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Foundations of Secure
Compilation



Outline

1. Motivation behind SC

2. history of SC

3. our contributions to the foundations of SC

4. current and future applications

1/18



Special Thanks to: (wrt the contents of this talk)

Carmine Abate Amal Ahmed Roberto Blanco Stefan Ciobaca Dave Clarke Dominique Devriese

Akram El-Korashy Deepak Garg Marco Guarnieri Catalin Hritcu Robert Künnemann Frank Piessens

Eric Tanter Jeremy Thibault Stelios Tsampas Marco Vassena Riad Wahby

please interrupt & ask questions

2/18



Special Thanks to: (wrt the contents of this talk)

Carmine Abate Amal Ahmed Roberto Blanco Stefan Ciobaca Dave Clarke Dominique Devriese

Akram El-Korashy Deepak Garg Marco Guarnieri Catalin Hritcu Robert Künnemann Frank Piessens

Eric Tanter Jeremy Thibault Stelios Tsampas Marco Vassena Riad Wahby

please interrupt & ask questions

2/18



ProgrammingLanguages: Pros andProblems

Good PLs ( , , , , . . . ) provide:

• helpful abstractions to write secure code

but

• when compiled (J⋅K) and linked with
adversarial target code

• these abstractions are NOT enforced
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ChaCha20 Poly1305 . . .

JChaCha20K JPoly1305K J. . .K

F∗ HACL*: . . . CCS’17
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Secure Compilation: Example

ChaCha20 Poly1305 . . .

JChaCha20K JPoly1305K J. . .K

F∗ HACL*: . . . CCS’17

Asm

Enable source-level security reasoning
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Quest for Foundations

What does it mean
for a compiler to

be secure?

Known for type systems, CC but not for SC
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Once Upon a Time in Process Algebra

Fully Abstract Compilation (FAC)
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Once Upon a Time in Process Algebra

they needed a definition that their
implementation of secure channels via

cryptography was secure
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Fully Abstract Compilation Influence

How
does Fully Abstract Compilation entail

security?

FAC ensures that a target − level

attacker has the same power of a
source − level one

as captured by the semantics
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Fully Abstract Compilation: Definition

P1 P2

JP1K JP2K

⇕

≃ctx

≃ctx
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Fully Abstract Compilation: Definition

P1 P2

A [JP1K] A [JP2K]

⇓

≃ctx

⇐⇒∀A. ⇓ ⇓
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Are there Alternatives to FAC?

• FAC is not precise about security

• this affects efficiency and proof complexity
• in certain cases we want easier/more
efficient alternatives

preserve classes of security
(hyper)properties
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Robust Compilation Criteria CSF’19, ESOP’20, ACM Toplas’21
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Robust Criteria: Intuition

Each point has two equivalent criteria:

• Property − ful ∶
+ clearly tells what class it preserves

- harder to prove
• Property − free ∶

+ easier to prove
- unclear what security classes are preserved
= akin to some crypto statements (UC)
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In Depth Example: RSC ESOP’19, ACM Toplas’21

J⋅K = compiler

π/π = set of traces
P = partial program
A/A = attacker

t/t = trace of events
[⋅] = linking

↝/↝ = trace semantics
m/m = prefix of a trace

J⋅K ∶ RSP def=

∀π ≈ π ∈ Safety .

∀P.

if (∀A, t.

A [P]↝t

⇒ t ∈ π)

then (∀A, t.

A [JPK]↝t⇒

t ∈ π)

J⋅K ∶ RSC def=

∀P,A,m.

if A [JPK]↝m

then ∃A,m.

A [P]↝ m

and m ≈m
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Understanding RSC

RSP/RSC:

• adaptable to reason about complex
features: concurrency, undefined behaviour

RSP:

• provable if source is robustly-safe

RSC:

• easiest backtranslation proof
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RSC - FAC

Both:

• robust (∀A)
• rely on program semantics

FAC:

• yields a language result POPL’21

RSC/RSP:

• extends the semantics (↝) to focus on
security
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Is There More?

Some still unknown foundations include:

• optimisation
• composition (multipass & linking)
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Robust(ly Safe) Compilation at Work

Instantiate RSC to specific properties

• absence of speculation leaks CCS’21

• memory safety preservation (spatial,
temporal)

• constant-time preservation
• ⋯
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Future Outlook



More Secure Compilation

• secure compilation for Spectre V2+
(w. Imdea, Cispa)

• secure compilation to webassembly
(w. UCSD, Harvard, Cispa)

• secure compilation & universal
composability
(w. Stanford, Cispa)

• secure compilation for linear languages
(w. Novi / FB)

• . . . (some PL too, w. Stanford, KU Leuven)
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Questions?
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