiency and proof complexity
• in certain cases we want easier/more
efficient alternatives

preserve classes of security
(hyper)properties

9/18

Are there Alternatives to FAC?

• FAC is not precise about security
• this affects efficiency and proof complexity

• in certain cases we want easier/more
efficient alternatives

preserve classes of security
(hyper)properties

9/18

Are there Alternatives to FAC?

• FAC is not precise about security
• this affects efficiency and proof complexity
• in certain cases we want easier/more
efficient alternatives

preserve classes of security
(hyper)properties

9/18

Are there Alternatives to FAC?

• FAC is not precise about security
• this affects efficiency and proof complexity
• in certain cases we want easier/more
efficient alternatives

preserve classes of security
(hyper)properties

9/18

Robust Compilation Criteria CSF’19, ESOP’20, ACM Toplas’21

Robust Relational Hyperproperty
Preservation

Robust K-Relational Hyperproperty
Preservation

Robust 2-Relational Hyperproperty
Preservation

Robust Relational Property
Preservation

Robust K-Relational Property
Preservation

Robust 2-Relational Property
Preservation

Robust Relational relaXed safety
Preservation

Robust Finite-Relational relaXed
safety Preservation

Robust K-Relational relaXed
safety Preservation

Robust 2-Relational relaXed
safety Preservation

Robust Relational Safety
Preservation

Robust Finite-Relational
Safety Preservation

Robust K-Relational Safety
Preservation

Robust 2-Relational Safety
Preservation

Robust Hyperproperty
Preservation

Robust Subset-Closed Hyperproperty
Preservation

Robust K-Subset-Closed Hyperproperty
Preservation

Robust 2-Subset-Closed Hyperproperty
Preservation

Robust Trace Property Preservation

Robust Hypersafety Preservation

Robust K-Hypersafety Preservation

Robust 2-Hypersafety Preservation

Robust Safety Property PreservationRobust Dense Property Preservation

Robust Trace Equivalence
Preservation

Robust Termination-Insensitive
Noninterference Preservation

+ determinacy

Re
la
tio
na
l

Hy
pe
rp
ro
pe
rt
ie
s

Hy
pe
rp
ro
pe
rt
ie
s

Tr
ac
e

Pr
op
er
tie
s

Tradeoffs for code efficiency, security guarantees, proof complexity

10/18

Robust Compilation Criteria CSF’19, ESOP’20, ACM Toplas’21

Robust Relational Hyperproperty
Preservation

Robust K-Relational Hyperproperty
Preservation

Robust 2-Relational Hyperproperty
Preservation

Robust Relational Property
Preservation

Robust K-Relational Property
Preservation

Robust 2-Relational Property
Preservation

Robust Relational relaXed safety
Preservation

Robust Finite-Relational relaXed
safety Preservation

Robust K-Relational relaXed
safety Preservation

Robust 2-Relational relaXed
safety Preservation

Robust Relational Safety
Preservation

Robust Finite-Relational
Safety Preservation

Robust K-Relational Safety
Preservation

Robust 2-Relational Safety
Preservation

Robust Hyperproperty
Preservation

Robust Subset-Closed Hyperproperty
Preservation

Robust K-Subset-Closed Hyperproperty
Preservation

Robust 2-Subset-Closed Hyperproperty
Preservation

Robust Trace Property Preservation

Robust Hypersafety Preservation

Robust K-Hypersafety Preservation

Robust 2-Hypersafety Preservation

Robust Safety Property PreservationRobust Dense Property Preservation

Robust Trace Equivalence
Preservation

Robust Termination-Insensitive
Noninterference Preservation

+ determinacy

Re
la
tio
na
l

Hy
pe
rp
ro
pe
rt
ie
s

Hy
pe
rp
ro
pe
rt
ie
s

Tr
ac
e

Pr
op
er
tie
s

Tradeoffs for code efficiency, security guarantees, proof complexity
10/18

Robust Compilation Criteria CSF’19, ESOP’20, ACM Toplas’21

Robust Relational Hyperproperty
Preservation

Robust K-Relational Hyperproperty
Preservation

Robust 2-Relational Hyperproperty
Preservation

Robust Relational Property
Preservation

Robust K-Relational Property
Preservation

Robust 2-Relational Property
Preservation

Robust Relational relaXed safety
Preservation

Robust Finite-Relational relaXed
safety Preservation

Robust K-Relational relaXed
safety Preservation

Robust 2-Relational relaXed
safety Preservation

Robust Relational Safety
Preservation

Robust Finite-Relational
Safety Preservation

Robust K-Relational Safety
Preservation

Robust 2-Relational Safety
Preservation

Robust Hyperproperty
Preservation

Robust Subset-Closed Hyperproperty
Preservation

Robust K-Subset-Closed Hyperproperty
Preservation

Robust 2-Subset-Closed Hyperproperty
Preservation

Robust Trace Property Preservation

Robust Hypersafety Preservation

Robust K-Hypersafety Preservation

Robust 2-Hypersafety Preservation

Robust Safety Property PreservationRobust Dense Property Preservation

Robust Trace Equivalence
Preservation

Robust Termination-Insensitive
Noninterference Preservation

+ determinacy

Re
la
tio
na
l

Hy
pe
rp
ro
pe
rt
ie
s

Hy
pe
rp
ro
pe
rt
ie
s

Tr
ac
e

Pr
op
er
tie
s

Tradeoffs for code efficiency, security guarantees, proof complexity
10/18

Robust Criteria: Intuition

Each point has two equivalent criteria:

• Property − ful ∶
+ clearly tells what class it preserves

- harder to prove
• Property − free ∶

+ easier to prove
- unclear what security classes are preserved
= akin to some crypto statements (UC)

11/18

Robust Criteria: Intuition

Each point has two equivalent criteria:

• Property − ful ∶
+ clearly tells what class it preserves
- harder to prove

• Property − free ∶
+ easier to prove
- unclear what security classes are preserved
= akin to some crypto statements (UC)

11/18

Robust Criteria: Intuition

Each point has two equivalent criteria:

• Property − ful ∶
+ clearly tells what class it preserves
- harder to prove

• Property − free ∶
+ easier to prove

- unclear what security classes are preserved
= akin to some crypto statements (UC)

11/18

Robust Criteria: Intuition

Each point has two equivalent criteria:

• Property − ful ∶
+ clearly tells what class it preserves
- harder to prove

• Property − free ∶
+ easier to prove
- unclear what security classes are preserved

= akin to some crypto statements (UC)

11/18

Robust Criteria: Intuition

Each point has two equivalent criteria:

• Property − ful ∶
+ clearly tells what class it preserves
- harder to prove

• Property − free ∶
+ easier to prove
- unclear what security classes are preserved
= akin to some crypto statements (UC)

11/18

In Depth Example: RSC ESOP’19, ACM Toplas’21

J⋅K = compiler

π/π = set of traces
P = partial program
A/A = attacker

t/t = trace of events
[⋅] = linking

↝/↝ = trace semantics
m/m = prefix of a trace

J⋅K ∶ RSP def=

∀π ≈ π ∈ Safety .

∀P.

if (∀A, t.

A [P]↝t

⇒ t ∈ π)

then (∀A, t.

A [JPK]↝t⇒

t ∈ π)

J⋅K ∶ RSC def=

∀P,A,m.

if A [JPK]↝m

then ∃A,m.

A [P]↝ m

and m ≈m

12/18

In Depth Example: RSC ESOP’19, ACM Toplas’21

J⋅K = compiler
π/π = set of traces

P = partial program
A/A = attacker

t/t = trace of events
[⋅] = linking

↝/↝ = trace semantics
m/m = prefix of a trace

J⋅K ∶ RSP def= ∀π ≈ π ∈ Safety .

∀P.

if (∀A, t.

A [P]↝t

⇒ t ∈ π)

then (∀A, t.

A [JPK]↝t⇒

t ∈ π)

J⋅K ∶ RSC def=

∀P,A,m.

if A [JPK]↝m

then ∃A,m.

A [P]↝ m

and m ≈m

12/18

In Depth Example: RSC ESOP’19, ACM Toplas’21

J⋅K = compiler
π/π = set of traces
P = partial program

A/A = attacker
t/t = trace of events
[⋅] = linking

↝/↝ = trace semantics
m/m = prefix of a trace

J⋅K ∶ RSP def= ∀π ≈ π ∈ Safety . ∀P.

if (∀A, t.

A [P]↝t

⇒ t ∈ π)

then (∀A, t.

A [JPK]↝t⇒

t ∈ π)

J⋅K ∶ RSC def=

∀P,A,m.

if A [JPK]↝m

then ∃A,m.

A [P]↝ m

and m ≈m

12/18

In Depth Example: RSC ESOP’19, ACM Toplas’21

J⋅K = compiler
π/π = set of traces
P = partial program
A/A = attacker

t/t = trace of events

[⋅] = linking
↝/↝ = trace semantics
m/m = prefix of a trace

J⋅K ∶ RSP def= ∀π ≈ π ∈ Safety . ∀P.
if (∀A, t.

A [P]↝t

⇒ t ∈ π)

then (∀A, t.

A [JPK]↝t⇒

t ∈ π)

J⋅K ∶ RSC def=

∀P,A,m.

if A [JPK]↝m

then ∃A,m.

A [P]↝ m

and m ≈m

12/18

In Depth Example: RSC ESOP’19, ACM Toplas’21

J⋅K = compiler
π/π = set of traces
P = partial program
A/A = attacker

t/t = trace of events
[⋅] = linking

↝/↝ = trace semantics

m/m = prefix of a trace

J⋅K ∶ RSP def= ∀π ≈ π ∈ Safety . ∀P.
if (∀A, t.A [P]↝t

⇒ t ∈ π)

then (∀A, t.

A [JPK]↝t⇒

t ∈ π)

J⋅K ∶ RSC def=

∀P,A,m.

if A [JPK]↝m

then ∃A,m.

A [P]↝ m

and m ≈m

12/18

In Depth Example: RSC ESOP’19, ACM Toplas’21

J⋅K = compiler
π/π = set of traces
P = partial program
A/A = attacker

t/t = trace of events
[⋅] = linking

↝/↝ = trace semantics

m/m = prefix of a trace

J⋅K ∶ RSP def= ∀π ≈ π ∈ Safety . ∀P.
if (∀A, t.A [P]↝t⇒ t ∈ π)

then (∀A, t.

A [JPK]↝t⇒

t ∈ π)

J⋅K ∶ RSC def=

∀P,A,m.

if A [JPK]↝m

then ∃A,m.

A [P]↝ m

and m ≈m

12/18

In Depth Example: RSC ESOP’19, ACM Toplas’21

J⋅K = compiler
π/π = set of traces
P = partial program
A/A = attacker

t/t = trace of events
[⋅] = linking

↝/↝ = trace semantics

m/m = prefix of a trace

J⋅K ∶ RSP def= ∀π ≈ π ∈ Safety . ∀P.
if (∀A, t.A [P]↝t⇒ t ∈ π)

then (∀A, t.

A [JPK]↝t⇒

t ∈ π)

J⋅K ∶ RSC def=

∀P,A,m.

if A [JPK]↝m

then ∃A,m.

A [P]↝ m

and m ≈m

12/18

In Depth Example: RSC ESOP’19, ACM Toplas’21

J⋅K = compiler
π/π = set of traces
P = partial program
A/A = attacker

t/t = trace of events
[⋅] = linking

↝/↝ = trace semantics

m/m = prefix of a trace

J⋅K ∶ RSP def= ∀π ≈ π ∈ Safety . ∀P.
if (∀A, t.A [P]↝t⇒ t ∈ π)

then (∀A, t.A [JPK]↝t⇒

t ∈ π)

J⋅K ∶ RSC def=

∀P,A,m.

if A [JPK]↝m

then ∃A,m.

A [P]↝ m

and m ≈m

12/18

In Depth Example: RSC ESOP’19, ACM Toplas’21

J⋅K = compiler
π/π = set of traces
P = partial program
A/A = attacker

t/t = trace of events
[⋅] = linking

↝/↝ = trace semantics

m/m = prefix of a trace

J⋅K ∶ RSP def= ∀π ≈ π ∈ Safety . ∀P.
if (∀A, t.A [P]↝t⇒ t ∈ π)

then (∀A, t.A [JPK]↝t⇒ t ∈ π)

J⋅K ∶ RSC def=

∀P,A,m.

if A [JPK]↝m

then ∃A,m.

A [P]↝ m

and m ≈m

12/18

In Depth Example: RSC ESOP’19, ACM Toplas’21

J⋅K = compiler
π/π = set of traces
P = partial program
A/A = attacker

t/t = trace of events
[⋅] = linking

↝/↝ = trace semantics

m/m = prefix of a trace

J⋅K ∶ RSP def= ∀π ≈ π ∈ Safety . ∀P.
if (∀A, t.A [P]↝t⇒ t ∈ π)

then (∀A, t.A [JPK]↝t⇒ t ∈ π)

J⋅K ∶ RSC def=

∀P,A,m.

if A [JPK]↝m

then ∃A,m.

A [P]↝ m

and m ≈m

12/18

In Depth Example: RSC ESOP’19, ACM Toplas’21

J⋅K = compiler
π/π = set of traces
P = partial program
A/A = attacker

t/t = trace of events
[⋅] = linking

↝/↝ = trace semantics
m/m = prefix of a trace

J⋅K ∶ RSP def= ∀π ≈ π ∈ Safety . ∀P.
if (∀A, t.A [P]↝t⇒ t ∈ π)

then (∀A, t.A [JPK]↝t⇒ t ∈ π)

J⋅K ∶ RSC def= ∀P,A,m.

if A [JPK]↝m

then ∃A,m.

A [P]↝ m

and m ≈m

12/18

In Depth Example: RSC ESOP’19, ACM Toplas’21

J⋅K = compiler
π/π = set of traces
P = partial program
A/A = attacker

t/t = trace of events
[⋅] = linking

↝/↝ = trace semantics
m/m = prefix of a trace

J⋅K ∶ RSP def= ∀π ≈ π ∈ Safety . ∀P.
if (∀A, t.A [P]↝t⇒ t ∈ π)

then (∀A, t.A [JPK]↝t⇒ t ∈ π)

J⋅K ∶ RSC def= ∀P,A,m.

if A [JPK]↝m

then ∃A,m.

A [P]↝ m

and m ≈m

12/18

In Depth Example: RSC ESOP’19, ACM Toplas’21

J⋅K = compiler
π/π = set of traces
P = partial program
A/A = attacker

t/t = trace of events
[⋅] = linking

↝/↝ = trace semantics
m/m = prefix of a trace

J⋅K ∶ RSP def= ∀π ≈ π ∈ Safety . ∀P.
if (∀A, t.A [P]↝t⇒ t ∈ π)

then (∀A, t.A [JPK]↝t⇒ t ∈ π)

J⋅K ∶ RSC def= ∀P,A,m.

if A [JPK]↝m

then ∃A,m.

A [P]↝ m

and m ≈m

12/18

In Depth Example: RSC ESOP’19, ACM Toplas’21

J⋅K = compiler
π/π = set of traces
P = partial program
A/A = attacker

t/t = trace of events
[⋅] = linking

↝/↝ = trace semantics
m/m = prefix of a trace

J⋅K ∶ RSP def= ∀π ≈ π ∈ Safety . ∀P.
if (∀A, t.A [P]↝t⇒ t ∈ π)

then (∀A, t.A [JPK]↝t⇒ t ∈ π)

J⋅K ∶ RSC def= ∀P,A,m.

if A [JPK]↝m

then ∃A,m.A [P]↝ m

and m ≈m

12/18

In Depth Example: RSC ESOP’19, ACM Toplas’21

J⋅K = compiler
π/π = set of traces
P = partial program
A/A = attacker

t/t = trace of events
[⋅] = linking

↝/↝ = trace semantics
m/m = prefix of a trace

J⋅K ∶ RSP def= ∀π ≈ π ∈ Safety . ∀P.
if (∀A, t.A [P]↝t⇒ t ∈ π)

then (∀A, t.A [JPK]↝t⇒ t ∈ π)

J⋅K ∶ RSC def= ∀P,A,m.

if A [JPK]↝m

then ∃A,m.A [P]↝ m and m ≈m

12/18

Understanding RSC

RSP/RSC:

• adaptable to reason about complex
features: concurrency, undefined behaviour

RSP:

• provable if source is robustly-safe

RSC:

• easiest backtranslation proof

13/18

Understanding RSC

RSP/RSC:

• adaptable to reason about complex
features: concurrency, undefined behaviour

RSP:

• provable if source is robustly-safe

RSC:

• easiest backtranslation proof

13/18

Understanding RSC

RSP/RSC:

• adaptable to reason about complex
features: concurrency, undefined behaviour

RSP:

• provable if source is robustly-safe

RSC:

• easiest backtranslation proof
13/18

RSC - FAC

Both:

• robust (∀A)
• rely on program semantics

FAC:

• yields a language result POPL’21

RSC/RSP:

• extends the semantics (↝) to focus on
security

14/18

RSC - FAC

Both:

• robust (∀A)

• rely on program semantics

FAC:

• yields a language result POPL’21

RSC/RSP:

• extends the semantics (↝) to focus on
security

14/18

RSC - FAC

Both:

• robust (∀A)
• rely on program semantics

FAC:

• yields a language result POPL’21

RSC/RSP:

• extends the semantics (↝) to focus on
security

14/18

RSC - FAC

Both:

• robust (∀A)
• rely on program semantics

FAC:

• yields a language result POPL’21

RSC/RSP:

• extends the semantics (↝) to focus on
security

14/18

RSC - FAC

Both:

• robust (∀A)
• rely on program semantics

FAC:

• yields a language result POPL’21

RSC/RSP:

• extends the semantics (↝) to focus on
security

14/18

RSC - FAC

Both:

• robust (∀A)
• rely on program semantics

FAC:

• yields a language result POPL’21

RSC/RSP:

• extends the semantics (↝) to focus on
security

14/18

Is There More?

Some still unknown foundations include:

• optimisation
• composition (multipass & linking)

15/18

Is There More?

Some still unknown foundations include:

• optimisation
• composition (multipass & linking)

15/18

Is There More?

Some still unknown foundations include:

• optimisation

• composition (multipass & linking)

15/18

Is There More?

Some still unknown foundations include:

• optimisation
• composition (multipass & linking)

15/18

Robust(ly Safe) Compilation at Work

Instantiate RSC to specific properties

• absence of speculation leaks CCS’21

• memory safety preservation (spatial,
temporal)

• constant-time preservation
• ⋯

16/18

Robust(ly Safe) Compilation at Work

Instantiate RSC to specific properties

• absence of speculation leaks CCS’21

• memory safety preservation (spatial,
temporal)

• constant-time preservation
• ⋯

16/18

Robust(ly Safe) Compilation at Work

Instantiate RSC to specific properties

• absence of speculation leaks CCS’21

• memory safety preservation (spatial,
temporal)

• constant-time preservation

• ⋯

16/18

Robust(ly Safe) Compilation at Work

Instantiate RSC to specific properties

• absence of speculation leaks CCS’21

• memory safety preservation (spatial,
temporal)

• constant-time preservation
• ⋯

16/18

Future Outlook

More Secure Compilation

• secure compilation for Spectre V2+
(w. Imdea, Cispa)

• secure compilation to webassembly
(w. UCSD, Harvard, Cispa)

• secure compilation & universal
composability
(w. Stanford, Cispa)

• secure compilation for linear languages
(w. Novi / FB)

• . . . (some PL too, w. Stanford, KU Leuven)

17/18

More Secure Compilation

• secure compilation for Spectre V2+
(w. Imdea, Cispa)

• secure compilation to webassembly
(w. UCSD, Harvard, Cispa)

• secure compilation & universal
composability
(w. Stanford, Cispa)

• secure compilation for linear languages
(w. Novi / FB)

• . . . (some PL too, w. Stanford, KU Leuven)

17/18

More Secure Compilation

• secure compilation for Spectre V2+
(w. Imdea, Cispa)

• secure compilation to webassembly
(w. UCSD, Harvard, Cispa)

• secure compilation & universal
composability
(w. Stanford, Cispa)

• secure compilation for linear languages
(w. Novi / FB)

• . . . (some PL too, w. Stanford, KU Leuven)

17/18

More Secure Compilation

• secure compilation for Spectre V2+
(w. Imdea, Cispa)

• secure compilation to webassembly
(w. UCSD, Harvard, Cispa)

• secure compilation & universal
composability
(w. Stanford, Cispa)

• secure compilation for linear languages
(w. Novi / FB)

• . . . (some PL too, w. Stanford, KU Leuven)

17/18

More Secure Compilation

• secure compilation for Spectre V2+
(w. Imdea, Cispa)

• secure compilation to webassembly
(w. UCSD, Harvard, Cispa)

• secure compilation & universal
composability
(w. Stanford, Cispa)

• secure compilation for linear languages
(w. Novi / FB)

• . . . (some PL too, w. Stanford, KU Leuven)

17/18

More Secure Compilation

• secure compilation for Spectre V2+
(w. Imdea, Cispa)

• secure compilation to webassembly
(w. UCSD, Harvard, Cispa)

• secure compilation & universal
composability
(w. Stanford, Cispa)

• secure compilation for linear languages
(w. Novi / FB)

• . . . (some PL too, w. Stanford, KU Leuven)
17/18

Questions?

18/18

	My Stanford Experience
	Foundations of Secure Compilation
	Future Outlook

